
GCBASIC documentation
The GCBASIC development team @ 2024

Introducing GCBASIC
Hello, and welcome to GCBASIC help. This help file is intended to provide you insights and knowledge
to use GCBASIC.

For information on installing GCBASIC and several other programs that may be helpful, please see
Getting Started with GCBASIC

 http://gcbasic.sourceforge.net/starting.html

If you are new to programming, you should try the GCBASIC demonstration programs these explains
everything in a step-by-step manner, and assumes no prior knowledge.

If you have programmed in another language, then the demonstration files on GitHub (or within your
installation) and this command reference may be the best place to start.

If there is anything else that you need help on, please visit the GCBASIC forum

 http://sourceforge.net/forum/?group_id=169286

Using GCBASIC
Need to compile a program with GCBASIC, but don’t know where to begin? Try these simple
instructions:

- Complete the installation using the default values - select all the programmers but not the portable
mode.

- The installer will automatically start the IDE.

- When a GCBASIC source file is opened, check out the “GCB tools” menu (IDE Tools / GCB tools) -
through this menu you can access the oneclick commands. Or try the right mouse button - this will
access the same options.

- The IDE Tools… commands (function keys F5 - F8) starts a GCBASIC utility which calls the batchfiles
for compiling sourcecode and programming ("flashing")(1) the target microcontroller. You have to
select the appropriate programmer in “Edit Programmer Preferences” (IDE Tools / GCB tools / Edit
Programmer Preferences or by pressing Ctrl+Alt+E). Find your programmer in the list and drag it to
the top beneath the heading “Programmers to use (in order)”. GCBASIC will now attempt to flash the
microcontroller with that programmer first when you click on "Make HEX and FLASH" (F5) or "FLASH
previous made hexfile" (F8).

- In the unlikely event that your programmer is not listed you can add it by pressing “Add…” in “Edit
Programmer Preferences”. You would have to know the working directory and command line options

1

etc. for the programmer. See the help tips at the bottom by clicking on the fields.

- For project-specific flashing you can edit the current programmers in “Edit Programmer Preferences”
to suit your needs by clicking on “Edit…”. Use the “Use If:” parameter to choose programmer
preferences. See the help tips. The chip model is autodetected by the IDE for use in “Use IF:” or in
command line options etc.

- Some programmers use a .hex file to "flash" the microcontroller. By selecting "Make HEX" (F5),
GCBASIC will compile the program and make a .hex file in the same directory as the GCBASIC file. This
method can also be used to check for errors in the GCBASIC program before flashing.

- Included programmer software is:
 — Avrdude for AVR,
 — PICPgm for PIC,
 — PicKit2 and PicKit3
 — TinyBootLoader+
 — Arduino
 — Northern Software Programmer
 — Microchip Xpress Board and many, many more.

(1) You need a suitable programmer to do this, and instructions should be included with the
programmer on how to download and connect the hardware to the microcontroller.

Programmer Preferences

The “Programmer Preferences” is a software tool to control and set-up the different programmers. See
below:

When using GC Code at the IDE

Select Terminal/Run Task or press function <F4> to see the menu

[graphic]

Or, when using GC Code at the IDE

Select the drop down menu to see the menu

[graphic]

When using SynWrite at the IDE

[graphic]

2

PIC users and Beginners: Start Here
Welcome to GCBASIC. This document is especially important for experienced PIC users moving from
MPASM or C so please spend a few seconds here before you start. It could save you hours of
frustration.

As a PIC user most of us are conditioned, regardless of the Assembler or Compiler, to reach for the
devices data sheet first and try to work out how to setup the Oscillator, interrupt vectors and
Configuration bits.

Do not DO IT. read this document first as it will give you some great insights. For the basic
operation the only setup and configuration required for a GCBASIC program is the name of the target
Device i.e. #Chip 16f1619. That is it, honestly, GCBASIC will do the rest and will determine the
optimal Oscillator settings, interrupt vectors, Configuration bits etc

Next we would start deciding on and including the Device files and libraries that we intend to
use. STOP. Let GCBASIC decide. GCBASIC is creating Portable Code, it doesn’t care if you use a PIC12,
PIC18 or an ATmega328. You write in BASIC and at compile time GCBASIC will decide which core
libraries to include based on the instructions you have used and the target device you specified in the
#chip statement.

Finally we would decide on the pins to use, their port names, which register bits are needed to make
them inputs or outputs and override any Analog function if a digital function is desired.

Again, I say let GCBASIC DO IT……… Dir PortC.0 In - Will set Pin RC0 to a Digital Input. There is no
need to manually set the TRIS register or see if there is an associated ADCON bit to set or clear.

Putting it all together: An example GCBASIC program.

 #Chip 16f1619

 #Define LED PortC.0

 Dir LED Out

 Do
 LED = !LED
 Wait 500 ms
 Loop

That is it. If you have an LED attached to PortC.0 (LED DS1 on the Low Pin Count Board that shipped
with the PICKit 2 or PICKit 3 programmer). It will start to Blink confirming that you have a working
microcontroller and hardware.

To change target device or family just change the #Chip Entry along with the Pin you have the LED on

3

and recompile. it Really IS as Simple as that to get started in GCBASIC.

You can manually override GCBASIC and set every register, every flag, every BIT, every Configuration
‘Fuse’ and every vector if you wish, but why bother doing it upfront? Rather get your code working
with the default settings and then adjust from there, if needed, as your confidence grows.

One final bit of advice, the IDE tool bar has a “View Demos” button, use it, there are examples of all of
the most common programming challenges and many different devices which, along with the Help
files, will answer most of your questions. The Forum is a friendly place too, so do not be shy to
introduce yourself and ask for help.

4

Changes
Formal Release of GCBASIC Compiler v1.xx.xx

Reference Time Stamp

ASCIIDOCs rendered 2025-05-21
08:31:22 GMT Summer Time

Master ToC information 2025-05-04
09:02:59 GMT Summer Time

Command Line Parameters
About the Command Line Parameters

 GCBASIC [/O:output.asm] [/A:assembler] [/P:programmer] [/K:{C|A}] [/H:[Y/1 | N/0]]
[/V] [/L] [/NP] [/M:[Y/1 | N/0]] filename

 GCBASIC [/O:output.asm] [/A:assembler] [/P:programmer] [/K:{C|A}] [/H:[Y/1 | N/0]]
[/V] [/L] [/WX] [/M:[Y/1 | N/0]] [/NP] filename

 GCBASIC [/O:output.asm] [/A:assembler] [/P:programmer] [/K:{C|A}] [/H:[Y/1 | N/0]]
[/V] [/L] [/WX] [/M:[Y/1 | N/0]] [/S:Use.ini] [/NP] filename

 GCBASIC [/O:output.asm] [/A:assembler] [/P:programmer] [/K:{C|A}] [/H:[Y/1 | N/0]]
[/V] [/L] [/WX] [/M:[Y/1 | N/0]] [/S:Use.ini] [/F[O]] [/NP] filename

 GCBASIC /version

Switch Description Default

/O:filename Sets the name of the assembly file generated to
filename.

Same name as the input
file, but with a .asm
extension.

/A:assembler Batch file used to call assembler(1). If /A:GCASM is
given, GCBASIC will use its internal assembler.

The program will not be
assembled

5

Switch Description Default

/CP Exports the config bits automatically selected by
the compiler to an output file called
source_filename.config. The output file is the
source filename with the extension of config.

None

/H:[Y/1 | N/0] Set the production, or not, of the hex output file.
/H:1 is the default. To prevent production of the
hex output file - use /H:0

The default is to
produce the hex output
file

/M:[Y/1 | N/0] Mute the banner messages, or not. /M:1 is the
default. To prevent banner messages - use /M:0

The default is to output
banner messages

/P:programmer Batch file used to call programmer(1). This
parameter is ignored if the program is not
assembled.

The program will not be
downloaded.

/K:[C|A] Keep original code in assembly output. /K:C will
save comments, /K:A will preserve all input code.

No original code left in
output.

/V[:[0|F][1|T] Verbose mode - compiler gives more detailed
information about its activities. /Vx will overide
any configuration in the user ini file.

-

/L Show license and exit. -

/NP Do not pause on errors. Use with IDEs. Pause when an error
occurs, and wait for the
user to press a key.

/WX Force compiler to ensure all include files are valid.

/version Shown build date and version of the compiler.

/S:fsp Load the settings from a specified file, rather than
use the defaults.

/S:use.ini

/F[:[0|F][1|T] Used to bypass compilation when not needed,
compiler will verify that config settings in the
already compiled file match those required for the
programmer. If not, a recompilation will be
forced. Skip compilation if the hex file is up to
date and has correct config. /F:x (F or 0) to force a
fresh compile regardless of what ini specifies.

/FO Used to bypass compilation and program only.
Compiler will verify that config settings in the
already compiled file match those required for the
programmer. If not, a recompilation will be
forced.

filename The file to compile. -

6

(1) For the /A: and /P: switches, there are special options available. If %FILENAME% is present, it will be
replaced by the name of the .asm file. %FN_NOEXT% will be replaced by the name of the .asm file but
without an extension, and %CHIPMODEL% will be replaced with the name of the chip. The name of the chip
will be the same as that on the chip data file.

A batch file to load the ASM from GCBASIC into MPASM. Command line should be like this:

 C:\progra~1\microc~1\mpasms~1\MPASMWIN /c- /o- /q+ /l- /x- /w1 %code%.asm

A batch file to compile in GCBASIC then load the ASM from GCBASIC into GPASM. Command line should be
like this:

 gcbasic.exe %1 /NP /K:A /A:"..\gputils\bin\gpasm.exe %~d1%~p1%~n1.asm"

To instruct MAKEHEX.BAT to use GPASM. You have GPUTILS installed. The batch file should be edited
as follows:

 REM Create the ASM
 gcbasic.exe /NP /K:A %1
 REM Use GPASM piping to the GCB error log
 gpasm.exe "%~d1%~p1%~n1.asm" -k -i -w1 >> errors.txt

To summarise, you can use any of the following:

 gcbasic.exe filetocompile.gcb /A:GCASM /P:"icprog -L%FILENAME%" /V /O:compiled.asm

GCBASIC will compile the file, then assemble the program, and run this command:

 `icprog -Lcompiled.hex`

You can also create/edit the gcbasic.ini file :

Assembler settings
 Assembler = C:\Program Files\Microchip\MPASM Suite\mpasmwin
 AssemblerParams = /c- /o- /q+ /l+ /x- /w1 "%FileName%"

Programmer settings
 Programmer = C:\Program Files\WinPic\Winpic.exe
 ProgrammerParams = /device=PIC%ChipModel% /p "%FileName%"

7

This example will use MPASM to assemble the program. It will run the program specified in the
assembler = line, and give it these parameters:

 `/c- /o- /q+ /l+ /x- /w1 "compiled.asm"`

Then, it will run the programmer, and give it these parameters when it calls it:

 `/device=PIC16F88 /p "compiled.hex"`

%ChipModel% will get replaced with the chip you are using, so this the chip GCBASIC will pass to WinPIC.

Errors.txt

The compiler only produces the file errors.txt if there is an error. The creation of the errors.txt file
makes it easier for IDEs to detect if the program compiled successfully - if the file was not produced
then the IDE would be unalbe to present the error message to the user.

The file error.txt is always produced in the same folder as the compiler. Typically:
C:\GCStudio\GCBASIC\Errors.txt

USE.INI

USE.INI is the provided setup file for the compiler. The name of use.ini is historic and of no relevance.

USE.INI is generally updated by using the PREFERENCES EDITOR.

USE.INI is self documenting and open use.ini in an editor will shown the full capabilities of setting file.

The details below show the self documentation in a typical use.ini

8

Preferences file for GC BASIC
Location: GCB install (or custom) dir

Documentation for the [gcbasic] section of the use.ini file
 programmer = arduinouno - the currently selected available programmers
 showprogresscounters = n - show percent values as compiler runs. requires Verbose =
y
 verbose = y - show verbose compiler information
 preserve = n - preservice source program in ASM
 warningsaserrors = n - treat Warnings from scripts as errors.
 pauseaftercompile = n - pause after compiler. Do not do this with IDEs
 flashonly = n - Flash the chip is source older that hex file
 assembler = GCASM - currently selected Assembler
 hexappendgcbmessage = n - appends a message in the HEX file
 laxsyntax = n - use lax syntax when Y, the compiler will not check that
reserved words
 mutebanners = n - mutes the post compilation messages
 evbs = n - show extra verbose compiler information, requires Verbose
= y
 nosummary = n - mutes almost all messages psot compilation
 extendedverbosemessages = n - show even more verbose compiler information, requires
Verbose = y
 conditionaldebugfile = - creates CDF file
 columnwidth = 180 - ASM width before wrapping
 picasdebug = n - adds PIC-AS preprocessor message to .S file
 datfileinspection = y - inspects DAT for memory validation
 methodstructuredebug = n - show method structure start & end for validation
 floatcapability = 1 - 1 = singles
 - 2 = doubles
 - 4 = longint
 - 8 = uLongINT
 compilerdebug = 0 - 1 = COMPILECALCADD
 - 2 = VAR SET
 - 4 = CALCOPS
 - 8 = COMPILECALCMULT
 - 16 = AUTOPINDIR
 - 32 = ADRDX
 - 64 = GCASM

Frequent errors
Frequent errors that may happen, from the initial creation of a program and onwards.

Strange timings: You declared an oscillator frequency, different from the oscillator actually attached to
the micrcontroller.

9

No oscillator: Keep in mind that, besides the frequency, you must also set the type of oscillator,
internal or external.

No GCBASIC frequency stated: If not declared in your source program - GCBASIC uses a preset
frequency suitable for operating the microcontroller as the fastest practical.

External oscillators: It must be explicitly stated, if not stated GCBASIC will attempt to setup the internal
oscillator.

Ports: GCBASIC will set the ports automatically but you may need to set the ports outputs or inputs
when needed.

Analog levels: When applied on the ports defined as digital inputs. can cause current consumption in
the input buffer, which is outside the device specifications. Beware.

Current drawn: Current taken from the microcontroller outputs, exceeding the maximum allowed (not
all pins supply the same current). Beware of drawing to much current.

Watchdog Timer (WDT): The WDT is a useful timer. Enable to reset the microcontroller when
processing can get stuck in a loop.

Interrupts: A badly controlled interrupt (in some cases) will prevent the execution of the entire
program.

No action: The circuit is not powered.

Still no action: The microcontroller is not present or different from the device you expected.

Still no action: The microcontroller inserted incorrectly in the appropriate socket.

Cannot program: Incorrect programmer, Incorrect programmer parameters or circuit connections are
incorrect.

Still Cannot program: Values of excessively incorrect circuit resistances.

Serial Communcations: The TX and RX pins of the serial port are exchanged, and/or the connections
with the level converter, ttl / rs232 or ttl / usb.

Stlll no Serial Communcations: Serial speed, different from the one set in the circuit with which it is
intended to communicate or vice versa.

No I2C/TWI: SDL and/or SCL pin exchanged on the I2C/TWI bus connection, and/or no pull-up
resistors, and/or no common 0 voltage.

10

Incorrect timing: Calculation of any timings related to the frequency of the external oscillator, without
taking into account the division by 4.

Strange Numeric Values: The variables declared are insufficient to contain the values to be processed.

A Glossary
ADC: analogue digital converter.

Negative power supply: reference to the common point of the circuit power supply, called circuit
ground.

Alias: alternative name assigned to a pre-existing entity.

Array: variable able to handle numbers from 0 to 255.

ASCII: acronym for the American Standard Code for information interchange. ASCII is a code for the
representation of English characters as numbers.

Assembler: PC software application that converts assembly language into machine language.

Binary: numeric system with base 2, in which there are only two possible values for each digit#0 and 1.

Bit: the smallest element of computer memory. It is a single digit in a binary number (0 or 1). Bit is also
a type of variable in GCBASIC.

Bitwise: dealing with bits and binary states instead of numbers or logic.

Byte: 8-bit variable, value from 0 to 255 (2^ 8-1). Is also a type of variable in GCBASIC.

Boolean: related to a combinatorial system designed by George Boole, which combines propositions
with the logical operators AND, OR and IF THEN, except NOT.

CC: direct current.

Machine cycle: oscillator frequency / 4, for PIC (do not forget the PLL where present).

Code: the memory area in a PIC MCU or AVR that contains the program code.

Comment: reminder notes placed in the program.

Compiler: PC software application, which converts a high level language like BASIC into assembly
language. In this guide "Compiler" refers to GCBASIC.

Compile-Time: acts during compilation, and is not executed as a command when the program is
running on the microcontroller.

11

Constant: a name that stands for a value defined in the program. The value is replaced instead of the
name when the program is compiled and assembled. It is not stored in RAM and cannot be changed
during program execution.

D: Digital.

Data Space: is a memory space in a PIC or AVR that is intended for the storage of values (EEPROM
memory on chip). Data is accessible in GCBASIC using the EpRead and EpWrite commands for reading
and writing.

Dw: referring to a button or actions for the variation of any value, is intended as "decrease".

Debug: used to locate errors, to solve problems encountered when the program is run.

Decimal: numerical system with base 10, composed of 10 numbers from 0 to 9 inclusive. The "point" in
a number with base 10 separates the whole part from the bottom to 1.

Device programmer: it is a tool that "writes" the code in machine language in the PIC or AVR
microcontroller.

Directive: instruction intended for the compiler or assembler. It is not a command or a compiler
statement.

Emdedded System: device controlled by a program, able to independently perform even complex
functions, communicate with other similar devices and different architecture, with the personal
computer, with a local network and directly via the web.

EPROM: erasable programmable read only memory.

EEPROM: a type of memory that stores data even in the absence of voltage, can be deleted and
rewritten about 100,000 times.

Expression: a variable, constant, or combination that represents a stored or calculated value.

Firmware: program compiled and assembled, suitable to be loaded into the program memory, of a
programmable device.

Fosc: oscillator frequency.

f.s.: full scale.

Hex: extension of the assembled file.

IDE: integrated development environment, software environment that acts as a code editor, and
controls the various programming tools to implement software development.

Set: write in a register or variable, the condition required by the function to be performed.

I / O: input / output.

12

Integer: 32-bit variable, whose value varies from -32768 to 32767. Is also a type of variable in GCBASIC.

Interrupt: the use of a predefined signal or condition that interrupts normal execution, in favor of a
special procedure with high priority.

Kbit / s: one thousand bits per second.

Keywords: keywords for GCBASIC.

Label: word that marks a position in a program.

Least-significant: in reference to binary numbers, a bit or groups of bits that include the "proper" bit.
The rightmost bit or bit group, when a number is written in binary.

Assembly language: the programming language that corresponds more closely with machine language
codes.

Voltage levels: in this guide we refer to TTL levels, so about 0 Volts for the low level and about 5 Volts
or the Vcc of the microcontroller for the high level.

Level 0: equivalent to the low level.

Level 1: equivalent to the high level.

High level: presence of voltage, referring to the particular one is talking about.

Low level: no voltage, voltage close to zero.

Long: numeric entity composed of 32 binary bits, value from 0 to 4294967295 (2^32-1).Is also a type of
variable in GCBASIC.

FLASH MEMORY: non-volatile memory, electrically rewritable numerous times, also called flash / rom.

Microchip: company that produces PIC microcontrollers, now also AVR

Mips: Mega instructions per second.

ms: milliseconds.

Modifier: keyword that somehow changes the interpretation or behavior associated with a command
or variable that is written before or after the modifier.

Most-significant: in reference to binary numbers, the bit or group of bits that include the bit that
indicates the maximum power of two. The leftmost bit or group of bits when a number is written in
binary.

Nibble: a 4-bit binary quantity, can often be used to refer to the 4 most significant or least significant
bits of 8-bit bytes. A single hexadecimal digit represents a binary nibble. It is not a variable type in
GCBASIC.

13

ns: nanoseconds.

NC: not connected or, normally closed (depending on the context).

Overflow: the event that occurs when a value in a variable is increased beyond the capacity of the
variable type, resulting in an incorrect result.

PC or pc: program counter.

Port: microcontroller port

Porta: Port a.

Portb: Port b.

Portc: Port c.

Portd: Port d.

Porte: Port e.

Pos or pos: postscaler.

Ps or ps: Prescaler

Programmer: you. The person who writes the program.

RAM: the memory area in a PIC MCU that is used to contain the variables. Access to RAM is faster than
other memory areas, RAM values are lost when the power is turned off.

Register: an 8-bit memory location that performs a special function in a microcontroller. Registers that
(Microchip calls SFR) are integrated in the microcontroller and their functions are described in the
technical data sheet published for the device.

ROM: Read Only Memory (read-only memory, can only be written once).

Run-time: executed by the microcontroller when the program is executed (when it is running).

Save to context: save and restore in the context of the interrupt, important variables in the SFR
registers.

SFR: registers with special function. Able to represent or process negative and positive numbers.

String: able to deal with number, letters and symbols. Is also a type of variable in GCBASIC.

TMR or tmr: timer.

TWI: I²C Bus.

Two’complement: (complement of 2) a system that allows negative numbers to be represented in

14

binary.

Typecasting: specify a type of variable for the compiler.

Tp: test point.

