
 

  
 

 
 

AVR311: Using the TWI module as I2C slave 

Features 
• C-code driver for TWI slave 
• Compatible with Philips' I2C protocol 
• Uses the hardware TWI module 
• Interrupt driven transmission 
• Supports both Standard mode and Fast mode 
• Wake up from all sleep modes on own address recognition 

Introduction 
The Two Wire serial Interface (TWI) is compatible with Philips' I2C protocol. The 
bus was developed to allow simple, robust and cost effective communication 
between integrated circuits in electronics. The strengths of the TWI bus includes 
the capability of addressing up to 128 devices on the same bus, arbitration, and the 
possibility to have multiple masters on the bus. 

A hardware TWI module is included in most of the AVR devices available. 

This application note describes a TWI slave implementation, in form of a full-
featured driver and an example of usage for this driver. The driver handles 
transmission according to both Standard mode (<100kbps) and Fast mode 
(<400kbps).  
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Theory 
This section gives a short description of the TWI interface in general and the TWI 
module on the megaAVR’s. For more detailed information refer to the datasheets. 

 

The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller 
applications. The TWI protocol allows the systems designer to interconnect up to 128 
individually addressable devices using only two bi-directional bus lines, one for clock 
(SCL) and one for data (SDA). The only external hardware needed to implement the 
bus is a single pull-up resistor for each of the TWI bus lines. All devices connected to 
the bus have individual addresses, and mechanisms for resolving bus contention are 
inherent in the TWI protocol. 

 

Figure 1. TWI Bus Interconnection. 
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The TWI bus is a multi-master bus where one or more devices, capable of taking 
control of the bus, can be connected. Only Master devices can drive both the SCL 
and SDA lines while a Slave device is only allowed to issue data on the SDA line. 

Data transfer is always initiated by a Bus Master device. A high to low transition on 
the SDA line while SCL is high is defined to be a START condition or a repeated start 
condition. 

 

Figure 2. TWI Address and Data Packet Format 
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A START condition is always followed by the (unique) 7-bit slave address and then by 
a Data Direction bit. The Slave device addressed now acknowledges to the Master by 
holding SDA low for one clock cycle. If the Master does not receive any acknowledge 
the transfer is terminated. Depending of the Data Direction bit, the Master or Slave 
now transmits 8-bit of data on the SDA line. The receiving device then acknowledges 
the data. Multiple bytes can be transferred in one direction before a repeated START 
or a STOP condition is issued by the Master. The transfer is terminated when the 
Master issues a STOP condition. A STOP condition is defined by a low to high 
transition on the SDA line while the SCL is high. 

If a Slave device cannot handle incoming data until it has performed some other 
function, it can hold SCL low to force the Master into a wait-state. 

All data packets transmitted on the TWI bus are 9 bits long, consisting of one data 
byte and an acknowledge bit. During a data transfer, the master generates the clock 
and the START and STOP conditions, while the receiver is responsible for 
acknowledging the reception. An Acknowledge (ACK) is signaled by the receiver 
pulling the SDA line low during the ninth SCL cycle. If the receiver leaves the SDA 
line high, a NACK is signaled. 

 

The TWI module is comprised of several sub modules, as shown in Figure 3. All 
registers drawn in a thick line are accessible through the AVR data bus. 

Figure 3. Overview of the TWI module in the AVR devices. 
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The AVR TWI module can operate in both Master and Slave mode. The mode of 
operation is distinguished by the TWI status codes in the TWI Status Register 
(TWSR) and by the use of certain bits in the TWI Control Register (TWCR). 

A set of predefined status codes covers the different states that the TWI can be in 
when a TWI event occurs. The status codes are divided in Master and Slave codes 
and further in receive and transmit related codes. Status codes for Bus Error and Idle 
also exist. 

The TWI module operates as a state machine and is event driven: if a START 
CONDITION followed by a TWI address matches the address in the Slave’s TWI 
Address Register (TWAR) the TWINT flag is set, resulting in the execution of the 
corresponding interrupt (if Global Interrupt and TWI interrupts are enabled). The 
firmware of the Slave responds by reading the status code in TWSR and responding 
accordingly. All TWI events will set the TWINT flag, and the firmware must respond 
based on the status in TWSR. 

As long as the TWINT Flag is set, the SCL line is held low. This allows the application 
software to complete its tasks before allowing the TWI transmission to continue. 

The TWINT Flag is set in the following situations: 

• After the TWI has transmitted a START/REPEATED START condition 
• After the TWI has transmitted SLA+R/W 
• After the TWI has transmitted an address byte 
• After the TWI has lost arbitration 
• After the TWI has been addressed by own Slave address or general call 
• After the TWI has received a data byte 
• After a STOP or REPEATED START has been received while still addressed as a 

Slave. 
• When a bus error has occurred due to an illegal START or STOP condition 
 
The Bite Rate Generator unit controls the period of SCL when operating in a Master 
mode. The SCL period is controlled by settings in the TWI Bit Rate Register (TWBR) 
and the Prescaler bits in the TWI Status Register (TWSR). Slave operation does not 
depend on Bit Rate or Prescaler settings, but the CPU clock frequency in the Slave 
must be at least 16 times higher than the SCL frequency. Table 1 shows minimum 
CPU clock speeds for normal and high speed TWI transmission. 