Up: referred to a button or actions to change any value, it is intended as "increase".

Underflow: the event that occurs when a value in an unsigned variable decreases below zero (negative
number), or when a variable is decreased below the limit value in a negative sense, resulting in an
incorrect result.

Unsigned: only able to represent or transform positive numbers. Negative numbers are not valid in
integer variables.

Variable: a name that is a synonym of a value that is stored in RAM and can be read and modified
during program execution.

Word: a numeric entity composed of 16 binary bits. Value from 0 to 65535 (2^16-1)

V / I: voltage / current.

µs or us: microseconds.

15

Frequently Asked Questions
Why doesn’t anything come up when I run GCBASIC.exe?

GCBASIC IS a command line compiler. To compile a file, you can drag and drop it onto the GCBASIC.exe
icon.

If you use an Integrated Development Environment (IDE) you can edit your program and press an
ICON to send the program to the chip. Several are listed on the GCBASIC website.

The recommended IDE for Windows is GCCODE.

What Microchip PIC, Atmel AVR or LGT microcontrollers does GCBASIC support?

Hopefully, all 8 bit Microchip PIC, Atmel AVR and LGT microcontrollers and (those in the PIC10, PIC12,
PIC16 and PIC18 families). If you find one that GCBASIC does not work with properly, please post about
it in the Compiler Problems section of the GCBASIC forum.

Is GCBASIC case sensitive?

No! For example, Set, SET, set, SeT, etc are all treated exactly the same way by GCBASIC.

Can I specify the bit of a variable to alter using another variable?

GCBASIC support bitwise assignments. As follows:

 portc.0 = !porta.1

You can also use a shift function. As in other languages, by using the Shift Function FnLSL. AN
example is:

 MyVar = FnLSL(1, BitNum)` is Equivalent to `MyVar = 1<<BitNum`

To set a bit of a port and to prevent glitches during operations, use #option volatile as folllows.

 'add this option for a specific port.
 #option volatile portc.0

 'then in your code
 portc.0 = !porta.1

16

To set a bit of a port or variable. Encapsulate it in the SetWith method, this also eliminates any glitches
during the update, use this method.

 SetWith(MyPORT, MyPORT OR FnLSL(1, BitNum))

To clear a bit of a port, use this method.

 MyPORT = MyPORT AND NOT FnLSL(1, BitNum))

To set a bit within an array, use this method.

 video_buffer_A1(video_adress) = video_buffer_A1(video_adress) OR FnLSL(1, BitNum)

To set a bit within a variable, use this method.

 Dim my_variable as byte
 Dim my_bit_address_variable as byte

 'example
 my_variable = 0
 my_bit_address_variable = 7

 my_variable.my_bit_address_variable = 1 ' where 1 or 0 or any bit address is valid

 'Sets bit 7 of my_variable therefore 128

See also Set, FnLSL, FnLSR and Rotate

Why is x feature not implemented?

Because it has not been thought of, or no-one has been able to implement it!

If there are any features that you would like to see in GCBASIC, please post them in the "Open
Discussion" section of the GCBASIC forum. Or, if you can, have a go at adding the feature yourself!

When using an include file does this use lots of memory?

When using include files, for instance the <ds3231.h> include, if you are not using all the functions of
the include file, GCBASIC knows not to include the unused functions within the user program when
compiling.

If I am using the hardware I2C, does all the code related to hardware I2C still get compiled in the

17

code?

GCBASIC only compiles functions and subroutines if they are called. GCBASIC starts by compiling the
main routine, then anything called from there. Each time it finds a new subroutine that is called, it
compiles it and anything that it calls. If a subroutine is not needed, it does not get compiled.

My LCD will not operate as expected?

Try adding. #define LCD_SPEED SLOW

This will slow the writing to the LCD.

Atmel AVR memory usage displayed is incorrect?

Atmel AVR memory values are specified in WORDS in GCBASIC. The GCBASIC compiler uses words, not
bytes, for consistency between Microchip PIC and Atmel AVR microcontrollers. This keeps parts of the
compiler simpler.

I cannot open the Window Help File?

See http://digital.ni.com/public.nsf/allkb/B59D2B24D624B823862575FC0056F3D0

How do I revert the FOR-NEXT loop to the Legacy FOR-NEXT method ?

Some background. In 2021 the GCBASIC compiler was updated to improve the operation of the FOR-
NEXT loop. The improvement did increase the size of the ASM generated. The legacy FOR-NEXT loop
had some major issues that included never ending loops, incorrect end loop and unexpected
operations. This was all caused by the compiler, not the user, and in 2021 the compiler was updated to
resolve these issues.

However, there is a risk that the new FOR-NEXT method causes 1) larger ASM that will not fit in small
microcontrollers or 2) the new code does not operate as expected. In either case you can disable the
new FOR-NEXT method by adding a constant as shown below. Adding this constant will revert the
FOR-NEXT loop asm generated to the legacy method.

 #DEFINE USELEGACYFORNEXT

18

http://digital.ni.com/public.nsf/allkb/B59D2B24D624B823862575FC0056F3D0

Troubleshooting
Problem Common Causes More Assistance

Cannot compile a
program

There is an error in the program. Is
GCBASIC complaining about a
particular line of code?

GCBASIC Forums

GCBASIC has not been installed
correctly - reinstall it.

GCBASIC Forums

There is a bug in GCBASIC Post on the GCBASIC Forums. Ensure you
state the version of your compiler and
attach your code as a ZIP.

A program compiles
and downloads fine,
but will not run

Oscillator not selected. Configuration

GCBASIC Compiler Insights
This is the GCBASIC compiler insights section of the Help file. Please refer the sub-sections for details
using the contents/folder view.

Compiler Insights
This section will provide some insights into what the compiler does

How does the compiler cope with read only registers in the Chip Family 12 range?

Within this chip range the Option register is a write only register. Reading the register is not permitted.

GCBASIC needs to update this when the user wants to change the configuration - the Sleep process is an
example of a user change.

The compiler handles this by the creation of the Option_reg byte variable. This byte is created by the
compiler to manage the required write process.

The Option_reg variable is a cache that compiler will create if any bits of option_reg have been set
manually.

If the user changes any of the bits in a program, then the compiler will find any uses of the option
instruction and insert a "movwf OPTION_REG" immediately before the option instruction to cache the
value in the buffer.

If Option_reg bits aren’t set individually anywhere, then option_reg doesn’t get created, and nothing
special is done with the option instruction.

19

Essentially the compiler maintains a special variable and manages the whole process without the user
being aware.

How does the compiler cope with the TRIS register in the 10f products?

The compiler ensures that a TRIS cache matches the actual TRIS register. The TRIS cache is a byte
variable called TRISIO. The TRISIO cache is required as TRIS is a write-only register.

All ports default to input (where all TRIS bits to 1) on reset. Therefore, this is assumed to be the value
255.

TRISIO is updated when required by the user code and then used in the writing to the correct register.

The example user code and the associated assembly shows TRISIO cache in use. This method complies
with datasheet.

User Code

'set as input
dir gpio.0 in
gpio0State = gpio.0
'set as output this will require TRIS GPIO to be set using the TRISIO cache.
dir gpio.0 out
gpio.0 = 1

ASM

;dir gpio.0 in
 bsf TRISIO,0
 movf TRISIO,W
 tris GPIO
;gpio0State = gpio.0
 clrf GPIO0STATE
 btfsc GPIO,0
 incf GPIO0STATE,F
;dir gpio.0 out
 bcf TRISIO,0
 movf TRISIO,W
 tris GPIO
;gpio.0 = 1
 bsf GPIO,0

Anywhere that an individual TRIS bit is set/cleared by change the port direction, the bit in the cache is
changed and then that gets written to the TRIS register.

Forcing the ASM to contain comments

20

It may be useful to force comments into the ASM file. The verbose mode of creating the ASM will
include ALL the source program as comments but it may be useful to have specific comments in the
ASM to aid the understanding of code or to support debugging.

To force an assembly comment use the following:

 asm showdebug `comment`

Where the comment will be placed into the ASM file.

Example.

The source file contains the following, where the comment text is OSCCON type is 100

 asm showdebug OSCCON type is 100
 OSCCON1 = 0x60

The generated assembly will be as following - this assumes verbose mode is not selected.

 INITSYS
 ;osccon type is 100
 movlw 96
 banksel OSCCON1

Constants, variables, subs and function and labels

GCBASIC uses a single namespace. A namespace is the set of names used to identify and refer to
objects of various kinds. In GCBASIC these can be constants, variables, methods, and labels. Wwhere
a label is a true label like the start of sub, function or macro. A namespace ensures that all of a given
set of objects have unique names so that they can be identified. This organises constants, variables,
methods, labels etc into a single list - the single namespace.

The namespace includes all libraries and source GCBASIC source files. If using MPASM this expands
to chip specific INF file. If using PICAS then all of the PICAS toolchain including non-chip specific files.
 There are changes already in place to resolve this issue for PICAS as HEX and LINE are reserved with
PICAS toolchain and these conflict with GCBASIC methods. These are automatically resolved by the
GCBASIC compiler.

So, given that a constants, variables, methods, labels etc are number, the compiler does not know if
that is a constant, a variable, a method, or a call to a label. Some are use cases using a constant called
NORMAL follow. NORMAL is defined as a constant with 0.

#1. Code segment

21

 #DEFINE NORMAL 0
 CALL Normal

The compiler will issue no error. The compiler will assume the following and will do as instructed.
Call normal - this calls normal which has a value of 0

Resulting ASM

 ;CALL Normal
 call 0

#2. Code segment

 #DEFINE NORMAL 0
 CALL Normal()

The compiler will issue no error. The compiler will assume the following and will do as instructed.
Call normal() - this calls normal which has a value of 0

Resulting ASM

 ;CALL Normal()
 call 0

#3. Code segment

 #DEFINE NORMAL 0
 Normal

The compiler will issue an error message. The compiler will try to resolve the constant normal to a
sub but it cannot as it is a value of 0.

Resulting ASM

 ;Normal
 0 ;?F1L8S0I8?

#4. Code segment

22

 #DEFINE NORMAL 0
 Normal()

The compiler will issue an error message. The compiler will try to resolve the constant normal to a
sub but it cannot as it is a value of 0.

Resulting ASM

 ;Normal()
 0() ;?F1L8S0I8?

#5. Code segment

 #DEFINE NORMAL 0
 Normal = 1

The compiler will issue an error message. This tries to assign a value to the object.

Resulting ASM

 ;Normal = 1
 0 = 1

#6. Code segment

 #DEFINE NORMAL 0
 Goto normal

The compiler will not issue an error message. The compiler will goto (same for jmp) to the value of the
object.

Resulting ASM

 ;goto Normal
 goto 0

Compiler Control
The compiler can be controlled, in terms of the default startup library routines. This may be required
to implement a specific control function, or, to disable a default startup behaviour.

23

Scenario #1:

You have a new LCD. The GCBASIC LCD routines fail to initialise. You want to write your own LCD
initialise routine, but you want to ensure the GCBASIC standard INITLCD() does not operate before
your own LCD initialise routine. How to do this?

Scenerio #2:

You want to write your own INITSYS routine. You can add your own routine to initialise the
microntroller but the default INITSYS would always be called in the ASM.

In the first sceneria the approach would be to redirect the GCBASIC standard INITLCD() to myInitLCD
using #define INITLCD myINITLCD. However, prior to the latest build, this would fail to work. The
reason for the failure to redirect to your new routine is the #startup INITLCD directive. The #startup
directive was essentially hard coded and all the #startup(s) could not be changed.

In the second scenerio the ASM call to INITSYS is also hard coded. And, you could trick the compiler to
call your own initialisation routine but this was not easy and not intuitive.

The new build now supports the updating of the #startup(s) with your own routines, or even to cancel
#startup(s).

Examples:

The compiler will search for all #startup(s) and update across all sources (libraries and
includes). LCD.H is just an example.

#DEFINE INITLCD myINITLCD // This will change any reference in the LCD.h #startup INITLCD to #startup
myINITLCD.

#DEFINE INITLCD // With no second parameter would cancel any #startup in LCD.h.

#DEFINE INITSYS myINITSYS // This will change the default INITSYS to myINITSYS.

#DEFINE INITSYS // This will remove the INITSYS from the initialisation of the microcontroller.

Example to change LCD initialisation

 #DEFINE INITLCD myINITLCD

 Sub myInitLCD
 // do stuff
 End Sub

Example to replace INITSYS

24

 #DEFINE INITSYS // Cancel call
 #STARTUP myInitSYS, 1 // New init routines, and set as highest priority

 Sub myInitSYS
 // do stuff
 End Sub

Scripts can now change the #startup. You can add a script to change the behaviour dependent on a
specific condition (the existant of another constant).

In user program

 #DEFINE LCD_OCULAR_OM1614

Supported within LCD.H

 #SCRIPT
 If Def(LCD_OCULAR_OM1614) Then
 'Change INITLCD to specific Initialisation sub
 INITLCD = INIT_OCULAR_OM1614_LCD
 End if
 #ENDSCRIPT

 Sub INIT_OCULAR_OM1614_LCD
 .. lots of code
 End Sub

will generate ASM like this…

 ;Program_memory_page: 0
 ORG 5
 BASPROGRAMSTART
 ;Call initialisation routines
 call INITSYS
 call INIT_OCULAR_OM1614_LCD

 ;Start_of_the_main_program

This new capability to give you more control of the compiler.

25

For more help, see: #define, #startup

26

Libraries Overview
About Libraries

GCBASIC (as with most other microcontroller programming languages) supports libraries.

You can create you own device specific library, you are not limited to those shown below. If you create
a new device specific library - please submit for inclusion in the next release via the GCBASIC forum.

Maintenance of these libraries is completed by the GCBASIC development team. If you wish to adapt
these libraries you should create a local copy, edit and save within your development file structure.
The development team may update these libraries as part of a release and we do not want you to lose
your local changes.

To use a library, simple inlcude the following in your user code

 #include <3PI.H> 'this will include the 3PI capabilities within your program

To use a local copy of a library, simple inlcude the following in your user code

 #include "C:\mydev\library\3pi.h" 'this will include a local copy of the the 3PI
capabilities within your program

GCBASIC supports the following device libraries.

Library Class Usage

3PI Polulu 3pi robot A library that interfaces the switch and the motors.

47XXX_EERAM.H I2C EERAM memory A device specific library for the Microchip EERAM
device classs

ALPS-EC11 Rotary Encoder A device specific library for a rotary encoder.

ADS7843 Touch Shield A library that interfaces with the ADS7843 touch screen.

BME280 Temp, Humidity and
Pressure sensor

A library that interfaces with the BME280 and the
BMP280 sensor.

CHIPINO Shield A library that interfaces the Chipino board with
Arduino like port addresses.

DHT Temperature and
Humidity

A library that supports the DHT22 and the DHT11
Temperature and Humidity sensors.

DS1307 Clock A library that supports the timer clock and NVRAM
functions.

27

Library Class Usage

DS1672 Clock A library that supports the timer clock and NVRAM
functions.

DS18B20 Temperature A library that supports the temperature functions.

DS18SB0MultiPort Temperature A library that supports the temperature functions with
devices attached to multiple ports.

DS18S20 Temperature A library that supports the temperature functions.

DS2482 Clock A library that supports the I2C to Dallas OneWire
functions.

DS3231 Clock A library that supports the timer clock and NVRAM
functions.

DUEMILANOVE Shield A library that interfaces the Duemilanove board with
Arduino like port addresses.

EMC1001 Temperature A library that supports the temperature functions and
the other device capabilities.

FRAM I2C Eeprom A library that supports memory functions.

GETUSERID Microchip read ID A library that supports the identification of Microchip
microcontrollers.

EPD_EPD2In13 Graphical e-Paper
display

A core library for Graphical LCD support.

EPD_EPD7in5 Graphical e-Paper
display

A core library for Graphical LCD support.

GLCD_ Graphical LCD A device specific library for an Graphical LCD.

GLCD_HX8347 Graphical LCD A device specific library for an Graphical LCD.

GLCD_ILI9340 Graphical LCD A device specific library for an Graphical LCD.

GLCD_ILI9341 Graphical LCD A device specific library for an Graphical LCD.

GLCD_ILI9481 Graphical LCD A device specific library for an Graphical LCD.

GLCD_ILI9486L Graphical LCD A device specific library for an Graphical LCD.

GLCD_NT7108C Graphical LCD A device specific library for an Graphical LCD.

GLCD_IMAGESANDF
ONTS_ADDIN3

Graphical LCD A library to increase the capabilities of the Graphical
LCDs.

GLCD_KS0108 Graphical LCD A device specific library for an Graphical LCD.

GLCD_NEXTION Graphical LCD A device specific library for an Graphical LCD.

GLCD_PCD8544 Graphical LCD A device specific library for an Graphical LCD.

28

Library Class Usage

GLCD_SH1106 Graphical LCD A device specific library for an Graphical LCD.

GLCD_SSD1289 Graphical LCD A device specific library for an Graphical LCD.

GLCD_SSD1306 Graphical LCD A device specific library for an Graphical LCD.

GLCD_SSD1331 Graphical LCD A device specific library for an Graphical LCD.

GLCD_ST7735 Graphical LCD A device specific library for an Graphical LCD.

GLCD_ST7920 Graphical LCD A device specific library for an Graphical LCD.

GLCD_T6963_64 Graphical T6963 LCD
with 240 x 64 pixels

A device specific library for an Graphical LCD.

GLCD_T6963_128 Graphical T6963 LCD
with 240 x 64 pixels

A device specific library for an Graphical LCD.

HEFLASH HEF Memory Driver A library that supports the HEF memory functions.

HMC5883L Triple-axis
Magnetometer

A library that supports the magnetometer functions.

HWI2C_ISR_HANDL
ER

I2C Slave Driver A library that supports the use of a Microchip
microcontroller as an I2C slave.

HWI2C_MESSAGEIN
TERFACE

I2C Slave A support library that supports the use of a Microchip
microcontroller as an I2C slave.

HWI2C_ISR_HANDL
ERKMODE

I2C Slave Driver A library that supports the use of a Microchip
microcontroller as an I2C slave.

HWI2C_MESSAGEIN
TERFACEKMODE

I2C Slave A support library that supports the use of a Microchip
microcontroller as an I2C slave.

I2CEEPROM I2C EEProm memory A library that supports memory functions.

LCD2SERIALREDIRE
CT

LCD to Serial Handler A library that supports the use of a serial and PC
terminal as a psuedo LCD.

LEGO-PF Lego Mindstorms
shield

A library that supports the Lego Mindstorms robot

LEGO Lego Mindstorms
shield

A library that supports the Lego Mindstorms robot

MATHS Maths routines A library that supports maths functions such as logs,
power and atan.

MAX6675 Temperature A library that supports the temperature functions.

MAX7219_ledmatrix
_driver

LED 8*8 Matrix driver A library that supports the MAX7219 8*8 LED matrixes

MCP23008 i2C to serial A library that supports the I2C to serial functions.

29

Library Class Usage

MCP23017 i2C to serial A library that supports the I2C to serial functions.

MCP4XXXDIGITALP
OT

Digital Pot A library that supports the MCPxxxx range of digital
potentiometers.

MCP7940N Clock A library that supports the timer clock and NVRAM
functions.

MILLIS Clock A library that supports the 1000ms timer event cycle.

NUNCHUCK Game controller A library that supports the NunChuck game controller.

PCA9685 PWM A device specific library for the 16channel PWM driver.
See the demonstrations for example on usage. Support
up to four devices via the I2C bus.

PCF8574 GLCD A device specific library for an Graphical LCD.

PCF85X3 Clock A library that supports the timer clock and alarms.

SD SD Card A device specific library for an SD Card.

SMT_Timers Signal Measurment
Timer

A library for Signal Measurment Timer for specific
Microchip microcontrollers.

SOFTSERIAL Serial A library for software serial.

SOFTSERIALCH1 Serial A library for software serial.

SOFTSERIALCH2 Serial A library for software serial.

SOFTSERIALCH3 Serial A library for software serial.

SONGLAY Music A library for play music. Supports QBASIC and RTTTL
format.

SONYREMOTE Infrared A library that supports the functions of a Sony remote
control.

SRF02 Distance Sensor A library that supports the SRF02 ultrasonic sensor.

SRAM Memory devices A library that supports 23LC1024, 23LCV1024,
23LC1024, 23A1024, 23LCV512, 23LC512, 23A512,
23K256, 23A256, 23A640 or 23K640 devices

SRF04 Distance Sensor A library that supports the SRF04 ultrasonic sensor. See
GitHub demos here

TEA5767 I2C Radio A library that supports the TEA5767 radio.

TM1637 7 Segment LED display A library that supports the TM1637 7-Segment LED
displays

TRIG2PLACES Maths functions A maths library that supports trignometry to two
places.

30

https://github.com/GreatCowBASIC/Demonstration_Sources/tree/main/UltraSonic_Sensor_Solutions

Library Class Usage

TRIG3PLACES Maths functions A maths library that supports trignometry to three
places

TRIG4PLACES Maths functions A maths library that supports trignometry to four
places

UNO_MEGA328P Shield A library that interfaces the shield with Arduino like
port addresses.

USB USB Supoort A library that interfaces the USB for 16f and 18f
microcontrollers.

GCBASIC supports the following core libraries. These libraries are automatically included in your user
program therefore you do not need to use '#include' to access the libraries capabilities.

Library Class Usage

7SEGME
NT

7 Segment LED
display

A library that interfaces the device. See also TM1637a library.

A-D Analog to Digital A library that supports the ADC functionality.

EEPRO
M

EEProm A library that supports I2C eeprom devices.

HWI2C I2C A library that supports the MSSP and TWI hardware modules of I2C

HWI2C2 I2C A library that supports the MSSP and TWI hardware modules of I2C on
channel two

HWSPI SPI A library that supports the MSSP and TWI hardware modules of SPI

I2C I2C A library that supports software I2C

KEYPAD KeyPad A library that supports a keypad.

PS2 I2C A library that supports keyboard functionality

LCD LCD A library that supports LCD functionality, library supports many
different communications methods.

PWM Pulse Width
Modulation

A library supports PWM functionality.

RANDO
M

Random
Numbers

A library supports random number functionality.

REMOT
E

Infrared A library that supports the functions of a NEC remote control.

31

Library Class Usage

RS232 Serial A library for serial communications.

SOUND Tones A library for sound and tone generation

STDBASI
C

Utility Functions The library that contains many of the utility methods.

STRING String The library that contains the string methods.

SYSTEM System The library that contains the system methods.

TIMER Timers The library that contains the timer methods.

USART Serial The library that contains the hardware serial methods that use the MSSP
or AVR equivilent hardware module.

XPT2046 Touch Shield A library that interfaces with the APT2026 and the ADS7843 touch
sensors.

32

Acknowledgements
Developers and Contributors:

Hugh Considine - Main developer of GCBASIC

Stefano Bonomi - Two-wire LCD subroutines

Geordie Millar - Swap and Swap4 subroutines

Jacques Nilo - HEFM and help file conversion to asciidoc

Finn Stokes - 8-bit multiply routine, program memory access code

Evan Venn - Utilities, revised I2C routines, this help file and generally everything else!

Translation Contributors:

Stefano Delfiore - Italian

Pablo Curvelo - Spanish

Murat Inceer - Turkish

Other Contributors:

Russ Hensel - GCBASIC Notes.

Chuck Hellebuyck - His documentation for the GLCD and other pieces, see http://www.elproducts.com.

Frank Steinberg - GCode IDE for GCBASIC.

Alexy T. - SynWrite IDE used for GCB IDE, see http://www.uvviewsoft.com/synwrite

Thomas Henry for the Select Case and the Sine Table examples.

William Roth for the LCD code and supporting diagrams.

Theo Loermans for the revised LCD sections and the serial library.

Chris Roper for the bitwise methods including the library including FnEquBit, FnNotBit, FnlslBit,
FnlsrBit, SetWith and 47xxx.

Jberg2024 for the adaption of the Software Serial routines to improve usage.

Angel Mier for the USB driver installation

Conversion of asciidoctor documentation files:

33

http://www.elproducts.com
http://www.uvviewsoft.com/synwrite

See the asciidoctor Web site and the support forum.

Tricks and Tips
This is a collation of tricks and tips that may be useful to you.

RAM, variables and resets

Reverting the FOR-NEXT loop to the Legacy FOR-NEXT method

Change the compilers behaviour when the compiler states a capability is not available

Create a minimal ASM source with no config and/or initsys

PPS microconrollers and multiple USARTs

TIP: RAM, variables and resets

When you define a variable it will be mapped to a RAM location. As you develop your solution your
should always do the following to ensure the variable are initialised correctly.

• Always initialise variables to a known state

A variable will not show up in the ASM source code unless it is used somewhere in code. Adding
Variable = 0 will assure that the variable is initialised and will show up in the ASM. This is very
useful for troubleshooting. This is essential when debugging ASM to look at variables that are defined
using "EQU". If you do not initialise or use the variable then the variable will not be shown in the EQU
list of variables. So, initialise all your variables.

• Always power cycle the microcontroller after programming

A soft reset when debugging/testing/programming will not reset the RAM to a known state. This is
essential when debugging ASM to look at variables that are defined using "EQU". A soft reset does not
change the contents of RAM. Where a hard reset reverts ram back to an undefined /random state! So,
a power cycle is good practice.

TRICK: Reverting the FOR-NEXT loop to the Legacy FOR-NEXT method ?

Why do this? To reduce the PROGMEM size. But, you must assure yourself that the loop variable
cannot overflow as the legacy FOR-NEXT does not prevent an overflow of the loop variable.

Some background. In 2021 the GCBASIC compiler was updated to improve the operation of the FOR-
NEXT loop. The improvement did increase the size of the ASM generated. The legacy FOR-NEXT loop
had some major issues that included never ending loops, incorrect end loop and unexpected
operations. This was all caused by the compiler, not the user, and in 2021 the compiler was updated to

34

http://asciidoctor.org/
http://discuss.asciidoctor.org/

resolve these issues.

However, there is a risk that the new FOR-NEXT method causes 1) larger ASM that will not fit in small
microcontrollers or 2) the new code does not operate as expected. In either case you can disable the
new FOR-NEXT method by adding a constant as shown below. Adding this constant will revert the
FOR-NEXT loop asm generated to the legacy method.

 #DEFINE USELEGACYFORNEXT

TRICK: How to change the compilers behaviour when the compiler states a capability is not
available when I know it is ?

The compiler is issuing an error message that a EEPROM, HEF, SAF, PWM16 or hardware USART is not
available… but, it is.

This is caused by the microcontroller DAT file. The microcontroller DAT file is missing key
information that informs the compiler that a specific capability is available. This information was
added to prevent silent failures where you could use a capability when it is not available.

The compiler thinks your microcontroller does not have the selected capability. Simply use the table
below to resolve. Adding the constant defined to your source program.

Then, let us know via the Forum so we can correct the source microcontroller DAT file.

EEPROM
#DEFINE CHIPEEPROM = 1

HEF
#DEFINE CHIPHEFWORDS = 128

SAF
#DEFINE CHIPSAFWORDS = 128

PWM16
#DEFINE CHIPPWM16TYPE = 1

USART hardware
#DEFINE CHIPUSART = 1

TRICK: How do I create a minimal ASM source with no config and/or initsys?

35

Very easy. Simple add two #OPTION statements.

#OPTION UserCodeOnly ENTERBOOTLOADER: This will instruct the compiler to NOT call the INITSYS()
method. And, to jump to a label. The label is mandated. The label specified will be included in the
ASM generated.

#OPTION NoConfig This will instruct the compiler to NOT add the microcontroller specific config
statements.

Example:

 #chip 16f877a, 4
 #OPTION Explicit

 #OPTION UserCodeOnly ENTERBOOTLOADER:
 #OPTION NoConfig

 ENTERBOOTLOADER:

The example above yields the following asm. Comment lines have been removed for clarity.

 LIST p=16F877A, r=DEC
 #include <P16F877A.inc>

 ;Vectors
 ORG 0
 pagesel ENTERBOOTLOADER
 goto ENTERBOOTLOADER

 ;ORG 5

 ENTERBOOTLOADER

 ;ORG 2048
 ;ORG 4096
 ;ORG 6144

 END

TIP: PPS and multiple USARTs

You can set up multiple pins to simultaneously operate as a peripheral output on microcontrollers with
Peripheral Pin Select (PPS).

36

PPS microcontrollers can set up to simultaneously output specific modules. The example below shows
the method to output two TX ports. Hardware Serial (TX1) data will now be output on both B.6 and C.6

 Sub InitPPS
 'Module: UART pin directions
 Dir PORTC.6 Out ' Make TX1 pin an output
 Dir PORTB.6 Out ' Make TX1 pin an output
 'Module: UART1 to two ports
 RC6PPS = 0x0020 'TX1 > RC6
 RB6PPS = 0x0020 'TX1 > RB6

 End Sub

UNO as ISP programmer
So, you have brought some ATtiny88 breakout boards online. They are advertised as Nano equivalents
but are inferior to the Nano in having low RAM (512 bytes vs 2048) and missing some other features.
Specifically the lack of a USB comport for programming.

The ATtiny88 USB interface only works in Arduino IDE with some tweaking, and, you are not in the
mood for learning how to write sketches after being in the GCB environment for years.

This is an all-in-one tutorial for programming the ATtiny88 via AVRdude using GCB.

NOTE The only baud rate that works is 19200. Every other baud rate failed in testing

The process described will create a new programmer entry in the GCB Programmer Options to fully
automate the compile & program progress.

NOTE
This refers to an ATtiny88 but you can use this method for many AVRs which used in
conjunction with AvrDude.

The Process

1. Obtain an Arduino UNO or mega. Upload this hex file to convert the UNO into an ISP programmer
or follow steps 2 -5 below.

2. Download the Arduino IDE software. This is used to upload a sketch to the UNO that converts it
into an ISP programmer.

3. Connect the UNO to your PC via USB. In Arduino IDE goto Tools → Set board and select "Arduino
UNO". Select the correct com port for the Arduino Uno as show in device manager.

4. Goto file → examples → ArduinoISP to select the sketch that will convert the UNO to an ISP

37

https://sourceforge.net/p/gcbasic/discussion/chipfileforum/thread/088449090a/ed10/attachment/arduino_As_ISP_adafruit.hex

programmer. I found a better(?) working version at adafruit. Simply copy all the text from this link
into a new sketch https://raw.githubusercontent.com/adafruit/ArduinoISP/master/ArduinoISP.ino
(or download the ino file attached and open it in Arduino IDE) and goto step 5

5. Click upload and confirm the sketch uploaded correctly by checking the status window at the
bottom of the Arduino IDE

6. Build a cable to connect the ISP headers on the UNO and target (ATtiny88) board as described
below. Search online for the UNO ISP header pinout, the ISP header happens to be labelled
underneath the ATtiny88 breakout board.

7. Connect pin 10 of the UNO to the reset pin on target ISP header

8. Connect VCC to VCC, MOSI to MOSI, MISO to MISO, GND to GND, SCK to SCK.

9. Open Synwrite → "IDE tools" → "GCB tools" → "Edit Programmer preferences", or, in GCStudio "Edit
Programmer preferences"

10. Click "add" and a program editor window opens

11. Enter name Arduino as ISP or similar

12. In the "Use if" box paste DEF(AVR)

13. In the "File" box paste %instdir%..\avrdude\avrdude.exe

14. In the "command line parameters" paste -c avrisp -p t88 -P %Port% -b 19200 -U
flash:w:"%FileName%":a

15. Select the com port that corresponds to the connected UNO port

16. Click ok

Enter the sample code here into GCB IDE

 #chip tiny88, 12

 dir portd.0 out

 Do
 set portd.0 on
 wait 500 ms
 set portd.0 off
 wait 500 ms
 Loop

Now you can select "Hex/Flash" to upload the code to the Attiny88. If all goes well the LED should
blink on and off every second

38

https://raw.githubusercontent.com/adafruit/ArduinoISP/master/ArduinoISP.ino

Microcontroller Fundamentals

Inputs/Outputs
About Inputs and Outputs

Most general purpose pins on a microcontroller can function in one of two modes: input mode, or
output mode.

When acting as an input, the general purpose input/output pin will be placed in a high impedance
state. The microcontroller will then sense the general purpose input/output pin, and the program can
read the state of the general purpose input/output pin and make decisions based on it.

When in output mode, the microcontroller will connect the general purpose input/output pin to either
Vcc (the positive supply), or Vss (ground, or the negative supply). The program can then set the state of
the general purpose input/output pin to either high or low.

GCBASIC will attempt to determine the direction of each general purpose input/output pin, and set it
appropriately, when possible. GCBASIC will try to set the direction of the general purpose input/output
pin. However, if the general purpose input/output pin is read from and written to in your program,
then the general purpose input/output pin must be configured to input or output mode by the program,
using the appropriate Dir commands.

Example of dir commands.

 'The port address is microcontroller specific. Portx.x is a general case for PICs
and AVRs
 dir portb.0 in
 dir portb.1 out

 'The port address is microcontroller specific. gpiox.x is a general case for some
PICs
 dir gpio.0 in
 dir gpio.1 Out

 'Set the whole port as an output
 dir portb out
 dir gpio out

 'Set the whole port as an input
 dir portc in
 dir gpio in

Microchip specifics for read/write operations

39

For the specific ports and general purpose input/output pins available for a specific microcontroller
please refer to the datasheet.

Port Purpose Example

PORTx maps to the microcontrollers
digital pins 0 to 7. Where x can be
a,b,c,d,e,f or g

Read: PORTx the port data register for a read
operation.

uservar=PORTA
uservar=PORTA
.1

PORTx maps to microcontrollers
digital pins 0 to 7. Where x can be
a,b,c,d,e,f or g

Write: PORTx the port data register for a
write operation, and, where LATx is not
required as GCBASIC will implement LATx
when needed. See Option NoLatch for more
information on LAT registers and how to
disable this automatic function.

PORTA=255
PORTA.1=1

To read a general purpose input/output pin, you need to ensure the direction is correct DIR Portx IN is
set (default is IN) or a specific set of port bits. Where uservar = PORTx.n can be used.

Examples:

 uservar = PORTb.0
 uservar = PORTb

To write to a general purpose input/output pin, you need to ensure the direction is correct DIR Portx
OUT for port or a specific set of port bits. Where PORTx.n = uservar can be used.

Examples:

 PORTb.0 = uservar
 PORTb = uservar

ATMEL specifics for read/write operations

Using a Mega328p as a general the following provides insights for the AVR devices. For the specific
ports and general purpose input/output pins available for a specific microcontroller please refer to the
datasheet.

Port Write operation Read operation

PORTD maps to Mega328p (and, the AVR
microcontrollers) digital pins 0 to 7

PORTD - The Port D Data Register - write
operation (a read operation to a port
will provide the pull-up status)

PIND - The Port D
Input Pins Register
- read only

40

Port Write operation Read operation

PORTB maps to Mega328p (and, the AVR
microcontrollers) digital pins 8 to 13.
The two high bits (6 & 7) map to the
crystal pins and are not usable

PORTB - The Port B Data Register - write
operation (a read operation to a port
will provide the pull-up status)

PINB - The Port B
Input Pins Register
- read only

PORTC maps to Mega328p (and, the AVR
microcontrollers) analog pins 0 to 5.
Pins 6 & 7 are only accessible on the
Mega328p (and, the AVR
microcontrollers) Mini

PORTC - The Port C Data Register - write
operation (a read operation to a port
will provide the pull-up status)

PINC - The Port C
Input Pins Register
- read only

To read a general purpose input/output pin, you need to ensure the direction is correct DIR Portx IN is
set (default is IN) or a specific set of port bits. Where uservar = PINx.n can be used and therefore to
read data port use uservar = PINx.

Examples:

 uservar = PINb.0
 uservar = PINb

To write to a general purpose input/output pin you need to ensure the direction is correct DIR Portx
OUT for port or a specific set of port bits. Where PORTx.n = uservar can be used and therefore to write to
a data port use PORTx = uservar.

Examples:

 PORTb.0 = uservar
 PORTb = uservar

Setting Ports and Port.bit

You can set a port as shown above with a variable, or, you can set with a constant or any combination
using the bitwise and logical operators.

 #define InitStateofPort 0b11110000
 PORTb = InitStateofPort 'will unconditionally set bits 4:7

 PORTb = 0b11110000 'will unconditionally set bits 4:7

 PORTb = uservar OR 0b11110000 'will OR bits 4:7 to ensure bits 4:7 are set

41

The following is also valid - read a port.bit and then set port.bit with a variable or port value. As shown
below.

 dir portb out

 portb.0 = NOT portb.0

The user code above may cause issues with glitches when the read and write operations occurs. Let us
look at the generated assembler.

 ;portb.0 = NOT portb.0
 banksel SYSTEMP1
 clrf SysTemp1
 btfsc PORTB,0
 incf SysTemp1,F
 comf SysTemp1,F
 bcf PORTB,0
 btfsc SysTemp1,0
 bsf PORTB,0

To resolve any glitches add #option Volatile to your user code.

 #option Volatile portb.0

 dir portb out

 portb.0 = NOT portb.0

This option provides the following assembler resolving the glitch issue.

 ;portb.0 = NOT portb.0
 banksel SYSTEMP1
 clrf SysTemp1
 btfsc PORTB,0
 incf SysTemp1,F
 comf SysTemp1,F
 btfsc SysTemp1,0
 bsf PORTB,0
 btfss SysTemp1,0
 bcf PORTB,0

42

See also Dir, #Option Volatile

Configuration
About Microcontroller Configuration

For PICs

This section applies to Microchip PIC microcontrollers. For AVR and LGT microcontrollers see the
sections below.

Every Microchip PIC has a CONFIG word. This is an area of memory on the chip that stores settings
which govern the operation of the chip.

The following asects of the chip are governed by the CONFIG word:

• Oscillator selection - will the chip run from an internal oscillator, or is an external one attached?

• Automatic resets - should the chip reset if the power drops too low? If it detects it is running the
same piece of code over and over?

• Code protection - what areas of memory must be kept hidden once written to?

• Pin usage - which pins are available for programming, resetting the chip, or emitting PWM signals?

The exact configuration settings vary amongst chips. To find out a list of valid settings, please consult
the datasheet for the microcontrollers that you wish to use.

This can all be rather confusing - hence, GCBASIC will automatically set some config settings, unless
told otherwise:

• Low Voltage Programming (LVP) is turned off. This enables the PGM pin (usually B3 or B4) to be
used as a normal I/O pin.

• Watchdog Timer (WDT) is turned off. The WDT resets the chip if it runs the same piece of code
over and over - this can cause trouble with some of the longer delay routines in GCBASIC.

• Master Clear (MCLR) is disabled where possible. On many newer chips this allows the MCLR pin
(often PORTA.5) to be used as a standard input port. It also removes the need for a pull-up resistor
on the MCLR pin.

• An oscillator mode will be selected, based on the following rules:

◦ If the microcontroller has an internal oscillator, and the internal oscillator is capable of
generating the speed specified in the #chip line, then the internal oscillator will be used.

◦ If the clock speed is over 4 Mhz, the external HS oscillator is selected

◦ If the clock speed is 4 MHz or less, then the external XT oscillator mode is selected.

43

Note that these settings can easily be individually overridden whenever needed. For example, if the
Watchdog Timer is needed, adding the line

 #config WDT = ON

This will enable the watchdog timer, without affecting any other configuration settings.

For AVR

This section applies to Atmel AVR microcontrollers. Generally, Atmel AVR microcontrollers do have a
similar configuration settings, but they are controlled through "Configuration Fuses". GCBASIC cannot
set these - you MUST use the programmer software.

The exception to the general case are the ATTiny4-5-9-10 and ATTiny102-104. These microcontrollers
have software selectable frequencies for the following frequencies:

ChipMHz 8
ChipMHz 4
ChipMHz 2
ChipMHz 1
ChipMHz 0.5
ChipMHz 0.25
ChipMHz 0.125
ChipMHz 0.0625
ChipMHz 0.03125

Therefore, you can use (an example)

 #chip tiny10, 0.25

For LGT

This section applies to LGT microcontrollers.

All LGT microcontroller have software selectable frequencies for the following frequencies:

44

ChipMHz 8
ChipMHz 4
ChipMHz 2
ChipMHz 1
ChipMHz 0.5
ChipMHz 0.25
ChipMHz 0.125
ChipMHz 0.0625
ChipMHz 0.03125

Therefore, you can use (an example)

 #chip #chip LGT8F328P, 0.25

Using Configuration

For PICs only.

Once the necessary CONFIG options have been determined, adding them to the program is easy. On a
new line type "#config" and then list the desired options separated by commas, such as in this line:

 #config OSC = RC, BODEN = OFF

GCBASIC also supports this format on 10/12/16 series chips:

 #config INTOSC_OSC_NOCLKOUT, BODEN_OFF

However, for upwards compatibility with 18F chips, you should use the = style config settings.

It is possible to have several #config lines in a program - for instance, one in the main program, and
one in each of several #include files. However, care must then be taken to ensure that the settings in
one file do not conflict with those in another.

For more help, see #config Directive

USB Drivers Installer

WARNING Installing the USB driver is only required when using the GCBASIC USB library.

Description:

45

The drivers for windows x86 and x64 correspond to the USB LIBKWIN capability of GCBasic for
supported PIC microcontrollers.

For security reasons, in Microsoft windows for a driver to be installed, it is necessary that it be digitally
signed by Microsoft.

Microsoft did make a special “Test” mode for developers to install MANUALLY unsigned drivers for
debug and testing, being a technical advanced and not user-friendly procedure; at the same time the
windows developers make efforts to disable the capability of doing this in an automated fashion by the
concerns of being used as a vulnerability of the operating system.

This scenario will make installing test drivers difficult and frustrating for the uninitiated, at the same
time for a useful Hobby project it will be not practical to make end users to take all this drama.

This driver installer method resolves the constraints imposed by the Windows operating system, and,
therefore will allow you to install the drivers in the easiest way possible, almost like any driver of a
well-known company.

Usage:

WARNING
The installer will reboot the system without notice. Please close all programs and
save any work you have open before begin whit the driver install.