Table 1. Minimum CPU clock frequencies versus SCL frequencies. 
CPU Clock frequency [MHz] SCL frequency [kHz] 

>6.4 400 

>1.6 100 
 

Both TWI lines (SDA and SCL) are bi-directional, therefore outputs connected to the 
TWI bus must be of an open-drain or an open-collector type. Each line must be 
connected to the supply voltage via a pull-up resistor. A line is then logic high when 
none of the connected devices drives the line, and logic low if one or more drives the 
line low. 

The output drivers contain a slew-rate limiter. The input stages contain a spike 
suppression unit removing spikes shorter than 50 ns. Note that the internal pull-ups in 
the AVR pads can be enabled by setting the PORT bits corresponding to the SCL and 

Control Unit 

Bit Rate Generator 

SCL and SDA Pins 
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SDA pins, as explained in the I/O Port section. The internal pull-ups can in some 
systems eliminate the need for external ones.  

Figure 4 shows how to connect the TWI units to the TWI bus. The value of Rp 
depends on VCC and the bus capacitance (typically 4.7 k). 

 

Figure 4. TWI connection. 
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The Address Match unit is only used in slave mode, and checks if the received 
address bytes match the 7-bit address in the TWI Address Register (TWAR). Upon an 
address match, the Control Unit is informed, allowing correct action to be taken. The 
TWI may or may not acknowledge its address, depending on settings in the TWCR. 

On devices with a TWI Address Mask Register (TWAMR) the Address Match unit can 
react on a masked subset of addresses. 

Although the clock system to the TWI is turned off in all sleep modes, the interface 
can still acknowledge its own Slave address or the general call address by using the 
TWI Bus clock as a clock source. The part will then wake up from sleep and the TWI 
will hold the SCL clock low during the wake up and until the TWINT Flag is cleared. 

This unit contains the Data and Address Shift Register (TWDR), a START/STOP 
Controller and Arbitration detection hardware. The TWDR contains the address or 
data bytes to be transmitted, or the address or data bytes received. In addition it also 
contains a register containing the (N)ACK bit to be transmitted or received. Note that 
after waking up from sleep the content of TWDR is undefined. I.e. on devices with 
multi slave address support it is not possible to use the TWDR content to determine 
what slave address that triggered the device to wake up from sleep.  

The START/STOP Controller is responsible for generation and detection of START, 
REPEATED START, and STOP conditions. The START/STOP controller is able to 
detect START and STOP conditions even when the AVR MCU is in one of the sleep 
modes, enabling the MCU to wake up if addressed by a Master. If the TWI has 
initiated a transmission as Master, the Arbitration Detection hardware continuously 
monitors the transmission trying to determine if arbitration is in process. If the TWI 
has lost an arbitration, the Control Unit is informed. Correct action can then be taken 
and appropriate status codes generated. 

Address Match Unit 

Bus Interface Unit 
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Implementation 
The implemented code in this application note is a pure slave driver. The TWI 
modules also support master operation. See “AVR315 TWI Master Implementation” 
for a sample of a master driver. The master and slave drivers could be merged to one 
combined master and slave driver, but this is not the scope of this application note. 

The slave driver c-code consists of three files. 

• TWI_Slave.c 
• TWI_Slave.h 
• Main.c 
There is an example on how to use of the driver in the main.c file. The TWI_Slave.h 
file must be included in the main application and contains all function declarations and 
defines for all TWI status codes. The TWI status code defines can be used to 
evaluate error messages and to take appropriate actions. The file TWI_Slave.c 
contains all the driver functions. 

Some devices have an additional TWI Address Mask Register (TWAMR) that enables 
a device to respond to several TWI slave addresses. A customized version of the 
standard implementation described here, is included in the application note 
attachment. 

The driver consists of the TWI Interrupt Service Routine and several functions. All 
functions are available for use outside the driver file scope. Some of them are 
however also used internally by the driver it self. All functions in the driver are listed in 
Table 2. The actual code sizes for the functions, compiled with the IAR compiler are 
listed in Table 4. 