1 - Open the installer, it will request admin rights.

2 - Navigate thru the wizard to automatically extract the driver files (there aren’t any options to select).

3 - At the end of the wizard, after you click the exit button, the system will restart automatically

WARNING

In the case where your computer has Secure Boot enabled, the installer will advise
you of extra steps needed after reboot, at the end of this page you will find a
graphic reflecting those steeps and what elements you need to select.

4 - After restart and login in to your user account, a window will inform you that the driver is not
signed and you will be asked if you want to install the driver, please allow it.

5 - when the driver has been installed, the computer will restart automatically.

Secure Boot Enabled, Boot menu steps

46

47

USB Driver details

The driver uses the following USB flags.

 USB_VID 0x1209
 USB_PID 0x2006
 USB_REV 0x0000

For others, need to modify and recompile the USB library.

USB_PRODUCT_NAME and USB_VENDOR_NAME can change without problem (windows device
manager will show the name reported by the hardware not the driver

Tested on (but not limited to)

 Windows 11 pro x64 secureboot disabled, os build Dev 21H2 22000.194
 Windows 11 pro x64 secureboot enabled, os build Dev rs_prerelease 22458.1000
 Windows 10 pro x64 secureboot disabled, os build stable 20H2 19042.867
 Windows 7 pro x86 secureboot disabled, os service pack 1 build 6.1.7601

48

Variables

Data Types
This section discusses the different types and sizes of data variables used by GCBASIC, and how they
are interpreted or handled by GCBASIC methods.

The section also provides an insight of which type of variable to use and when.

What variable sizes are suported by GCBASIC?

GCBASIC implements support for Bit, Byte, Word, Integer and Long Variable Types, all of which are
described below.

Supported variables are Bit (1 Bit), Byte (8 Bit), Word (16 Bit), Long (32 Bit). GCBASIC does not support
decimal numbers.

Bit is used as a Flag or a Port Pin and has two states which may be:

 ON or OFF
 TRUE or FALSE
 HIGH or LOW
 1 or 0
 SET or RESET

other complementary states depending on how your application interprets and handles the data.

Byte is the most common size in 8 Bit devices and could represent a Number, an ASCII Character, a
Port, two Nibbles (as used by Hex or BCD number systems), an Internal Register, an 8 bit Variable or
any user defined collection of to eight Bits such as a group of flags.

Word is normally used for its Numeric value. 16 Bits will allow it to store Numbers from Zero to 65535
which is large enough to store the product of any two 8 bit Bytes without overflowing. However, it is
not confined to being used as a numeric value. A Word may be used in any manner that your
application needs depending on how it interprets the 16 Bits of data. Examples may be a memory
address or a data pointer.

• Note: The Word size of a device (as opposed to the Word Type above) is a representation of the
number of Bits that it can manipulate simultaneously by the chip. The number of Bits for PIC and
AVR Microcontrolers supported by GCBASIC are 8 Bits and so they are considered to have an 8 Bit
Word.*

Long is for situations where Values exceeding 65535 have to be handled and has a range of zero to
4294967295 (2^32-1). It is rarely used in 8 Bit devices but is invaluable on the rare occasions that it is
needed. The Millis() is an example that uses the Long Data Type to handle time periods of up to 50

49

days.

All of the above can be considered to be Integer Values of varying magnitude as they can hold non
Fractional Positive Whole Numbers, but try not to confuse Integer Values with the Integer Variable
Type, they are complementary but separate concepts as you will see below.

An integer is a whole number (not a fractional number) that can be Positive, Negative, or Zero.

In your application there may be a need to be able represent Negative Numbers in our variables and
that is where the GCBASIC Integer Variable Type is useful. An Integer Variable is similar to the
Word Variable as they are both 16 bits. The difference how the GCBASIC compiler interprets the data
bits that it contains.

The compiler will treat a Word Variable Type as a Variable that can store the values 0 < 65535 but it
will see the Integer Variable Type as a Variable that can store values of -32768 < 0 <32767.

Variable size

Each type of variable is defined in various bit lengths, in this case GCBASIC these are:

 Byte 8 Bit
 Integer 16 Bit
 Word 16 Bit
 Long 32 Bit

All four of the above are number types are true Integers. In that they are representations of a integer
non fractional number as follows:

 8 Bit - an 8 Bit number can be in the range of 0 to 255
 16 Bit - a 16 Bit number can be in the range of 0 to 65535
 32 Bit - a 32 Bit number can be in the range of 0 to 4294967295 (2^32-1)

But, they can only represent positive numbers. In Mathematics there is a need for an Integer that can
be Positive, Negative, or Zero. Note that Zero is always a Positive Whole Number.

Two’s Complement

To take the Two’s Complement of a number it is inverted then incremented:

 MyVar = NOT MyVar + 1

The increment, of adding 1, has two effects, it avoids the possible creation of a negative zero as a value
of 1000000 would be seen as -128 and it allows subtraction to be achieved through addition.

50

If MyVar contained a value of 1 the 8 Bit representation would be:

 00000001

The NOT will make it

 11111110

Note that the Most significant Bit is now 1 so as a signed value it is negative.

The increment will result in a value of:

 11111111

So Minus one using an 8 Bit representation in Two’s Complement notation is 11111111

Let’s test it by adding -1 to plus 3

 11111111 -1
 00000011 + 3
 ==============
 00000010 2

We have successfully subtracted 1 from 3 by adding Minus 1 to 3 and obtaining a result of 2.

Notice that while a Byte is normally used to represent 0 < 255 by making the MSB (Most Significant Bit)
into a sign bit the maximum value is now 127. A signed 8 Bit integer can represent numbers in the
range -128 < 0 < 127. That is still 256 values including Zero but they can now be Negative or Positive
numbers.

The benefit of the two’s complement method is that it works for any size of variable:

 MyByte = NOT MyByte +1
 MyWord = NOT MyWord +1
 MyLong = NOT MyLong +1

All of the above will result in a Negated version of the original contents.

But not all, in fact relatively few, methods of a microcontroller require negative values so in situations
where negative values are not required the loss of half of the magnitude of a Byte or Word can be
significant. That is why it is necessary to be able to specify if a value is Signed or Unsigned, that is if the
MSB is the sign bit or part of the value.

51

It is obviously important from the above that the user program ds need to know what sort of data to
expect as a value of 0xFF could be considered to be both 255 and -1 depending on the interpretation of
the variable. That is why it is important to have Signed and Unsigned Data Types so that the compiler
can decide how to handle or interpret the contents. As show above in GCBASIC those types are
referred to as Integer and Word respectively.

Summary

GCBASIC implements support for Bit, Byte, Word, Integer and Long Variable Types, all of which are
described above.

And, that negative numbers are represented as two’s complement.

Variable Types
About Variables and Variable Types

A variable is an area of memory on the microcontroller that can be used to store a number or a series
of letters. This is useful for many purposes, such as taking a sensor reading and acting on it, or
counting the number of times the microcontroller has performed a particular task.

Each variable must be given a name, such as "MyVariable" or "PieCounter". Choosing a name for a
variable is easy - just don’t include spaces or any symbols (other than _), and make sure that the name
is at least 2 characters (letters and/or numbers) long.

Variable Types

There are several different types of variable, and each type can store a different sort of information.
These are the variable types that GCBASIC can currently use:

Variable
type

Information that this variable can store Example uses for this type of
variable

Bit A bit (0 or 1) Flags to track whether or not a piece
of code has run

Byte A whole number between 0 and 255 General purpose storage of data,
such as counters

Word A whole number between 0 and 65535 Storage of extra large numbers

Integer A whole number between -32768 and 32767 Anything where a negative number
will occur

Long A whole number between 0 and 2^32-1 (4.29 billion) Storing very, very big numbers

Array A list of whole numbers, each of which may be a
byte, word, integer, or long

Logs of sensor readings

52

Variable
type

Information that this variable can store Example uses for this type of
variable

String A series of letters, numbers and symbols. Messages that are to be shown on a
screen

Using Variables

Byte variables do not need any special commands to set them up - just put the name of the variable in
to the command where the variable is needed. However, it is good practice to "dimension" all byte
variables and to use #OPTION EXPLICIT. #OPTION EXPLICIT mandates the "dimensioning" of all variables
in the user program. Using #OPTION EXPLICIT will improve the quality of the program.

Other types of variable can be used in a very similar way, except that they must be "dimensioned" first.
This involves using the DIM command, to tell GCBASIC that it is dealing with something other than a
byte variable.

A key feature of variables is that it is possible the have the microcontroller check a variable, and only
run a section of code if it is a given value. This can be done with the IF command.

Number Variables

You can assign values to number variables using `=`.

A simple, but typical example follows. This is the typical for numeric variable assignment.

 #OPTION EXPLICIT

 dim myByteVarible as Byte
 myByteVarible = 127 'assign the value of 127

GCBASIC support bitwise assignments s follows:

 portc.0 = !porta.1 'set a single bit to the value of another bit

The function FnLSL performs the shift operation found in other languages. Here is an example:

 MyVar = FnLSL(1, BitNum)` is Equivalent to `MyVar = 1<<BitNum`

To set a bit of a port and to prevent glitches during operations, use #option volatile as folllows:

53

 'add this option for a specific port.
 #option volatile portc.0

 'then in your code
 portc.0 = !porta.1

To set a bit of a port or variable, encapsulate it in the SetWith method. Using this method also
eliminates any glitches during the update.

 SetWith(MyPORT, MyPORT OR FnLSL(1, BitNum))

To clear a bit of a port, use this method:

 MyPORT = MyPORT AND NOT FnLSL(1, BitNum))

To set a bit within an array, use this method:

 video_buffer_A1(video_adress) = video_buffer_A1(video_adress) OR FnLSL(1, BitNum)

To set a bit within a variable, use this method:

 Dim my_variable as byte
 Dim my_bit_address_variable as byte

 'example
 my_variable = 0
 my_bit_address_variable = 7

 my_variable.my_bit_address_variable = 1 ' where 1 or 0 or any bit address is valid

 'Sets bit 7 of my_variable therefore 128

String Variables

Strings are defined as follows:

 'Create buffer variables to store received messages

 Dim Buffer As String

54

String variables default to the following rules and the RAM constraints of a specific chip.

• 10 bytes for chips with less than 16 bytes of RAM.

• 20 bytes for chips with 16 to 367 bytes of RAM.

• 40 bytes for devices with more RAM than 367 bytes.

• For chips that have less RAM then the required RAM to support the user define strings the strings
(and therefore the RAM) will be NOT be allocated. Please reduce string size.

You cannot store a string 20 characters long in a chip with 16 bytes of RAM.

You can change the default string size handled internally by the GCBASIC compiler by changing the
STRINGSIZE constant:

 'set the default string to 24 bytes
 #define STRINGSIZE 24

Defining a length for the string is the best way to limit memory usage. It is good practice if you need a
string of a certain size to set the length of a strings, since the default length for a string variable
changes depending on the amount of memory in the microcontroller (see above).

To set the length of a string, see the example below:

 'Create buffer variables to store received messages as 16 bytes long
 Dim OutBuffer As String * 16

To place quotation marks (" ") in a string of text. For example:

 She said, "You deserve a treat!"

To place quotation marks (") in a string of text, use two quotation marks in a row instead of one for
each quote mark. The following example shows two ways of printing She said, "You deserve a
treat!". This technique works for all output methods (HSerPrint, Print, etc.)

 HSerPrint "She said, ""You deserve a treat!"" "

 Dim myString As String * 39
 myString = "She said, ""You deserve another treat!"" "
 HSerPrint myString

Variable Aliases

Some variables are aliases, which are used to refer to memory locations used by other variables. These

55

are useful for joining predefined byte variables together to form a word variable.

Aliases are not like pointers in many languages - they must always refer to the same variable or
variables and cannot be changed.

When setting a register/variable bit (i.e my_variable.my_bit_address_variable) and using a alias for
the variable then you must ensure the bytes that construct the variable are consective.

The coding approach should be to DIMension the variable (word, integer, or long) first, then create the
byte aliases:

 Dim my_variable as LONG
 Dim ByteOne as Byte alias my_variable_E
 Dim ByteTwo as Byte alias my_variable_U
 Dim ByteThree as Byte alias my_variable_H
 Dim ByteFour as Byte alias my_variable

 Dim my_bit_address_variable as Byte
 my_bit_address_variable = 23

 'set the bit in the variable
 my_variable.my_bit_address_variable = 1

 'then, use the four byte variables as you need to.

To set a series of registers that are not consecutive, it is recommended to use a mask variable then
apply it to the registers:

 Dim my_variable as LONG
 Dim my_bit_address_variable as Byte
 my_bit_address_variable = 23

 'set the bit in the variable
 my_variable.my_bit_address_variable = 1

 porta = my_variable_E
 portb = my_variable_E
 portc = my_variable_E
 portd = my_variable_E

Casting

Casting changes the type of a variable or value. To tell the compiler to perform a type conversion, put
the desired type in square brackets before the variable. The following example will cause two byte
variables added together to be treated as a word variable.

56

 Dim MyWord As Word
 MyWord = [word]ByteVar + AnotherByteVar

Why do this? Suppose that ByteVar is 150, and AnotherByteVar is 231. When added, this will come to
381 - which will overflow, leaving 125 in the result. However, when the cast is added, GCBASIC will
treat ByteVar as if it were a word, and so will use the word addition code. This will cause the correct
result to be calculated.

It is good practice to cast when calculating an average:

 MyAverage = ([word]Value1 + Value2) / 2

It’s also possible to cast the second value instead of the first:

 MyAverage = (Value1 + [word]Value2) / 2

The result will be exactly the same.

To apply operations to individual bits of variables see, Set, Rotate

To check variables and apply logic based on their value, see If, Do, For, Conditions

For more help, see: Declaring variables with DIM, Setting Variables

Advanced VariableTypes
About Advanced Variable Types

A variable is an area of memory on the microcontroller that can be used to store a number or other
data. This is useful for many purposes, such as taking a sensor reading and acting on it, or counting
the number of times the microcontroller has performed a particular task.

Each variable must be given a name, such as "MyVariable" or "PieCounter". Choosing a name for a
variable is easy - do not include spaces or any symbols (other than _), and make sure that the name is
at least 2 characters (letters and/or numbers) long.

Advanced Types

There are a number different types of advanced variable types, and each type can store a different
range of numeric information.

With respect to advanced variables GCBASIC supports:

57

• single floats which can be signed and unsigned.

With respect to used advanced variables - please use Singles in your program as these have been
tested. The other types are documented for completeness and should be used by developers in
libraries.

• double floats, and the large integers which can be signed & unsigned

Using advanced variable type maths is also much slower than integer maths when performing
calculations and loops, therefore should be avoided if. You should convert float calculations to integer
maths to increase operation of your solution. The example program (shown below) shows how use a
float maths and you shuld try to do the same with integers and time the overall time for
comparison. Typically, floats are 18%-20% slower than similar integer maths operations.

The advanced variable types that GCBASIC supports are:

Advanced
Variable
type

Suppor
ted

Information that this variable can
store

Example uses for this type of
variable

Single Yes A numeric floating point values that
range from -3.4x10 ^ 38 and +3.4x10 ^
38 with up to seven significant digits.

Storing decimal numbers that could be
a negative number and positive.

Develope
rs Only

Develo
pers
Only

Developers Only Developers Only

LongINT Librari
es only

A list of whole numbers between - (2 ^
63) and 2 ^ 63 - 1

Storing very, very big integer numbers
that could be a negative number. The
GCBASIC range is -9999999999999990 to
9999999999999990. This range is an
implementation constraint with the
GCBASIC compiler.

uLongINT Librari
es only

A whole number between 0 and 2 ^ 64 -
1

Storing very, very, very big integer
numbers

Double Librari
es only

A numeric floating point values that
range from -1.7x10 ^ 308 and +1.7x10 ^
308 with up to 15 significant digits.

Storing decimal numbers that could be
a negative number and positive.

The format for single and double floats is defined by the IEEE 754 standard. Sign, exponent and
mantissa are all in the positions described here: https://www.geeksforgeeks.org/ieee-standard-754-
floating-point-numbers/

Organisation of advanced variables

58

https://www.geeksforgeeks.org/ieee-standard-754-floating-point-numbers/
https://www.geeksforgeeks.org/ieee-standard-754-floating-point-numbers/

GCBASIC stores advanced variables in bytes. The format of these bytes is:

_ D, _C, _B, _A, _E, _U, _H, variable_name (from high to Low)

You can access the bytes within advanced variables using the following as a guide using the suffixes _A,
_B, _C etc.

Example of accessing the lowest byte, the _H, _U and the _A bytes.

 Dim workvariable as Single
 workvariable = 21845
 Dim lowb as byte
 Dim highb as byte
 Dim upperb as byte
 Dim lastb as byte

 lowb = workvariable
 highb = workvariable_H
 upperb = workvariable_U
 lastb = workvariable_A

Using the Byte components of Advanced Variables

This is strict. Accessing BYTE values of advanced variables requires the use cast. Failure to use cast
will cause issue with the low byte (the low byte will tranformed into a Long integer and you will
provide the low byte of the Long integer).

Example. Mandated use of cast for single/float

 Dim sNumC as Single

 HserPrint "Hex with [CAST] / "
 HSerPrint "0x"
 HserPrint Hex([BYTE]sNumC_E)
 HserPrint Hex([BYTE]sNumC_U)
 HserPrint Hex([BYTE]sNumC_H)
 HserPrint Hex([BYTE]sNumC)
 HserPrintCRLF

Example assigning a HEX value to a single/float

59

 // Assing 0x3F19999A equates to 0.6

 [BYTE]mySingle = 0x9A // Strict usage of BYTE cast to ensure the correct value
is assinged the low byte of the single variable.
 mySingle_H= 0x99 // Assign _H byte
 mySingle_U= 0x19 // Assign _U byte
 mySingle_E= 0x3f // Assign _E byte

Working example of assigning d0.5 or 0x3F000000 (which is the IEEE574 hex value for d0.5)

 // Decimal assignement
 mySingle = 0.5

 // Hex assignment
 [BYTE]mySingle = [single]0x00
 mySingle_H = 0x00
 mySingle_U = 0x00
 mySingle_E = 0x3f

Using Advanced Variables

Advanced variables must be "DIMensioned" first. This involves using the DIM command, to tell
GCBASIC that it is dealing with an advanced variable.

 Dim mySingle as Single
 mySingle= 1.1

 // The following types are for Libraries only

 Dim myLongInt as LongInt
 myLongInt = 9999999999999990 'see the Help for constraints

 Dim myuLongInt as uLongInt
 myuLongInt = 0xFFFFFFFFFFFFF 'see the Help for constraints

 Dim myDouble as Double
 myDouble=3.141592

Using Advanced Variables

60

Advanced variables are only supported by a subset of the functions of GCBASIC.

The functional characteristics are:

• Dimensioning of longInt, ulongInt, single and double advanced variable types.

• Assigning advanced variables creation of values from constants.

• Assigning a single to double and double to single.

• Assigning single to long and long to single.

• Assigning double to long and long to double.

• The assignment of a single or a double to a long also deals with byte and word. This is very
inefficient.

• Copying between variables of the same type (so double to double, and single to single and other
advanced variables).

• Extract of the unit value of a single or double variable to a long variable.

• Setting of advanced variable bits.

• Addition and subtraction of advanced variables.

• Rotate of longInt & ulongInt advanced variables.

• Negate of longInt & ulongInt advanced variables.

• Boolean operators working on advanced variables.

• Use of float variable(s) as global variables. Passing float variable(s) as parameters to methods (
sub, function and macro) not supported.

• Support for conditional statements

• Support for overload subs/functions

• Passing float variable(s) as parameters to methods (sub, function and macro)

• Extraction of mantissa value

• Multiplication

• Division

• Modulo

• SingleToString

• StringToSingle

• Advanced variable(s) to string functions

• Math functions for float variable(s) (plus pseudo functions shown below)

61

Assigning Values to Advanced Variables

You can assign values to advanced variables using `=`.

A simple, but typical example follows. This is the typical for numeric variable assignment.

 Dim mySingle as Single
 mySingle = 123.4567 'assign the value

Another example is bitwise assignments as follows:

 mySingle.16 = 1 'set the single bit to 1

+

INT() and SINGLRROUND()

Floating point numbers are not exact, and may yield unexpected results when compared using
conditions (IF etc). For example 6.0 / 3.0 may not equal 2.0. Users should instead check that the
absolute value of the difference between the numbers is less than some small number.

These techniques can replace the INT() and SINGLEROUND() functions.

Alternative to INT()

Assignment of a Single variable to an Interger variable is supported.

So, use the conversion from floating point to integer as this results in integer truncation.

 dim mySingleVar as Single
 mySingleVar = 2.9 'A float type variable

 dim myLongVar as Long
 myLongVar = mySingleVar ' will set myLongVar to 2

Alterntive tp ROUNDSSINGLE()

As an alternative to using the ROUNDSSINGLE() function.

Create your own round conversion, add 0.5 to return the nearest integer. As follows:

62

 'Add 0.5 to a single or double and then assign to an integer variable

 dim mySingleVar as Single
 mySingleVar = 2.9

 dim myLongVar as Long
 myLongVar= mySingleVar + [single]0.5

Example Program

This program shows the values of calculation of 4.5 * multiplied by a number (4.5 x a range of 0 to
40,000). The program shows setting up the advanced variables, assigned a value and completing the
multiplication of the initial value using a for-next loop.

63

 HSerPrintCRLF 2
 HSerPrint "Maths test "
 HSerPrintCRLF 2

 DIM multiplier as Word
 DIM ccount as Single
 Dim result as Single

 HSerPrint "Use floats with multiplier maths"
 HSerPrintCRLF

 'Assign a value to the variable
 ccount = 4.5

 'Do some maths... multiplier x ccount
 For multiplier = 0 to 40000 step 2500

 HSerPrint SingleToString(ccount)
 HSerPrint " x "
 HSerPrint left(WordToString(multiplier)+" ", 10)
 HSerPrint " = "

 'Calculate the result
 result = multiplier * ccount
 HSerPrint left(SingleToString(result)+" ", 10)
 HSerPrintCRLF
 next

 Do Forever
 Loop

To check variables and apply logic based on their value, see If, Do, For, Conditions

For more help, see: Declaring variables with DIM, Setting Variables

Variable Memory Allocation, Addressing & Control
This section discusses the allocation of variables to RAM (GPR, SRAM or other TLA).

Variables in GCBASIC can be bits, bytes, words, integers, longs, arrays or reals. This section will NOT
address reals as these are developmental variables only.

Variables can also be defined as Aliases - this is discussed later in this section.

Basic variable allocation

64

Variables of type byte, word, integer, longs are placed in RAM using the following simple rules.

1. A RAM memory location is automatically assigned starting at the first available memory location.

2. The first memory location is first RAM location as defined in the chip datasheet.

3. Once a variable is allocated the RAM location is marked as used and this specific location can be
reviewed in the ASM source.

4. Bytes use a single RAM location, words two RAM locations, integer and longs four RAM locations.

5. Subsequent variables of type byte, word, integer, longs are placed in RAM at the next available
RAM location.

Variables of array and strings type are placed in RAM using the following simple rules.

1. A RAM memory location is automatically assigned from the end of RAM less the (size of the array +
1 byte).

2. The last memory location is last RAM location as defined in the chip datasheet.

3. Once an array is allocated the RAM location is marked as used and the start of the array RAM
location can be reviewed in the ASM source.

4. Subsequent variables of type array in RAM at the next available RAM location subtracted from the
start the of previous RAM location minus the size of this next array.

Variables of bit type are placed in RAM using the following simple rules.

1. Bit memory location is automatically assigned to the first bit with the creation of a BYTE variable at
a RAM memory location that is automatically assigned starting at the first available memory
location. This byte can handle 8 bits.

2. Once a bit is allocated the byte is marked as used and this specific location can be reviewed in the
ASM source.

3. Subsequent bits are allocation either to an existing byte variable, or when 8 bits are allocated to an
existing byte variable another byte variable will be created.

Addressing Variables

Addressing a variable memory address can be achieved by using the @ prefix. This will return the
address of the variable (@ applies to table data and any data block).

The following example shows registers DMAnSSAU, DMAnSSAH, DMAnSSAL being loaded with the
address of the array WaveArray.

 ' Source start address
 Dim addressdummy as byte
 Dim DMAnSS as long ALIAS addressdummy, DMAnSSAU, DMAnSSAH, DMAnSSAL
 DMAnSS = @WaveArray

65

AT allocation

The Dim variable command can be used to instruct GCBASIC to allocate variables at a specific memory
location using the parameter AT.

The compiler will inspect the provided AT memory location and if the memory location is already used
(by an existing variable), lower than the minimum memory location or greater than the maximum
memory location an error will be issued.

Variable Aliases

Variable can be defined as aliases. Aliases are used to refer to existing memory locations SFR or
RAM and aliases can be used to construct other variables. Constructed variables can be a mix (or not
) of SFR or RAM. These are useful for joining predefined byte variables together to form a word/long
variable.

Aliases are not like pointers in many languages - they must always refer to an existing variable or
variables and cannot be changed.

When setting a register/variable bit (i.e my_variable.my_bit_address_variable) and using a alias for
the variable then you must ensure the bytes that construct the variable are consecutive.

Aliases are shown in the ASM source in the ;ALIAS VARIABLES section.

The coding approach should be to DIMension the variable (word, integer, or long) first, then create the
byte aliases:

 Dim my_variable as LONG
 Dim ByteOne as Byte alias my_variable_E
 Dim ByteTwo as Byte alias my_variable_U
 Dim ByteThree as Byte alias my_variable_H
 Dim ByteFour as Byte alias my_variable

 Dim my_bit_address_variable as Byte
 my_bit_address_variable = 23

 'set the bit in the variable
 my_variable.my_bit_address_variable = 1

 'then, use the four byte variables as you need to.

To set a series of registers that are not consecutive, it is recommended to use a mask variable then
apply it to the registers:

66

 Dim my_variable as LONG
 Dim my_bit_address_variable as Byte
 my_bit_address_variable = 23

 'set the bit in the variable
 my_variable.my_bit_address_variable = 1

 porta = my_variable_E
 portb = my_variable_E
 portc = my_variable_E
 portd = my_variable_E

Memory Specification

All memory specifics like RAM size, lower and upper RAM addresses are specified in the chip specific
dat file.

The dat file details should be reviewed in PICINFO application. See the PICINFO/CHIPDATA tab for
RAM and MaxAddress etc.

A simple calculation is MaxAddress - RAM +1 = the 'first memory address'. And, 'first memory address'
+ RAM -1 = 'the last memory address.

This can be confirmed by review the DAT file. See the section [FreeRAM] for the start and end of RAM.

The dat file also has a [NoBankRAM]. NoBankRAM is somewhat misnamed - it is used for the defintion
of (any) access bank locations. If a memory location is defined in both NoBankRAM and FreeRAM,
then the compiler knows that it is access bank RAM. If an SFR location is in one of the NoBankRAM
ranges, then the compiler knows not to do any bank selection when accessing that register.

The [NoBankRAM] section includes two ranges, one for access bank RAM, one for access bank SFRs.
The first range MUST be the ACCESS RAM range The first range is the FAST SFR range

If there are no ranges defined in NoBankRAM, the compiler will try to guess them. On 18Fs, it will
guess based on where the lowest SFR is, and from what the total RAM on the chip is. If there’s only
one range defined. in the NoBankRAM locations, the compiler will assume that is the range for the
RAM, and then will guess where the range for the access bank SFRs is.

67

 'GCBASIC/GCGB Chip Data File
 'Chip: 18F27Q43

 [ChipData]

 many other data rows

 'This constant is exposed as ChipRAM
 RAM=8192 'Dec values

 many other data rows

 'This constant is exposed as ChipMaxAddress
 MaxAddress=9471 'Dec values

 many other data rows

 [FreeRAM]
 500:24FF 'Hex value

 [NoBankRAM]
 500:55F 'Hex value
 460:4FF 'Hex value

 many other data rows

In the example shown above the following can be extracted.

1. RAM size: RAM = 8192d

2. Minimum RAM address: FREERAM = 0x500

3. Maximum RAM address: FREERAM = 0x24FF

4. Maximum RAM address: MAXADDRESS=9471d or 0x24FF

5. ACCESS RAM: NOBANKRAM = 0x500-0x55F

6. BANKED SFR: NOBANKRAM = 0x460-0x4FF

68

Reference Data

Efficient Implementation of Lookup Reference Tables in
GCBASIC
Introduction

This section explores the efficient implementation of lookup reference tables in embedded systems,
specificially GCBASIC, focusing on the use of PROGMEM memory to store fixed data sets. It addresses
common misconceptions about data storage and initialization, compares different methods of data
handling, and provides advanced techniques for optimizing memory usage.

Lookup reference tables are essential in embedded systems for storing fixed data sets that can be
accessed during runtime. This section aims to clarify the correct implementation of these tables,
debunking common myths and providing practical solutions for efficient data management.

Conventional Misconceptions

A common misconception is that the data required by a fixed lookup table is defined by its content and
declared in a Dim statement, with its data filled at runtime. This implies that an array (in RAM
memory) is empty initially and populated during initialization, leading to data duplication and wasted
memory resources.

Correct Implementation

A fixed lookup table is a set of data (bytes, words, etc.) stored in the PROGMEM memory. The correct
implementation involves using the TABLE and READTABLE commands: * Definition: TABLE tablename…
data… END TABLE * Reading: READTABLE There is no DIM in the definition process, and the data is part of
the hex file, not filled at runtime.

Memory Efficiency

Storing data in PROGMEM ensures that there is only one copy of the data, avoiding duplication.
Copying data to an array is redundant as reading the table can replace the array.

Practical Solutions

Using TABLE - END TABLE is the simplest way to handle data. For data sets smaller than the EEPROM in
the chip, load the table directly to EEPROM and use READTABLE to read the data.

Advanced Techniques

1. PROGMEM Page Size Constraint: On the 16F, TABLE-END TABLE is constrained by PROGMEM page size
(2048 items).

2. EEPROM Storage: Use EEPROM .. END EEPROM and a direct method like PROGREAD. Data is stored in

69

EEPROM, constrained by its size and typically byte values.

3. Direct PROGMEM Storage: Use DATA .. END DATA and PROGREAD. Data is stored in PROGMEM,
constrained by unused PROGMEM size and typically word values (max 0x3FFF for 16F chips).

Arrays in Embedded Systems

An array is a special type of variable that can store multiple values, addressed individually using an
index. Arrays can be bytes, longs, integers, or words, and are held in RAM. Loading an array can be
done element by element or all at once.

Comparison of Methods

Using arrays can be costly in terms of RAM and PROGMEM. The following examples illustrate the
difference:

Using an Array

64 words Progmem / 13 bytes RAM

 #CHIP 18F2550
 #option Explicit

 Dim myResult, myIndex as Byte

 // Using an array 64 words Progmem / 13 bytes RAM
 Dim myArray(10)
 myArray = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
 For myIndex = 1 to 10
 myResult = myArray(myIndex)
 Next

Using a Table

56 words Progmem / 2 bytes RAM

70

 #CHIP 18F2550
 #option Explicit

 Dim myResult, myIndex as Byte

 // Using a table 56 words Progmem / 2 bytes RAM
 For myIndex = 1 to 10
 ReadTable myTable, myIndex, myResult
 Next

 Table myTable
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
 End Table

Usage

The ReadTable method provides data set capabilities to chips with limited RAM, using fewer resources
and offering faster performance. Advanced techniques and proper understanding of memory usage
can significantly optimize embedded system performance.

Notes

• A byte array is handled similarly to a string, which can be resource-intensive.

By following these guidelines, developers can efficiently implement lookup reference tables in
embedded systems, optimizing memory usage and performance.

71

Syntax

Arrays
About Arrays

An array is a special type of variable - one which can store several values at once. It is essentially a list
of numbers in which each one can be addressed individually through the use of an "index".

The numbers can be bytes (the default), longs, integers, or words. The index is a value in brackets
immediately after the name of the array.

All the numbers stored in an array must be of the same type. For instance, you cannot store bytes and
words in the same array.

Array are are 1-based. The first element is element zero.

Examples of array names are:

Array/Index Meaning

Fish(10) Definition of an array containing bytes
with 10 elements called Fish

x(5) As Word Definition of an array containing words
with 5 elements called x

DataLog(2) The second element in an array named
DataLog

ButtonList(Temp) An element in the array ButtonList that
is selected according to the value in the
variable Temp

Defining an array

Use the DIM command to define an array.

 DIM array_title (number_of_elements) [As _type_]

The number of elements can be number or a constant - not a variable.

The value for the number elements in an array must be a number or constant. The compiler allocates
RAM for arrays at compile time, and therefore you cannot use a variable because during compilation
the value of a variable cannot be determined.

Assigning values to an array

72

It is possible to set several elements of a byte array with a single line of code. This short example shows
how:

 Dim TestVar(10)
 TestVar = 1, 2, 3, 4, 5, 6, 7, 8, 9

When using this method above element 0 of the array TestVar will be set to the number of items in the
list, which in this case is 9. Each element of the array will then be loaded with the corresponding
value in the list - so in the example, TestVar(1) will be set to 1, TestVar(2) to 2, and so on. Element 0
will only be set to number of items in the array when using this method. For microcontrollers with
less than 2048 bytes of RAM the limit is 250 elements or the array cannot exceed the microcontrollers
RAM size. For microcontrollers with more than 2048 bytes of RAM the limit is 255 elements.

This only works for byte arrays, however. For arrays of type integer, word, or long, each element must
be set separately:

 Dim TestVar(5) As Word
 TestVar(1) = 20
 TestVar(2) = 50
 TestVar(3) = 60
 TestVar(4) = 80
 TestVar(5) = 100

If each element has the same value, this can be shortened using a loop:

 Dim TestVar(5) As Word
 For i = 1 to 5
 TestVar(i) = 0
 Next

Array Length

Element 0 should not be used to obtain the length of the array. Element 0 will only be a consistent
with respect to the length of the array when the array is set as shown above.

The correct method is to use a constant to set the array size and use the constant within your code to
obtain the array length.

 #Define ArraySizeConstant 500
 Dim TestVar(ArraySizeConstant)

 SerPrint ArraySizeConstant 'or, other usage

73

Using Arrays

To use an array, its name is specified, then the index. Arrays can be used everywhere that a normal
variable can be used.

Maximum Array Size

The limit on the array size is dependent on the chip type, the amount of RAM, and the number of other
variable you use in your program.

Use the following simple program to determine the maximum array size. Set CHIP to your device,
MAXSCOPE to a value which is less the total RAM, and the data type of test_array to the data type to be
stored in the array.

The data type of imaxscope must be set to match the size of the constant MAXSCOPE. If MAXSCOPE ⇐ 255,
imaxscope should be a byte. If MAXSCOPE > 255, imaxscope should be a word.

If the array is too large to fit, the compiler will issue an error message. Reduce MAXSCOPE until the
error message is not issued. The largest MAXSCOPE value without an error message is the largest
useable array of this type for this chip.

 #CHIP 12f1571
 #OPTION Explicit

 #DEFINE MAXSCOPE 111
 DIM imaxscope As Byte
 DIM test_array(MAXSCOPE) As Byte

 For imaxscope = 0 to MAXSCOPE
 test_array(imaxscope) = imaxscope
 Next

For the Atmel AVR, LGT 328p or an 18F array sizes are limited to 10,000 elements.

If a memory limit is reached, the compiler will issue an error message.

Get the most from the available memory

Array RAM usage is determined by the architecture of the chip type. Getting most out of the available
memory is determined by the allocation of the array within the available banks of memory.

An example is an array of 6 or 7 bytes when there is only 24 bytes of RAM and the 24 bytes is split
across multiple memory banks. Assume in this example that 18 bytes have allocated to other
variables and there is 29 bytes total available. An array of 6 bytes will fit into the free space in one
bank, but the array of 7 will not.

74

GCBASIC currently cannot split an array over banks, so if there are 6 bytes free in one bank and 5 in
another, you cannot have an array of 7 bytes. This would be very hard to do efficiently on 12F/16F as
there would be a series of special function registers in the middle of the array when using a 12F or 16F.
 This constraint is not the case on 16F1/18F as linear addressing makes it easy to span banks because
the SFRs are not making the problem (as with 12F/16F).

Using Tables as an alternative.

If there are many items in the array, it may be better to use a Lookup Table to store the items, and then
copy some of the data items into a smaller array as needed.

For more help, see Declaring arrays with DIM,Declaring memory with ALLOC

Comments
About Comments

Adding comments to your GCBASIC program can be done using a number of methods. Explanatory
notes embedded within the code. Comments are used to remind yourself and to inform others about
the function of your program. Comments are ignored by the compiler

You can comment out sections of code if you want just by placing an apostrophe at the beginning of
each line. The GCBASIC IDE has a feature to do this automatically.

You can also use a REM (for REMark statement), a semi-colon or two forward slashes.

Multiline comments are support for large text descriptions of code or to comment out chunks of code
while debugging applications.

Syntax:

 /*
 block comment
 */

Warning: Graphical GCBASIC uses semi-colons to mark comments that it has inserted automatically. It
does not read these comments when opening a file, so any comments in a GCBASIC program starting
with a semi-colon will be deleted if the program is opened using Graphical GCBASIC.

Example:

75

 ' The number of pins to flash
 #define FlashPins 2

 REM You can create a header using an apostrophe before each line
 REM This is a great way to describe your program
 REM You can also use it to describe the hardware connections.

 ' You can place comments above the command or on the same line
 Dir PORTB Out ' Initialise PORTB to all Outputs

 ; The Main loop
 do
 PORTB = 0 ' All Pins off
 Wait 1 S ' Delay 1 second
 PORTB = 0xFF ' All pins on
 Wait 1 s ' Delay 1 second
 Loop

Line Continuation
About Line Continuation

A single _ (underscore) character at the end of a line of code tells the compiler that the line continues
in the next line. This allows a single statement (line of code) to be spread across multiple lines in the
input file, which can provide nice formatting.

Be careful when adding the _ line continuation character right behind an identifier or keyword. It
MUST be separated with at least one space character, otherwise it would be treated as part of the
identifier or keyword.

Example 1:

76

 #CHIP 18f27k42

 Dim sMyString As String
 sMyString ="one _
 two _
 three _
 four _
 five _
 six _
 seven _
 eight _
 nine _
 ten _
 eleven _
 twelve _
 thirteen _
 fourteen _
 fifteen _
 sixteen _
 seventeen _
 eighteen _
 nineteen _
 twenty _
 twentyOne _
 twentyTwo _
 twentyThree _
 twentyFour _
 twentyFive"

 HSerPrint sMyString

This example will print on the serial terminal the string "one two three four five six seven eight nine
ten eleven twelve thirteen fourteen fifteen sixteen seventeen eighteen nineteen twenty twentyOne
twentyTwo twentyThree twentyFour twentyFive"

Example 2:

77

 Sub Aiguillages (In voie_principale As Byte, _
 In voie_marchandises As Byte, _
 In voie_gravier As Byte)

 ' code segment
 ' code segment
 ' code segment

 End Sub

This example improves the layout of definition of the sub-routine.

Example 3:

 #DEFINE Ouvrir_voie_marchandises Aiguillages _
 (0, Marche_avant, Marche_arriere)

This example creates a constants over two lines. This improves readability.

Conditions
About Conditions

In GCBASIC (and most other programming languages) a condition is a statement that can be either true
or false. Conditions are used when the program must make a decision. A condition is generally given as
a value or variable, a relative operator (such as = or >), and another value or variable. Several
conditions can be combined to form one condition through the use of logical operators such as AND
and OR.

GCBASIC supports these relative operators:

Symbol Meaning

= Equal

<> Not Equal

< Less Than

> Greater Than

⇐ Less than or equal to

>= Greater than or equal to

In addition, these logical operators can be used to combine several conditions into one:

78

Name Abbreviation Condition true if

AND & both conditions are true

OR | at least one condition is
true

XOR # one condition is true

NOT ! the condition is not true

NOT is slightly different to the other logical operators, in that it only needs one other condition. Other
arithmetic operators may be combined in conditions, to change values before they are compared, for
example.

GCBASIC has two built in conditions - TRUE, which is always true, and FALSE, which is always false.
These can be used to create Conditional tests and infinite loops.

The condition bit_variable = TRUE is treated as TRUE if the bit is on. Any non-zero value will be treated
as equal to a high bit. The condition bit_variable = other_type_of_variable generates a warning. If the
byte_variable is set to TRUE and then compared to the bit, it will always be FALSE because the high bit
will be treated as a 1. But the new warning will be generated, "Comparison will fail if %nonbit% is any
value other than 0 or 1"

It is also possible to test individual bits in conditions. To do this, specify the bit to test, then 1 or 0 (or
ON and OFF respectively). Presently there is no way to combine bit tests with other conditions - NOT,
AND, OR and XOR will not work.

Example conditions:

Condition Comments

Temp = 0 Condition is true if Temp = 0

Sensor <> 0 Condition is true if Sensor is not 0

Reading1 > Reading2 True if Reading1 is more than Reading2

Mode = 1 AND Time > 10 True if Mode is 1 and Time is more than
10

Heat > 5 OR Smoke > 2 True if Heat is more than 5 or Smoke is
more than 2

Light >= 10 AND (NOT Time > 7) True if Light is 10 or more, and Time is
7 or less

Temp.0 ON True if Temp bit 0 is on

Constraints when using Conditional Test

As GCBASIC is very flexible with the use of variables type this can cause issues when testing constants

79

and/or functions.

A few simple rules. Always put the function or constant first, or, always call the function with the
addition of the braces.

The example code below shows the correct method and an example that does compile but will not
work as expected.

 'Example A - works
 'Call the function by adding the braces
 '
 Do
 Loop While HSerReceive() <> 62

 'Example B - works
 'Please the constant first - this is the general rule - put the constant first.
 '
 Do
 Loop While 62 <> HSerReceive

This fails as the function will not be called

 'Example C - compiles but does not operate as expected
 Do
 Loop While HSerReceive <> 62

Constants
About Constants

A constant tells the compiler to find a given string, and replace it with another string. The #Define
directive create constants.