 

Table 2. Description of functions in the TWI Slave driver. 
Function name  Description 
void TWI_Slave_Initialise 

( uchar ownSlaveAddress ) 
Call this function to set up the TWI slave to its initial standby state. 
Remember to enable interrupts from the main application after 
initializing the TWI. Pass both the slave address and the requrements 
for triggering on a general call in the same byte. Use e.g. this notation 
when calling this function:  
TWI_Slave_Initialise((TWI_slaveAddress<<TWI_ADR_BITS) 
| (TRUE<<TWI_GEN_BIT));  
The TWI module is configured to NACK on any requests. Use a 
TWI_Start_Transceiver function to start the TWI. 

void TWI_Start_Transceiver_With_Data 

( uchar *message, uchar messageSize) 
Call this function to send a prepared message, or start the Transceiver 
for reception. Include a pointer to the data to be sent if a SLA+W is 
received. The data will be copied to the TWI buffer. Also include how 
many bytes that should be sent. Note that unlike the similar Master 
function, the Address byte is not included in the message buffers. The 
function will hold execution (loop) until the TWI_ISR has completed  
with the previous operation, then initialize the next operation and return. 

void TWI_Start_Transceiver( ) Call this function to start the Transceiver without specifing new 
transmission data. Usefull for restarting a transmission, or just starting 
the transceiver for reception. The driver will reuse the data previously 
put in the transceiver buffers. The function will hold execution (loop) 
until the TWI_ISR has completed with the previous operation, then 
initialize the next operation and return. 

Functions 
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uchar TWI_Transceiver_Busy( ) Call this function to test if the TWI_ISR is busy transmitting. 
uchar TWI_Get_State_Info( ) Call this function to fetch the state information of the previous operation. 

The function will hold execution (loop) until the TWI_ISR has completed 
with the previous operation. If there was an error, then the function will 
return the TWI State code. 

uchar TWI_Get_Data_From_Transceiver  

( uchar *message, uchar messageSize) 
Call this function to read out the received data from the TWI transceiver 
buffer. I.e. first call TWI_Start_Transceiver to get the TWI Transceiver 
to fetch data. Then Run this function to collect the data when they have 
arrived. Include a pointer to where to place the data and the number of 
bytes to fetch in the function call. The function will hold execution (loop) 
until the TWI_ISR has completed with the previous operation, before 
reading out the data and returning. If there was an error in the previous 
transmission the function will return the TWI State code. 

__interrupt void TWI_ISR( ) This function is the Interrupt Service Routine (ISR), and automatically 
called when the TWI interrupt is triggered; that is whenever a TWI event 
has occurred. This function should not be called directly from the main 
application. 

 

Table 3. Description of the driver register byte containing status information from the 
last transceiver operation. Available as bit fields within a byte. 

TWI_statusReg  Description 
TWI_statusReg.lastTransOK Set to 1 when an operation has completed 

successfully.  
TWI_statusReg.RxDataInBuf This setting is only valid if lastTransOK is set to 1. 

Set to 1 when data has been received and stored 
in the transceiver buffer. I.e. if 0 then it was a 
transmission. 

TWI_statusReg.genAddressCall This setting is only valid if RxDataInBuf is set to 1. 
It is set to 1 when the reception was a General 
Call. I.e. if 0 then it was an Address Match. 

 

Table 4. Code sizes with the IAR 3.10 compiler. 
TWI Master functions [bytes] 
TWI_Slave_Initialise( ) 12 
TWI_Transceiver_Busy( ) 6 
TWI_Get_State_Info( ) 12 
TWI_Start_Transceiver_With_Data( ) 68 
TWI_Start_Transceiver ( ) 8 
TWI_ TWI_Get_Data_From_Transceiver ( ) 62 
TWI_ISR( ) 162 
 335 

 

Figure 5 shows flowcharts of the process of receiving and transmitting data over the 
TWI interface through the drivers. Data is passed through parameters to the functions 
while the status of an operation is available trough a global status variable. Figure 6 
contains the flowchart for the TWI driver it self. A more detailed description of the 
actions for each event/state in the TWI Interrupt Service Routine can be found in a 
flowchart in Figure 7. In Figure 7 the left column contains the different states/events 
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the TWI state machine can be in when entering the Interrupt. A case switch executes 
the different actions dependant on the cause of the interrupt call. 

The transceiver uses only one transmission buffer. At any time a message from the 
master will be processed on this buffer. I.e. a Master Write will overwrite the content, 
while a Master Read will transmit the content of this buffer. 

When calling the Start Transceiver function the complete message is copied into the 
transceiver buffer. Then it enables the TWI interrupt to initiate the transceiver. The 
Interrupt then takes care of the complete transmission and disables itself when the 
transmission is completed, or if an error state occurs. The driver can this way poll the 
interrupt enable bit to check if a transmission is complete. The main application is 
only allowed to access the global transceiver variables while the TWI transceiver is 
not busy. The interrupt stores eventual error states in a variable that is available for 
the main application through a function call. 

Note that the driver puts the TWI module in passive mode after each transceiver 
operation. This is to enable the application to read and interpreted the message from 
the master before responding to any new requests. All new messages from the 
master coming before the TWI slave is restarted will therefore be NACKed on. It is 
therefore important that the master gives the slave enough time to respond before 
sending the next message. 

In the “Combined” flowchart in Figure 5 there is suggested a place to add error 
handling code. Note that if this is not implemented in this example, then an error state 
will lead to a restart of the slave transceiver which could be a way of handling an error 
transmission.  
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Figure 5. Calling the TWI driver from the application. 
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Figure 6. TWI driver functions. 
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Figure 7. TWI interrupt service routine 
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