Constants are useful for situations where a routine needs to be easily altered. For example, a define
could be used to specify the amount of time to run an alarm for once triggered.

It is also possible to use defines to specify port.pin(s) - thus defines can be used to aid in the creation of
code that can easily be adapted to run on a different microcontroller with different ports.

80

GCBASIC makes considerable use of defines internally. For instance, the LCD code uses defines to set
the ports that it must use to communicate with the LCD.

About Defines

To create a constant is a matter of using the #define directive. Here are some examples of defines:

 #define LINE 34
 #define LIGHT PORTB.0
 #define LIGHTON Set PORTB.0 ON

LINE is a simple constant - GCBASIC will find LINE in the program, and replace it with the number 34.
This could be used in a line following program, to make it easier to calibrate the program for different
lighting conditions.

LIGHT is a port.pin - it represents a particular pin on the microcontroller. This would be of use if the
program had many lines of code that controlled the light, and there was a possibility that the port the
light was attached to would need to change in the future.

LIGHTON is a define used to make the program more readable. Rather than typing Set PORTB.0 ON over
and over, it would then be made possible to type LIGHTON, and have the compiler do the hard work.

GCBASIC Defined constants

The are many GCBASIC standard constants, some are show below.

 #define ON 1
 #define OFF 0
 #define TRUE 255
 #define FALSE 0

 'Names for symbols
 #define AND &
 #define OR |
 #define XOR #
 #define NOT !
 #define MOD %

A GCBASIC special constant

FOREVER is a special constant. For Graphical GCBASIC users think of this as 'false'. For those not using
Graphical GCBASIC think of this as a non numeric value that has no value. You can use FOREVER in a
DO-LOOP but not in a REPEAT-END REPEAT loop, as the in the later case the REPEAT will have no value
and you will create an error condition.

81

Precedence of Constants within GCBASIC.

The #define command creates constants, and, scripts also creates constants. See the #script section of
ths Help.

The precedence is as follows:

• Constants defined in the main user program is read first,

• then, the constants defined in the include files. Constants defined in the include files are ignored if
they conflict or are different to a constant, with the same title, in the main program.

• then, the scripts are processed. Scripts that create constants can therefore override any constant
value previously defined.

All constants are listed in the Constant Debug File (CDF). The CDF shows all constants and the end
state of the constants.

See #define

Functions

 Function identifier [(arg1 [as Type], arg2... argx)] [As return_type]
 statements
 ...
 identifier = return_value
 ...
 End Function

About Functions

Functions are a special type of subroutine that can return a value. This means that when the name of
the function is used in the place of a variable, GCBASIC will call the function, get a value from it, and
then put the value into the line of code in the place of the variable.

Functions are strict. The function MUST be assigned to an appropiate variable or passed to another
subroutine. Calling a function with no assignment or returned value usage will raise an error
condition.

Functions may have parameters - these are treated in exactly the same way as parameters for
subroutines. The only exception is that brackets are required around any parameters when calling a
function. The argument’s type is given by "As type" following the parameter. If a parameter in the
declaration is given a default value, the parameter is optional. Array parameters are specified by
following an identifier with an empty parenthesis.

82

Returning values : return_type specifies the data type returned by a function upon exit. If no data type
is specified, then the function will return the default data type which is a byte. Functions return
values by assigning the Function keyword or the function’s identifier to the desired return value, this
method do not cause the function to exit, however.

Exit Function keyword in a same function is unsupported when returning objects with
constructors. Since functions return values, function calls evaluate to expressions. Thus, function calls
can be made wherever an expression is expected, like in Assignments or If statements. Parentheses
surrounding the argument list are required on function calls in expressions and even highly
recommended if there are no arguments.

Using Functions

This program uses a function called AverageAD to take two analog readings, and then make a decision
based on the average:

 'Select chip
 #chip 16F88, 20

 'Define ports
 #define LED PORTB.0
 #define Sensor AN0

 'Set port directions
 dir LED out
 dir PORTA.0 in

 'Main code
 Do
 Set PORTB.0 Off
 If AverageAD > 128 Then Set PORTB.0 On
 wait 10 ms
 Loop

 Function AverageAD
 'Get 2 readings, divide by 2, store in AverageAD
 'Note the cast, the result of ReadAD needs to be converted to
 'a word before adding, or the result may overflow.
 AverageAD = ([word]ReadAD(Sensor) + ReadAD(Sensor)) / 2
 end function

See Also Subroutines, Exit

Labels
About Labels

83

Labels are used as markers throughout the program. Labels are used to mark a position in the program
to ‘jump to’ from another position using a goto, gosub or other command.

Labels can be any word (that is not already a reserved keyword) and may contain digits and the
underscore character. Labels must start with a letter or underscore (not digit), and are followed
directly by a colon (:) at the marker position. The colon is not required within the actual commands.

The compiler is not case sensitive. Lower and/or upper case may be used at any time.

Example:

 'This program will flash the light until the button is pressed
 'off. Notice the label named SWITCH_OFF.

 #chip 16F628A, 4

 #define BUTTON PORTB.0
 #define LIGHT PORTB.1
 Dir BUTTON In
 Dir LIGHT Out

 Do
 PulseOut LIGHT, 500 ms
 If BUTTON = 1 Then Goto SWITCH_OFF
 Wait 500 ms
 If BUTTON = 1 Then Goto SWITCH_OFF
 Loop

 SWITCH_OFF:
 Set LIGHT Off
 'Chip will enter low power mode when program ends

For more help, see Goto, Gosub

Lookup Tables
About Lookup Tables

A lookup table is a list of values that are stored in the memory of the microcontroller, which then can
be accessed using the ReadTable command.

The advantage of lookup tables is that they are memory efficient, compared to an equivalent set of
alternative command statements.

Data tables are defined as follows:

84

1. a single value on each line

2. byte, word, longs and integer values are valid.

3. Strings must be expressed as ASCII byte value(s)

4. multiple elements on a single line separated by commas

5. constants and calculations within the single line data table entries are permitted

6. an external data source file

7. decimal values are NOT supported

Defining Tables

Single data values

A single value on each line with in the table. The example table, shown below, has the data on
different line in within the table.

 Table TestDataSource
 12
 24
 36
 48
 60
 72
 End Table

 Dim TableCounter, Invalue as byte

 CLS
 For TableCounter = 1 to 6
 ReadTable TestDataSource, TableCounter, Invalue
 Print InValue
 Print ","
 Next

Multiple data values of the same line

Multiple elements on a single line separated by commas. The example table, shown below, has the
data separated by , and on different line in within the table.

85

 Table TestDataSource
 12, 24, 36
 48, 60, 72
 End Table

 Dim TableCounter, Invalue as byte

 CLS
 For TableCounter = 1 to 6
 ReadTable TestDataSource, TableCounter, Invalue
 Print InValue
 Print ","
 Next

Data values as constants, and, with data transformation

Constants and calculations within the single line. The example table, shown below, uses a defined
constant to multiple the data with the table.

#define calculation_constant 2

 Table TestDataSource
 1 * calculation_constant
 2 * calculation_constant
 3 * calculation_constant
 8 * calculation_constant
 4 * calculation_constant
 5 * calculation_constant
 End Table

 Dim TableCounter, Invalue as byte

 CLS
 For TableCounter = 1 to 6
 ReadTable TestDataSource, TableCounter, Invalue
 Print InValue
 Print ","
 Next

Data values as Strings

Strings can be defined. Strings are delimited by double quotes. The following examples show the
methods.

86

Any ASCII characters between any two " " (double quotes) will be converted to table data. Also see
ASCII escape codes.

A source string can be one string per line or comma separated strings, therefore, on the same line.

Simple Example 1.

 Table Test_1
 "ABCDEFGHIJ"
 End Table

Simple Example 2.

 '
 Table MnuTxt_1 'Home disp
 " Display_1 Display_2 Display_3 "
 End Table

 Table MnuTxt_2 'Main Menu
 "1: Display" ' Main1
 "2: System Setup" ' Main2
 "3: Config 1" ' Main3
 "4: Config 2" ' Main4
 "5: Data Log" ' Main5
 "6: Diagnostic" ' Main6
 "7: Help+" ' Main7
 End Table

The following 2 table lines produce the same table data.

 "String1","String2", "String3"
 "String1String2String3"

And, the following 3 table lines produce the same table data.

 "String1"
 "String2"
 "String3"

ASCII Escape code

Accepted escape strings are shown in the table below.

87

Escape
sequence

Meaning

\a beep

\b backspace

\f formfeed

\l or \n newline

\r carriage return

\t tab

\0 Nul value, equates to ASCII 0. Same as \&000

\&nnn ascii char in decimal

\\ backslash

\" double quote

\' single quote

Using Lookup Tables

First, the table must be created. The code to create a lookup table is simple - a line that has Table and
then the name of the table, a list of numbers (up to 10,000 elements), and then End Table.

For tables with more than 255 elements it is mandated to used a WORD variable to read the size of the
table. See below for an example.

Once the table is created, the ReadTable command is used to read data from it. The ReadTable command
requires the name of the table it is to read, the location of the item to retrieve, and a variable to store
the retrieved number in.

Lookup tables can store byte, word, longs and integer values. GCBASIC will try automatically detect
the type of the table depending on the values in it. GCBASIC can be explicitly instructed to cast the
table to a variable type, as follows:

 Table TestDataSource as [Byte | Word | Integer | Long]
 12
 24
 36
 48
 60
 72
 End Table

Addresssing the Table Data

88

Item 0 of a lookup table stores the size of the table. If the ReadTable command attempts to read beyond
the end (number of data items) of the table, the value 0 will be returned. For tables with more than 255
elements it is mandatory to use a WORD variable to read the size of the table. See example below.

 dim lengthoftable as word

 readtable TestDataSource , 0, lengthoftable
 print lengthoftable ; will print the size as a word

 table TestDataSource
 'a table with more than 255 elements
 ... 'item 1
 ...
 ...
 ... 'item 1027
 end table

Importing External Text File for table conversion

An external file can be used as the table data source. The file will be read into the specified table
name from the external file. The source file will be treated as a byte value file.

An example file is shown below:

The following program will import the external data file.

 #chip 16f877a

 Table TestDataSource from "sourcefile.raw"

 for nn = 1 to 10
 ReadTable TestDataSource, nn, inc
 Print inc
 next

And the program will out the following:

89

Advanced use of Lookup Tables - using EEPROM for Table data storage

You can use the Table statement to store the data table in EEPROM. If the compiler is told to store a data
table in "Data" memory, it will store it in the EEPROM.

NOTE The limitation of of using EPPROM tables is that you can only store BYTEs. You cannot store
WORD values in the EEPROM tables.

Example code:

 #chip 16F628

 'Read table item
 'Must use ReadTable and a variable for the index, or the table will not be downloaded
to EEPROM

 TableLoc = 2
 ReadTable TestDataSource, TableLoc, SomeVar

 'Write to table , this is not required
 EPWrite 1, 45

 'Table of values to write to EEPROM
 'EEPROM location 0 will store length of table
 'Subsequent locations will each store a value

 Table TestDataSource Store Data
 12
 24
 36
 48
 60
 72
 End Table

90

For more help, see ReadTable

Miscellaneous
About Miscellaneous things….

It is possible to combine multiple instructions on a single line, by separating them with a colon. For
example, this code:

 Set PORTB.0 On
 Set PORTB.1 On
 Wait 1 sec
 Set PORTB.0 Off
 Set PORTB.0 Off

could also be written as:

 Set PORTB.0 On: Set PORTB.1 On
 Wait 1 sec
 Set PORTB.0 Off: Set PORTB.0 Off

In most cases, it will make no difference if commands share a line or not. However, special care should
be taken with If commands, as this code:

 Set PORTB.0 Off
 Set PORTB.1 Off
 If Temp > 10 Then Set PORTB.0 On: Set PORTB.1 On
 Wait 1 s

Will be equivalent to this:

 Set PORTB.0 Off
 Set PORTB.1 Off
 If Temp > 10 Then
 Set PORTB.0 On
 Set PORTB.1 On
 End If
 Wait 1 s

Also, the commands used to start and end subroutines, data tables and functions must be alone on a
line. For example, this is WRONG:

91

 Sub Something: Set PORTB.0 Off: End Sub

ReadTable
About ReadTable

The ReadTable command is used to read information from lookup tables. TableName is the name of the
table that is to be read, Item is the line of the table to read, and Output is the variable to write the
retrieved value in to.

Syntax:

 ReadTable TableName, Item, Output

Command Availability:

Available on all microcontrollers.

Explanation:

Item is 1 for the first line of the table, 2 for the second, and so on. If the Table is more than 256 elements
then Item must be WORD variable. Care must be taken to ensure that the program is not instructed to
read beyond the end of the table as Zero will be returned.

The type of Output should match the type of data stored in the table. For example, if the table contains
Word values then Output should be a Word variable. If the type does not match, GCBASIC will attempt
to convert the value.

Example:

92

 'Chip Settings
 #chip 16F88, 20

 'Hardware Settings
 #define LED PORTB.0
 Dir LED Out

 'Main Routine
 ReadTable TimesTwelve, 4, Temp
 Set LED Off
 If Temp = 48 Then Set LED On

 'Lookup table named "TimesTwelve"
 Table TimesTwelve
 12
 24
 36
 48
 60
 72
 84
 96
 108
 120
 132
 144
 End Table

For more help, see Lookup Tables

Scripts
About Scripts

A script is a small section of code that GCBASIC runs when it starts to compile a program. Uses include
performing calculations that are required to adjust the program for different chip frequencies.

Scripts are not compiled or downloaded to the microcontroller - GCBASIC reads them, executes them,
then removes them from the program and then the results calculated can be used as constants in the
user program.

Inside a script, constants are treated like variables. Scripts can read the values of constants, and set
them to contain new values.

Using Scripts

93

Scripts start with #script and end with #endscript. Inside, they can consist of the following commands:

 If
 Assignment (=)
 Error
 Warning
 Int()

If is similar to the If command in normal GCBASIC code, except that it does not have an Else clause. It
is used to compare the values of the script constants.

The = sign is identical to that in GCBASIC programs. The constant that is to be set goes on the left side of
the = and the new value goes to the right of the =.

Error is used to display an error message. Anything after the Error command is displayed at the end of
compilation, and is saved in the error log for the program.

Warning is used to display a warning message. Anything after the Warning command is displayed at the
end of compilation but warning does not halt compilation.

Int() will calculate the integer value of a calculation. Using Int() is critical to set the constant to the
integer component of the calculation.

Notes:

Use Warning to display constant values when creating and debugging scripts.

Scripts have a limited syntax and limited error checking when compiling. The compiler may halt if
you get something wrong.

Scripts that are incorrectly formatted may also halt the compiler or return unrelated error.

Scripts used for calculations should use the Int(expression) where you may have a floating point
numbers returned.
Scripts do use floating point for all calculations and a failure to use Int() may set the script constant
and the resulting constant to 0.

Scripts may require that complex math expressions may require definition in multiple steps/line to
simplify the calculation.
The returned value could be incorrect if simplification is not implemented.

Scripts can only access existing constants both user and system defined.

User defines variables are not accessible within the scope of a script.

Scripts has precendence over #define. A #define constant statements are read first, then scripts run.
So, a script will always overwrite a constant that was set with #define.

94

Use Warning to display constants values when creating and debugging scripts.

Example Script

This script is used in the pwm.h file. It takes the values of the user defined constants PWM_Freq,
PWM_Duty and system constant ChipMHz and calculates the results using the equations. These
calculation are based on information from a Microchip PIC datasheet to calculate the correct values to
setup Pulse Width Modulation (PWM).

 #script
 PR2Temp = INT((1/PWM_Freq)/(4*(1/(ChipMHz*1000))))
 T2PR = 1
 If PR2Temp > 255 Then
 PR2Temp = INT((1 / PWM_Freq) / (16 * (1 / (ChipMHz * 1000))))
 T2PR = 4
 If PR2Temp > 255 Then
 PR2Temp = INT((1 / PWM_Freq) / (64 * (1 / (ChipMHz * 1000))))
 T2PR = 16
 If PR2Temp > 255 Then
 Error Invalid PWM Frequency value
 End If
 End If
 End If

 DutyCycle = (PWM_Duty * 10.24) * PR2Temp / 1024
 DutyCycleH = (DutyCycle AND 1020) / 4
 DutyCycleL = DutyCycle AND 3
 #endscript

During the execution of the script the calculations and assignment uses the constants in the script.

After this script has completed the constants PR2Temp, DutyCycleH and DutyCycleL are set using the
constants and/or the calculations.

The constants assigned in this script, PR2Temp, DutyCycleH and DutyCycleL, are made available as
constants in the user program.

Subroutines
About Subroutines

A subroutine is a small program inside of the main program. Subroutines are typically used when a
task needs to be repeated several times in different parts of the main program.

There are two main uses for subroutines:

95

• Keeping programs neat and easy to read

• Reducing the size of programs by allowing common sections of code to be reused.

When the microcontroller comes to a subroutine it saves its location in the current program before
jumping to the start of, or calling, the subroutine. Once it reaches the end of the subroutine it returns
to the main program, and continues to run the code where it left off previously.

Normally, it is possible for subroutines to call other subroutines. There are limits to the number of
times that a subroutine can call another sub, which vary from chip to chip:

Microcontroller Family Instruction Width Number of subs called

10F*, 12C5*, 12F5*, 16C5*, 16F5* 12 1

12C*, 12F*, 16C*, 16F*, except those above 14 7

18F*, 18C* 16 31

These limits are due to the amount of memory on the microcontroller which saves its location before it
jumps to a new subroutine. Some GCBASIC commands are subroutines, so you should always allow for
2 or 3 subroutine calls more than your program has.

On 16F chips, the program memory is divided into pages. Each page holds 2048 instructions. If the
program jumps from code on one page to code on another, the compiler has to select the new
page. Having to do this makes the program bigger, so try to avoid this. To keep jumps between pages
down, GCBASIC imposes a rule that each subroutine must be entirely within one page, so that only
jumps to other subroutines require the page selection. As an example, say you have two pages of
memory, each 2048 instructions (words) long.
If you have a main sub that is 1500 words, and four other subroutines each 600 words long, your total
program size would be 3900 words and you might expect it to fit into the 4096 words available. The
problem though is that once the main routine takes 1500 words from page 1, nothing else will fit after
it. Three of the 600 word subroutines would fit onto page 2, but that leaves one 600 word subroutine
that will not fit into the 500 left on page 1 or the 200 left on page 2. If you want to reduce the chance
of this happening, the best option is to keep your subroutines smaller - move anything out of the main
routine and into another one - this will resolve memory page constraints.

Atmel AVR microcontrollers have no fixed limit on how many subroutines can be called at a time, but
if too many are called then some variables on the chip may be corrupted. To check if there are too
many subroutines, work out the most that will be called at once, then multiply that number by 2 and
create an array of that size. If an out of memory error message comes up, there are too many calls.

Another feature of subroutines is that they are able to accept parameters. These are values that are
passed from the main program to the subroutine when it is called, and then passed back when the
subroutine ends.

Using Subroutines

96

To call a subroutine is very simple - all that is needed is the name of the sub, and then a list of
parameters. This code will call a subroutine named "Buzz" that has no parameters:

 Buzz

If the sub has parameters, then they should be listed after the name of the subroutine. This would be
the command to call a subroutine named "MoveArm" that has three parameters:

 MoveArm NewX, NewY, 10

Or, you may choose to put brackets around the parameters, like so:

 MoveArm (NewX, NewY, 10)

All that this does is change the appearance of the code - it doesn’t make any difference to what the code
does. Decide which one meets your own personal preference, and then stick with it.

Creating subroutines

To create a subroutine is almost as simple as using one. There must be a line at the start which has sub,
and then the name of the subroutine. Also, there needs to be a line at the end of the subroutine which
reads end sub. To create a subroutine called Buzz, this is the required code:

 sub Buzz

 'code for the subroutine goes here

 end sub

If the subroutine has parameters, then they need to be listed after the name. For example, to define the
MoveArm sub used above, use this code:

 sub MoveArm(ArmX, ArmY, ArmZ)

 'code for the subroutine goes here

 end sub

In the above sub, ArmX, ArmY and ArmZ are all variables. If the call from above is used, the variables will
have these values at the start of the subroutine:

97

 ArmX = NewX
 ArmY = NewY
 ArmZ = 10

When the subroutine has finished running, GCBASIC will copy the values back where possible. NewX
will be assigned to ArmX, and NewY will be assigned to ArmY. GCBASIC will not attempt to set the number
10 to ArmZ.

Controlling the direction data moves in

It is possible to instruct GCBASIC not to copy the value back after the subroutine is called. If a
subroutine is defined like this:

 sub MoveArm(In ArmX, In ArmY, In ArmZ)
 'code for the subroutine goes here

 end sub

Then GCBASIC will copy the values to the subroutine, but will not copy them back.

GCBASIC can also be prevented from copying the values back, by adding Out before the parameter
name. This is used in the EEPROM reading routines - there is no point copying a data value into the
read subroutine, so Out has been used to avoid wasting time and memory. The EPRead routine is
defined as Sub EPRead(In Address, Out Data).

Many older sections of code use #NR at the end of the line where the parameters are specified. The #NR
means "No Return", and when used has the same effect as adding In before every parameter. Use of #NR
is not recommended, as it does not give the same level of control.

Using different data types for parameters

It is possible to use any type of variable a as parameter for a subroutine. Just add As and then the data
type to the end of the parameter name. For example, to make all of the parameters for the MoveArm
subroutine word variables, use this code:

 sub MoveArm(ArmX As Word, ArmY As Word, ArmZ As Word)
 ...
 end sub

Optional parameters

Sometimes, the same value may be used over and over again for a parameter, except in a particular
case. If this occurs, a default value may be specified for the parameter, and then a value for that
parameter only needs to be given in a call if it is different to the default.

98

For example, suppose a subroutine to create an error beep is required. Normally it emits ! 440 Hz tone,
but sometimes a different tone is required. To create the sub, this code would be use:

 Sub ErrorBeep(Optional OutTone As Word = 440)
 Tone OutTone, 100
 End Sub

Note the Optional before the parameter, and the = 440 after it. This tells GCBASIC that if no parameter
is supplied, then set the OutTone parameter to 440.

If called using this line:

 ErrorBeep

then a 440 Hz beep will be emitted. If called using this line:

 ErrorBeep 1000

then the sub will produce a 1000 Hz tone.

When using several parameters, it is possible to make any number of them optional. If the optional
parameter/s are at the end of the call, then no value needs to be specified. If they are at the start or in
the middle, then you must insert commas to allow GCBASIC to tell where the optional parameters are.

Overloading

It is possible to have 2 subroutines with the same name, but different parameters. This is known as
overloading, and GCBASIC will automatically select the most appropriate subroutine for each call.

An example of this is the Print routine in the LCD routines. There are actually several Print
subroutines; for example, one has a byte parameter, one a word parameter, and one a string
parameter. If this command is used:

 Print 100

Then the Print (byte) subroutine will be called. However, if this command is used:

 Print 30112

Then the Print (word) subroutine will be called. If there is no exact match for a particular call,
GCBASIC will use the option that requires the least conversion of variable types. For example, if this

99

command is used:

 Print PORTB.0

The byte print will be used. This is because byte is the closest type to the single bit parameter.

See Also Functions, Exit

Converters
About Converters

Converters allow GCBASIC to read files that have been created by other programs. A converter can
convert these files into GCBASIC libraries or any GCBASIC instruction or a GCBASIC dataset.

A typical use case is when you have a data source file from another computer system and you want to
consume the data within your GCBASIC program. The data source file could be database, graphic,
reference data or music file. The converter will read these source files and convert them into a format
that can be processed by GCBASIC. The conversion process is completed by external application which
can be written by the developer or you can use one of the converters provided with the GCBASIC
release.

The GCBASIC release includes the converter for BMP files and standard Text files.

With an appropriate Converter installed, and an associated #include to these non-GCBASIC files,
GCBASIC will detect that the file extension and hand the processing to the external converting
program. When the external converting program had complete, GCBASIC will then continue with the
converted source file as a GCBASIC source file.

An example of a converter is to read an existing picture file, convert the picture file to a GCB table and
then refer to the picture file table to display the picture file on a GLCD.

Conversion is achieved by including a command within the source program to transform external
data. The command used is the instruction #include followed by the data source. An example:

 'Convert ManLooking.BMP to a GCBASIC usable format.

 #include <..\converters\ManLooking.BMP>

The inclusion of the #include line within a GCBASIC program will enable the commencement of the
following process:

1. GCBASIC will examine the ..\converters folder structure for a configuration file that will handle
the file extension specified in the include statement.

100

2. GCBASIC will examine the configuration file(s) *.INI for command line instructions.

3. GCBASIC will at stage examine the folder structure for the source file and the target transformed
file. If the source file is older than the transformed file the next step will not be executed, goto step
6.

4. GCBASIC will execute the command as specified within the configuration file to transform the
source file to the target file.

The Conversion program must create the output file extension as specified in the configuration file.
If the include statement as an extension of .TXT and the configuration files states the input file
extension as .TXT and the output as .GCB the converted file must have the extension of .GCB.

#include <..\converters\ManLooking.BMP>

Init file is input file as BMP and output as GCB, then the file expected is
..\converters\ManLooking.GCB

5. GCBASIC will attempt to include the transformed target file (with the file extension as specified in
the configuration file) within the GCBASIC program.

6. GCBASIC will resume normal processing of the GCBASIC program including the transformed target
file, therefore, with normal compiling and errors handling.

For example programs see here.

More about Converters

1. The configuration file

The configuration file MUST have the extension of .INI. No leading spaces are permitted in the
configuration file. Specification of the configuration file. The file has four items: desc, in, out and
exe. Where:

desc : Is the description shown in GCGB
in : Is the source file extension to be transformed
out : Is the target transformed file extension.
exe : Is the executable to be run for this specific configuration file.
params : Optional, is the required parameter to be passed from the compiler.
Example: params = %filename% %chipmodel%
deletetarget : Optional, will always recreate the target transformed file. The default
is to retain the target transformed file unless source has changed. Options are Y or N

You can have multiple configuration files within the ..\converters folder structure.

GCBASIC will examine all configuration file to match the extension as specified in the #include
command.

101

Example 1 :

BMP (Black and White) conversion configuration file is called BMP2GCBasic.ini. The source
extension is .bmp, the transformed file extension is .GCB, and the executable is called
BMP2GCBASIC.exe.

desc = BMP file (*.bmp)
in = bmp
out = GCB
exe = BMP2GCBASIC .exe

An example :

#include <..\converters\ManLooking.BMP>

Will be converted by the BMP2GCBASIC .EXE to ..\converters\ManLooking.GCB

Example 2 :

Data file conversion configuration file is called TXT2GCB.ini. The source extension is .TXT, the
transformed file extension is .GCB, and the command line called AWKRUN.BAT .

desc = Infrared Patterns (*.txt)
in = txt
out = GCB
exe = awkrun.bat

An example :

#include <..\converters\InfraRedPatterns.TXT>

Will be converted by the AWKRUN.BAT to ..\converters\ InfraRedPatterns.GCB

The example would require a supporting batch file and a script process to complete the
transformation.

2. Conversion Executable

The conversion executable may be written in any language (compiled or interpreted).

102

The conversion executable MUST create the converted file with the correct file extension as
specified in the configuration file.

The conversion executable will be passed one parameter - the source file name. Using example #1
the conversion executable would be passed ..\converters\ManLooking.BMP

The conversion executable MUST create a GCBASIC compatible source file. Any valid
commands/instruction are permitted.

3. Installation

The INI file, the source file and the conversion executable MUST be located in the ..\converters
folder. The converters folder is relative to the GCBASIC.EXE compiler folder.

Example 3 : Converter Program

This program converts the InfraRedPatterns.TXT into InfraRedPatterns.GCB that will have a
GCBASIC table called DataSource. This example is located in the converter folder of the GCBASIC
installation.

 #chip16f877a, 16
 #include <..\converters\InfraRedPatterns.TXT>

 dir portb out

 ' These must be WORDs as this could be large table.
 dim TableReadPosition, TableLen as word

 dir portb out

 ' Read the table length
 TableReadPosition = 0
 ReadTable DataSource, TableReadPosition, TableLen

 Do Forever
 For TableReadPosition = 1 to TableLen step 2
 ReadTable DataSource, TableReadPosition, TransmissionPattern
 ReadTable DataSource, TableReadPosition+1 , PulseDelay
 portb = TransmissionPattern
 wait PulseDelay ms
 next
 Loop

Example 4 : Dynamic Import

103

This program converts a chip specific configuration file into manifest.GCB that will have a GCBASIC
functions called DataIn and DataOut. This example is located in the converter folder of the GCBASIC
installation.

 #chip 16f18326

 #include <..\converters\manifest.mcc>

 DataOut (TX, RA0) 'this method is created during the convert process. They do
not exist withiut the converter.
 DataIn (Rx, RC6) 'this method is created during the convert process. They do
not exist withiut the converter.

This example would use the optional parameters of params and deletetarget in the converter
configuration file as follows:

 desc = PPS file (*.PPS)
 params = %filename% %chipmodel%
 in = mcc
 out = GCB
 exe = DataHandler.exe
 deletetarget= y

Example 5 : Add build numbers and time/date details to your programs

This converter is used to expose two string variables as follows:

 GCBBuildStr
 GCBBuildTimeStr

The user code is simple. Using the #include statement specify any filename with an extension must be
cnt. As follows:

 #include "GCBVersionNumber.cnt"

Complete code would like this - this not optimised - this shows the use of the exposed strings.

104

 #include "GCBVersionNumber.cnt"

 dim versionString as string * 40
 versionString = "Max7219 build"+GCBBuildStr
 versionString = versionString + "@"+GCBBuildTimeStr
 Print versionString

This outputs the following - where #20 is the current build and the date/time is correct for build time.

 Max7219 build20@01-06-2021 08:00:21
 Commence main program

This works as the support INI file instructs the compiler to call a utility that automatically creates a
build number tracker file and the supportting string functions. The utility creates a tracker file and the
methods files in the same folder as your source program - so, each tracker is specific to each project.
The converter requires the following files - these are included within your Installation.

 GCBVersionStamp.exe - the utility called by the converter capability.
 cnt2gcb.ini - the supporting ini file used by the compiler to handle this converter.

105

Command References

106

Analog/Digital conversion
This is the Analog/Digital conversion section of the Help file. Please refer the sub-sections for details
using the contents/folder view.

Analog/Digital Conversion Overview

About Analog to Digital Conversion

The analog to digital converter (ADC or A/D) module support is implemented by GCBASIC to provide 8-
bit, 10-bit and 12-bit Single channel measurement mode and Differential Channel Measurement mode.

GCBASIC configures the analog to digital converter clock source, the programmed acquisition time and
justification of the response byte, word or integer (as defined in the GCBASIC method).

Normal or Single channel measurement mode

The Single channel measurement mode is the default method for reading the ADC port. The positive
input is attached to suitable device (a light sensor or adjustable resistor) and the command ReadADC,
ReadADC10, ReadADC12 with return a byte, word or word value respectively.

The A/D module on most microcontrollers only supports single-ended mode. Single channel mode uses
a single A/D port and the returned Value represents the difference between the voltage on the analog
pin and a fixed negative reference which is usually ground or Vss.

The syntax for single-ended A/D is Returned_Value = ReadAD(Port)

Example

 Print ReadAD10(AN3)

Differential channel measurement mode

107

Some of the in the Microchip PIC family of devices also support differential analog to digital
conversion. With differential conversion, the differential voltage between two channels is measured
and converted to a digital value. The returned value can be either positive or negative (therefore an
integer value).

When configured to differential channel measurement mode, the positive channel is connected to the
defined positive analog pin (ANx), and the negative channel is connected to the defined negative
analog pin. These two pins are internally connected (within the microcontroller) to a unity gain
differential amplifier and once the amplifier has completed the comparison the result is returned as an
integer.

The positive channel Input is selected using the CHSx bits and the negative channel input is selected
using the CHSNx bits. These bits are managed by GCBASIC. The programmer only needs to supply the
correct analog pin designators in the ReadADx commands.

The 12-bit returned result is available on the ADRESH and ADRESL registers which is returned by the
GCBASIC methods as an integer variable.

Some Microchip PIC microcontrollers have differential A/D modules and support differential Mode as
well as 12-Bit A/D. With DIfferential mode the returned value can be either a positive or negative
number that represents the voltage differential between the two A/D ports.

The syntax for differential A/D is ReadAD(PositiveANPort , NegativeANPort). Note: if "negative port"
is omitted readAd() will perform a single-ended read on the positive AN port.

Example

 Print ReadAD12(AN3, An4)

108

Using Voltage Reference

Voltage references come in many forms and offer different features across the PICs, AVR and LGTs
microcontrollers. But, in the end, accuracy and stability are a voltage reference’s most important
features, as the main purpose of the reference is to provide a known output voltage. Variation from
this known value is an error. Therefore, it is useful to use the internal voltage reference provided
within the microcontroller.

To use a voltage reference source for ADC operation sett the AD_REF_SOURCE constant to your chosen
source. The defaults to the VCC pin, and there for the constant is set by default to AD_REF_AVCC. The
voltage reference is specific to the microcontroller but the options are as follows:

AD_REF_SOURCEConstant Reference Voltage

AD_REF_AVCC VCC supplied Voltage

AD_REF_1024 1.024v internal reference source

AD_REF_2048 2.048v internal reference source

AD_REF_4096 4.096v internal reference source

AD_REF_AREF Extenal voltage reference source

AD_REF_256 AD_REF_256 for ATMegas

Optimising GCBASIC Code

GCBASIC supports a wide range of A/D modules and the supporting library addresses up to 34
channels. To reduce the size of the code produced you can define which channels are specifically
supported. See Optimising ADC code for more details.

See also ReadAD, ReadAD10 and ReadAD12

For the latest Microchip PIC microcontrollers that support Differential and 12-bit A/D please refer to
Microchip MAPS or the microcontrollers datasheet.

ADFormat (Deprecated - Do not use)

Syntax:

ADFormat (Format_Left | Format_Right)

Command Availability:

Available only on Microchip PIC microcontrollers.

Explanation:

109

Left justified means 8 bits in the high byte, 2 in the low. Right justified means 2 in the high byte, and
the remaining 8 in the low byte. It’s only supported on Microchip PIC microcontrollers.

ADOff

This command is obsolete. There should be no need to call it. GCBASIC will automatically disable the
A/D converter and set all pins to digital mode when starting the program, and after every use of the
ReadAD function.

It is recommended that this command be removed from all programs.

ReadAD

Syntax:

For a normal (also called a Single Channel) read use.

 byte_variable = ReadAD(ANX)

For a Differential Channel read use the following. Where ANpX is the positive port, and ANnY is the
negative port.

 byte_variable = ReadAD(ANpX , ANnY)

To obtain a byte value from an AD Channel use the following to force an 8 bit AD Channel to respond
with a byte value [0 to 255].

 byte_variable = ReadAD(ANX , TRUE)

Command Availability:

When using ReadAD (ANx) the returned value is an 8 bit number [0- 255]. The byte variable assigned
by the function can be a byte, word, integer or long.

When using ReadAD (ANpX , ANnY) the returned value is an integer, as negative values can be
returned.

When using ReadAD (ANpX , TRUE) the returned value is an integer, but you should treat as a byte.

ReadAD is a function that can be used to read the built-in analog to digital converter that many
microcontroller chips include. port should be specified as AN0, AN1, AN2, etc., up to the number of
analog inputs available on the chip that is in use. Those familiar with Atmel AVR microcontrollers can
also refer to the ports as ADC0, ADC1, etc. Refer to the datasheet for the microcontroller chip to find
the number of ports available. (Note: it’s perfectly acceptable to use ANx on AVR, or ADCx on the

110

microcontroller)

Other functions that are similar are ReadAD10 and ReadAD12. See the relevant Help page for the
specific usage of each function.

The constant AD_Delay controls is the acquisition delay. The default value is 20 us. This can be
changed by adding the following constant.

 #define AD_Delay 2 10us

ADSpeed controls the source of the clock for the ADC module. It varies from one chip to another.
InternalClock is a Microchip PIC microcontroller only option that will drive the ADC from an internal
RC oscillator. The default value is 128.

Using ADSPEED

 'default value
 #define ADSpeed MediumSpeed

 'pre-defined constants
 #define HighSpeed 255
 #define MediumSpeed 128
 #define LowSpeed 0

AD_VREF_DELAY controls the charging time for VRef capacitor on Atmel AVR microcontrollers
only. This therefore controls the charge from internal VRef. ReadAD will not be accurate for internal
reference without this.

AD_Acquisition_Time_Select_bits also controls the Acquisition Time Select bits. Acquisition time is
the duration that the AD charge holding capacitor remains connected to AD channel from the instant
the read is commenced is set until conversions begins.

The default value of AD_Acquisition_Time_Select_bits is 0b100 or decimal 4, where all three ACQT bits
will be set. To change use the following.

 'change the default value
 #define AD_Acquisition_Time_Select_bits 0b001 'this will only set ACQT bit 0, ACQT
bits 1 and 2 will be cleared.

Example 1

This example reads the ADC port and writes the output to the EEPROM.

111

 #chip 16F819, 8

 'Set the input pin direction
 Dir PORTA.0 In

 'Loop to take readings until the EEPROM is full
 For CurrentAddress = 0 to 255

 'Take a reading and log it
 EPWrite CurrentAddress, ReadAD(AN0)

 'Wait 10 minutes before getting another reading
 Wait 10 min
 Next

Example 2

This example reads the ADC port and writes the output to the EEPROM. The output value will be in the
range of [0-255].

 #chip 16F1789, 8

 'Set the input pin direction
 Dir PORTA.0 In

 'Loop to take readings until the EEPROM is full
 For CurrentAddress = 0 to 255

 'Take a reading and log it
 EPWrite CurrentAddress, ReadAD(AN0, TRUE)

 'Wait 10 minutes before getting another reading
 Wait 10 min
 Next

Example 3

This example used the diffential capabilities of ADC port and writes the output to the EEPROM. The
output value will be in the range of [-255 to 255].

AN0 and AN2 are used for the diffential ADC reading.

112

 #chip 16F1789, 8

 'Set the input pin direction
 Dir PORTA.0 In
 Dir PORTA.2 In

 'Loop to take readings until the EEPROM is full
 For CurrentAddress = 0 to 255

 'Take a reading and log it
 EPWrite CurrentAddress, ReadAD(AN0, AN2)

 'Wait 10 minutes before getting another reading
 Wait 10 min
 Next

See Also ReadAD10, ReadAD12

ReadAD10

Syntax:

For a normal (also called a Single Channel) read use.

 word_variable = ReadAD10(ANX)

For a Differential Channel read use the following. Where ANpX is the positive port, and ANnY is the
negative port.

 integer_variable = ReadAD10(ANpX , ANnY)

To obtain a 10-bit value from an AD Channel use the following to force a 10 bit AD Channel to respond
with the correct value, in terms of the range [0 to 1023]

 integer_variable = ReadAD10(ANX , TRUE)

Command Availability:

ReadAD10 is a function that can be used to read the built-in analog to digital converter that many
microcontroller chips include. The port should be specified as AN0, AN1, AN2, etc., up to the number
of analog inputs available on the chip that is in use. Those familiar with Atmel AVR microcontrollers

113

can also refer to the ports as ADC0, ADC1, etc. Refer to the datasheet for the microcontroller chip to
find the number of ports available. (Note: it’s perfectly acceptable to use ANx on AVR, or ADCx on the
microcontroller.)

When using ReadAD10 (ANX) the returned value is the full range of the ADC module. Therefore, the
method will return an 8 bit value [0-255], or an 10 bit value [0-1023] or an 12 bit value [0-4095]. This is
dependent on the microcontrollers capabilities. For a 10 bit value [0-1023] always to be returned use
user_variable = ReadAD10(ANX , TRUE). The user variable can be a byte, word, integer or long but
typically a word is recommnended.

When using ReadAD10 (ANpX , ANnY), for differential ADC reading, the returned value is an integer
as negative values will be returned.

When using ReadAD10 (ANpX , TRUE), to force a 10 bit ADC reading, the returned value is an integer.

Other functions that are similar are ReadAD and ReadAD12. See the relevant Help page for the
specific usage of each function.

AD_Delay controls is the acquisition delay. The default value is 20 us. This can be changed to a longer
acquisition delay by adding the following constant.

 #define AD_Delay 4 10us

ADSpeed(controls the source of the clock for the ADC module. It varies from one chip to another.
InternalClock is a microcontroller only option that will drive the ADC from an internal RC
oscillator. The default value is 128.

 'default value
 #define ADSpeed MediumSpeed

 'pre-defined constants
 #define HighSpeed 255
 #define MediumSpeed 128
 #define LowSpeed 0

AD_Acquisition_Time_Select_bits also controls the Acquisition Time Select bits. Acquisition time is
the duration that the AD charge holding capacitor remains connected to AD channel from the instant
the read is commenced is set until conversions begins.

The default value of AD_Acquisition_Time_Select_bits is 0b100 or decimal 4, where all three ACQT bits
will be set. To change use the following.

114

 'change the default value
 #define AD_Acquisition_Time_Select_bits 0b001 'this will only set ACQT bit 0, ACQT
bits 1 and 2 will be cleared.

Example 1 - Read 10-bit ADC

 #chip 16F819, 8

 'Set the input pin direction
 Dir PORTA.0 In

 'Print 255 reading
 For CurrentAddress = 0 to 255

 'Take a reading and show it
 Print str(ReadAD10(AN0))

 'Wait 10 minutes before getting another reading
 Wait 10 min
 Next

Example 2 - Reading Reference Voltages:

When selecting the reference source for ADC on ATmega328 GCBASIC will overwrite anything that you
put into te ADMUX register - but this option allow you change the ADC reference source on Atmel AVR
microcontrollers. You can set the AD_REF_SOURCE constant to whatever you want to use. It defaults
to the VCC pin, as example you can set the Atmel AVR to use the 1.1V reference with this: #define
AD_REF_SOURCE AD_REF_256 where 256 refers to the 2.56V reference on some older AVRs, but the
same code will select the 1.1V reference on an ATmega328p

 ' Dynamically switching reference.
 #define AD_REF_SOURCE ADRefSource
 #define AD_VREF_DELAY 5 ms
 AdRefSource = AD_REF_AVCC
 HSerPrint ReadAD10(AN1)
 HSerPrint ", "
 AdRefSource = AD_REF_256
 HSerPrint ReadAD10(AN1)

The example above sets the AD_REF_SOURCE to a variable, and then changes the value of the variable
to select the source. With this approach, we also need to allow time to charge the reference capacitor
to the correct voltage.

115

Example 3 - Read 10-bit ADC forcing a 10-bit value to be returned

 #chip 16F1789, 8

 'Set the input pin direction
 Dir PORTA.0 In

 'Print 255 reading
 For CurrentAddress = 0 to 255

 'Take a reading and show it
 Print str(ReadAD10(AN0), TRUE)

 'Wait 10 minutes before getting another reading
 Wait 10 min
 Next

Example 4

This example used the diffential capabilities of ADC port and writes the output to the EEPROM. The
output value will be in the range of [-1023 to 1023].

AN0 and AN2 are used for the diffential ADC reading.

116

 #chip 16F1789, 8

 'USART settings
 #define USART_BAUD_RATE 9600 'Initializes USART port with 9600 baud
 #define USART_TX_BLOCKING ' wait for tx register to be empty
 wait 100 ms

 'Set the input pin direction
 Dir PORTA.0 In
 Dir PORTA.2 In

 'Loop to take readings until the EEPROM is full
 For CurrentAddress = 0 to 255

 'Take a reading and log it
 HSerPrint ReadAD10(AN0, AN2)
 HserPrintCRLF
 'Wait 10 minutes before getting another reading
 Wait 10 min

 Next

See Also ReadAD, ReadAD12

ReadAD12

Syntax:

For a normal (also called a Single Channel) read use.

 user_variable = ReadAD12(ANX)

For a Differential Channel read use the following. Where ANpX is the positive port, and ANnY is the
negative port.

 user_variable = ReadAD12(ANpX , ANnY)

To obtain a 12-bit value from an AD Channel use the following to force a 12 bit AD Channel to respond
with the correct value, in terms of the range of [0 to 4095]

 user_variable = ReadAD12(ANX , TRUE)

Command Availability:

117

When using ReadAD12 (ANX) the returned value is an 12 bit number [0-4095]. The user variable can
be a word, integer or long.

When using ReadAD12 (ANpX , ANnY) the returned value is an integer as negative values can be
returned.

ReadAD12 is a function that can be used to read the built-in analog to digital converter that many
microcontroller chips include. Port should be specified as AN0, AN1, AN2, etc., up to the number of
analog inputs available on the chip that is in use. Those familiar with Atmel AVR microcontrollers can
also refer to the ports as ADC0, ADC1, etc. Refer to the datasheet for the microcontroller chip to find
the number of ports available. (Note: it’s perfectly acceptable to use ANx on AVR, or ADCx on the
microcontroller.)

Other functions that are similar are ReadAD and ReadAD10. See the relevant Help page for the
specific usage of each function.

AD_Delay controls is the acquisition delay. The default value is 20 us. This can be changed to a longer
acquisition delay by adding the following constant.

 #define AD_Delay 4 10us

ADSpeed(controls the source of the clock for the ADC module. It varies from one microcontroller to
another. InternalClock is a Microchip PIC microcontroller only option that will drive the ADC from an
internal RC oscillator. The default value is 128.

 'default value
 #define ADSpeed MediumSpeed

 'pre-defined constants
 #define HighSpeed 255
 #define MediumSpeed 128
 #define LowSpeed 0

AD_Acquisition_Time_Select_bits also controls the Acquisition Time Select bits. Acquisition time is
the duration that the AD charge holding capacitor remains connected to AD channel from the instant
the read is commenced is set until conversions begins.

The default value of AD_Acquisition_Time_Select_bits is 0b100 or decimal 4, where all three ACQT bits
will be set. To change use the following.

118

 'change the default value
 #define AD_Acquisition_Time_Select_bits 0b001 'this will only set ACQT bit 0, ACQT
bits 1 and 2 will be cleared.

Example 1 - Read 12-bit ADC

 #chip 16F1788, 8

 'Set the input pin direction
 Dir PORTA.0 In

 'Print 255 readings
 For CurrentAddress = 0 to 255

 'Take a reading and show it
 Print str(ReadAD12(AN0))

 'Wait 10 minutes before getting another reading
 Wait 10 min
 Next

Example 2 - Force a 12-bit value to be returned

 #chip 16F1788, 8

 'Set the input pin direction
 Dir PORTA.0 In

 'Print 255 readings
 For CurrentAddress = 0 to 255

 'Take a reading and show it
 Print str(ReadAD12(AN0), TRUE)

 'Wait 10 minutes before getting another reading
 Wait 10 min
 Next

Example 3

This example used the diffential capabilities of ADC port and writes the output to the EEPROM. The

119

output value will be in the range of [-4095 to 4095].

AN0 and AN2 are used for the diffential ADC reading.

 #chip 16F1789, 8

 'USART settings
 #define USART_BAUD_RATE 9600 'Initializes USART port with 9600 baud
 #define USART_TX_BLOCKING ' wait for tx register to be empty
 wait 100 ms

 'Set the input pin direction
 Dir PORTA.0 In
 Dir PORTA.2 In

 'Loop to take readings until the EEPROM is full
 For CurrentAddress = 0 to 255

 'Take a reading and log it
 HSerPrint ReadAD12(AN0, AN2)
 HserPrintCRLF
 'Wait 10 minutes before getting another reading
 Wait 10 min

 Next

See Also ReadAD, ReadAD10

Analog/Digital Conversion Code Optimisation

About Analog/Digital Conversion Code Optimisation

The analog to digital converter (ADC or A/D) module support is implemented by GCBASIC to provide 8-
bit, 10-bit and 12-bit Single channel measurement mode and Differential Channel Measurement with
support up to 34 channels. For compatibility all channels are supported.

There are two methods to optimise the code.

1. To mimise the code, use the contstants to disable support for a specfic channels

2. To adapt the ADC configuration by inserting specfic commands to set registers or register bits.

1. Minimise the code

The example below would disable support for ADC port 0 (AD0).

120

 #define USE_AD0 FALSE

The following tables show the #defines that can be used to reduce the code size - these are the defines
for the standard microcontrollers. For 16f1688x and similar microcontrollers please see the second
table.

Channe
l

Optimisation
Value

Default
Value

USE_AD0 FALSE TRUE

USE_AD1 FALSE TRUE

USE_AD2 FALSE TRUE

USE_AD3 FALSE TRUE

USE_AD4 FALSE TRUE

USE_AD5 FALSE TRUE

USE_AD6 FALSE TRUE

USE_AD7 FALSE TRUE

USE_AD8 FALSE TRUE

USE_AD9 FALSE TRUE

USE_AD10 FALSE TRUE

USE_AD11 FALSE TRUE

USE_AD12 FALSE TRUE

USE_AD13 FALSE TRUE

USE_AD14 FALSE TRUE

USE_AD15 FALSE TRUE

USE_AD16 FALSE TRUE

USE_AD17 FALSE TRUE

USE_AD18 FALSE TRUE

USE_AD19 FALSE TRUE

USE_AD20 FALSE TRUE

USE_AD21 FALSE TRUE

USE_AD22 FALSE TRUE

USE_AD23 FALSE TRUE

USE_AD24 FALSE TRUE

USE_AD25 FALSE TRUE

USE_AD26 FALSE TRUE

121

Channe
l

Optimisation
Value

Default
Value

USE_AD27 FALSE TRUE

USE_AD28 FALSE TRUE

USE_AD29 FALSE TRUE

USE_AD30 FALSE TRUE

USE_AD31 FALSE TRUE

USE_AD32 FALSE TRUE

USE_AD33 FALSE TRUE

USE_AD34 FALSE TRUE

For 16f1688x devices see the table below.

Channe
l

Optimisation
Value

Default
Value

USE_ADA0 FALSE TRUE

USE_ADA1 FALSE TRUE

USE_ADA2 FALSE TRUE

USE_ADA3 FALSE TRUE

USE_ADA4 FALSE TRUE

USE_ADA5 FALSE TRUE

USE_ADA6 FALSE TRUE

USE_ADA7 FALSE TRUE

USE_ADC0 FALSE TRUE

USE_ADC1 FALSE TRUE

USE_ADC2 FALSE TRUE

USE_ADC3 FALSE TRUE

USE_ADC4 FALSE TRUE

USE_ADC5 FALSE TRUE

USE_ADC6 FALSE TRUE

USE_ADC7 FALSE TRUE

USE_ADD0 FALSE TRUE

USE_ADD1 FALSE TRUE

USE_ADD2 FALSE TRUE

USE_ADD3 FALSE TRUE

122

Channe
l

Optimisation
Value

Default
Value

USE_ADD4 FALSE TRUE

USE_ADD5 FALSE TRUE

USE_ADD6 FALSE TRUE

USE_ADD7 FALSE TRUE

USE_ADE0 FALSE TRUE

USE_ADE1 FALSE TRUE

USE_ADE2 FALSE TRUE

This is a example - disables every channel except the specified channel by defining every channel
except USE_AD0 as FALSE.

This will save 146 bytes of program memory.

 #chip 16F1939

 'USART settings
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Set the input pin direction
 Dir PORTA.0 In

 'Print 255 reading
 For CurrentAddress = 0 to 255

 'Take a reading and show it
 HSerPrint str(ReadAD10(AN0))

 'Wait 10 minutes before getting another reading
 Wait 10 min
 Next

 #define USE_AD0 TRUE
 #define USE_AD1 FALSE
 #define USE_AD2 FALSE
 #define USE_AD2 FALSE
 #define USE_AD3 FALSE
 #define USE_AD4 FALSE
 #define USE_AD5 FALSE
 #define USE_AD6 FALSE
 #define USE_AD7 FALSE
 #define USE_AD8 FALSE

123

 #define USE_AD9 FALSE
 #define USE_AD10 FALSE
 #define USE_AD11 FALSE
 #define USE_AD12 FALSE
 #define USE_AD13 FALSE
 #define USE_AD14 FALSE
 #define USE_AD15 FALSE
 #define USE_AD16 FALSE
 #define USE_AD17 FALSE
 #define USE_AD18 FALSE
 #define USE_AD19 FALSE
 #define USE_AD20 FALSE
 #define USE_AD21 FALSE
 #define USE_AD22 FALSE
 #define USE_AD23 FALSE
 #define USE_AD24 FALSE
 #define USE_AD25 FALSE
 #define USE_AD26 FALSE
 #define USE_AD27 FALSE
 #define USE_AD28 FALSE
 #define USE_AD29 FALSE
 #define USE_AD30 FALSE
 #define USE_AD31 FALSE
 #define USE_AD32 FALSE
 #define USE_AD33 FALSE
 #define USE_AD34 FALSE

For 16f18855 family of microcontrollers this is a example. This will save 149 bytes of program
memory.

 ''' PIC: 16F18855
 ''' Compiler: GCB
 ''' IDE: GCode
 '''
 ''' Board: Xpress Evaluation Board
 ''' Date: 13.3.2021
 '''

 'Chip Settings.
 #CHIP 16F18855,32
 #CONFIG MCLRE_ON
 #OPTION EXPLICIT

 '' -------------------LATA-----------------
 '' Bit#: -7---6---5---4---3---2---1---0---
 '' LED: ---------------|D5 |D4 |D3 |D1 |-

124

 ''---
 ''

 #define USART_BAUD_RATE 19200
 #define USART_TX_BLOCKING

 #define LEDD2 PORTA.0
 #define LEDD3 PORTA.1
 #define LEDD4 PORTA.2
 #define LEDD5 PORTA.3
 Dir LEDD2 OUT
 Dir LEDD3 OUT
 Dir LEDD4 OUT
 Dir LEDD5 OUT

 #define SWITCH_DOWN 0
 #define SWITCH_UP 1

 #define SWITCH PORTA.5

 'Setup an Interrupt event when porta.5 goes negative.
 IOCAN5 = 1
 On Interrupt PORTABChange Call InterruptHandler

 do

 'Read the value from the EEPROM from register Zero in the EEPROM
 EPRead (0, OutValue)

 'Leave the Top Bytes alone and set the lower four bits
 PortA = (PortA & 0XF0) OR (OutValue / 16)
 Sleep

 loop

 sub InterruptHandler

 if IOCAF5 = 1 then 'S2 was just pressed
 IOCAN5 = 0 'Prevent the event from reentering the
InterruptHandler routine
 IOCAF5 = 0 'We must clear the flag in software

 wait 5 ms 'debounce by waiting and seeing if
still held down
 if (SWITCH = SWITCH_DOWN) then
 'Read the ADC

125

 adc_value = readad (AN4)
 'Write the value to register Zero in the EEPROM
 EPWrite (0, adc_value)
 end if
 IOCAN5 = 1 'ReEnable the InterruptHandler
routine

 end if

 end sub

 #define USE_ADA0 FALSE
 #define USE_ADA1 FALSE
 #define USE_ADA2 FALSE
 #define USE_ADA3 FALSE
 #define USE_ADA4 TRUE
 #define USE_ADA5 FALSE
 #define USE_ADA6 FALSE
 #define USE_ADA7 FALSE
 #define USE_ADB0 FALSE
 #define USE_ADB1 FALSE
 #define USE_ADB2 FALSE
 #define USE_ADB3 FALSE
 #define USE_ADB4 FALSE
 #define USE_ADB5 FALSE
 #define USE_ADB6 FALSE
 #define USE_ADB7 FALSE
 #define USE_ADC0 FALSE
 #define USE_ADC1 FALSE
 #define USE_ADC2 FALSE
 #define USE_ADC3 FALSE
 #define USE_ADC4 FALSE
 #define USE_ADC5 FALSE
 #define USE_ADC6 FALSE
 #define USE_ADC7 FALSE
 #define USE_ADD0 FALSE
 #define USE_ADD1 FALSE
 #define USE_ADD2 FALSE
 #define USE_ADD3 FALSE
 #define USE_ADD4 FALSE
 #define USE_ADD5 FALSE
 #define USE_ADD6 FALSE
 #define USE_ADD7 FALSE
 #define USE_ADE0 FALSE
 #define USE_ADE1 FALSE
 #define USE_ADE2 FALSE

126

2. Adapt the ADC configuration

Example 1:

The following example will set the specific register bits. The instruction will be added to the compiled
code.

 #define ADReadPreReadCommand ADCON.2=0:ANSELA.0=1

The constant ADReadPreReadCommand can be used to adapt the ADC methods. The constant can
enable registers or register bit(s) that are required to managed for a specfic solution.

In the example above the following ASM will be added to your code. This WILL be added just before
the ADC is enabled and the setting of the acquisition delay.

 ;ADReadPreReadCommand
 banksel ADCON
 bcf ADCON,2
 banksel ANSELA
 bsf ANSELA,0

Example 2:

The following example can be used to change the ADMUX to support a sensor on ADC4.

This supports reading the internal temperature sensor on the ATTINY85. This method will work on
other similar chips. Please refer the chip specific datasheet.

This will call a macro to change the ADMUX to read the ATTINY85 internal temperature sensor, set the
reference voltage to 1v1 and then wait 100 ms.

127

 #define ADREADPREREADCOMMAND ATTINY85ReadInternalTemperatureSensor

 Macro ATTINY85ReadInternalTemperatureSensor
 /*
 17.12 of the datasheet
 The temperature measurement is based on an on-chip temperature sensor that is coupled
to a single ended ADC4
 channel. Selecting the ADC4 channel by writing the MUX[3:0] bits in ADMUX register to
�1111� enables the temperature sensor. The internal 1.1V reference must also be
selected for the ADC reference source in the
 temperature sensor measurement. When the temperature sensor is enabled, the ADC
converter can be used in
 single conversion mode to measure the voltage over the temperature sensor.
 The measured voltage has a linear relationship to the temperature as described in
Table 17-2 The sensitivity is
 approximately 1 LSB / ?C and the accuracy depends on the method of user calibration.
Typically, the measurement
 accuracy after a single temperature calibration is ±10?C, assuming calibration at
room temperature. Better
 accuracies are achieved by using two temperature points for calibration.
 */
 IF ADReadPort=4 then
 ADMUX = (ADMUX and 0X20) or 0X8F
 wait 100 ms
 End if

 End Macro

This will generate the following ASM.

 ;ADREADPREREADCOMMAND 'adds user code below
 lds SysCalcTempA,ADREADPORT
 cpi SysCalcTempA,4
 brne ENDIF2
 ldi SysTemp2,32
 in SysTemp3,ADMUX
 and SysTemp3,SysTemp2
 mov SysTemp1,SysTemp3
 ldi SysTemp2,143
 or SysTemp1,SysTemp2
 out ADMUX,SysTemp1
 ldi SysWaitTempMS,100
 ldi SysWaitTempMS_H,0
 rcall Delay_MS
 ENDIF2:

128

Bitwise
This is the Bitwise section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Bitwise Operations Overview

About Bitwise Operations

GCBASIC (as with most other microcontroller programming languages) supports bitwise operations.

Bitwise operations are performed on one or more bit patterns at the level of their individual bits.

GCBASIC supports the following methods.

Method Meaning

Set Assigns a Bit value of On or Off

SetWith Evaluates an expression and assigns the result

FnLSL Performs a Bitwise LEFT shift

FnLSR Performs a Bitwise RIGHT shift

Rotate Performs a rotation of a variable of one bit in a specified direction

For more help, see: Set, SetWith, FnLSL, FnLSR and Rotate

FnLSL

Syntax:

 BitsOut = FnLSL(BitsIn, NumBits)

Command Availability:

Available on all microcontrollers.

Explanation:

FnLSL (Logical Shift Left) will perform a Bitwise left shift. FnLSL will return BitsIn shifted NumBits to the
left, it is equivalent to the 'C' operation:

 BitsOut = BitsIn << NumBits

Each left shift is the equivalent of multiplying BitsIn by 2. BitsIn and NumBits may be may be a

129

variable and of type: Bit, Byte, Word, Long, Constant or another Function. Zeros are shifted in from the
right, Bits that are shifted out are lost.

It is useful for mathematical and logical operations, as well as creating serial data streams or
manipulating I/O ports.

Example:

 ' This program will shift the LEDs on the Microchip PIC Low Pin
 ' Count Demo Board from Right to Left, that is DS1(RC0) to
 ' DS4(RC3) and repeat

 #chip 16f690 ' declare the target Device

 #define LEDPORT PORTC ' LEDs on pins 16, 15, 14 and 7

 Dim LEDMask as Byte ' Pattern to be displayed
 LEDMask = 0b0001 ' Initialise the Patten
 Dir LEDPORT Out ' Enable the LED Port.

 Do
 LEDMask = FnLSL(LEDMask, 1) & 0x0F ' Mask the lower 4 bits
 if LEDPORT.3 then LEDMask.0 = 1 ' Restart the sequence
 LEDPORT = LEDMask ' Display the Pattern
 wait 500 ms
 Loop
 End

See Also Bitwise Operations Overview and Conditions

FnLSR

Syntax:

 BitsOut = FnLSR(BitsIn, NumBits)

Command Availability:

Available on all microcontrollers.

Explanation:

FnLSR (Logical Shift Right) will perform a Bitwise right shift. FnLSR will return BitsIn shifted NumBits to
the right, it is equivalent to the 'C' operation:

130

 BitsOut = BitsIn >> NumBits

Each right shift is the equivalent of dividing BitsIn by 2.

BitsIn and NumBits may be may be a variable and of type: Bit, Byte, Word, Long, Constant or another
Function.

Zeros are shifted in from the left, Bits that are shifted out are lost.

It is useful for mathematical and logical operations, as well as creating serial data streams or
manipulating I/O ports.

Example:

 ' This program will shift the LEDs on the Microchip PIC Low Pin Count Demo Board
 ' from Right to Left, that is DS4(RC3) to DS1(RC0) and repeat.

 #chip 16f690 ' declare the target Device

 #define LEDPORT PORTC ' LEDs on pins 16, 15, 14 and 7

 Dim LEDMask as Byte ' Pattern to be displayed
 LEDMask = 0b1000 ' Initialise the Patten
 Dir LEDPORT Out ' Enable the LED Port.

 Do
 LEDPORT = LEDMask ' Display the Pattern
 wait 500 ms
 LEDMask = FnLSR(LEDMask, 1) & 0x0F ' Mask the lower 4 bits
 if LEDPORT.0 then LEDMask.3 = 1 ' Restart the sequence
 Loop
 End

See Also Bitwise Operations Overview and Conditions

SetWith

Syntax:

 SetWith(TargetBit, Source)

Command Availability:

Available on all microcontrollers.

131

Explanation:

SetWith is an extended version of SET, it allows a Bit Field to be set or cleared by evaluating the content
of Source. SetWith should always be used when TargetBit is an I/O Bit and Source is a Function, in order
to avoid the possibility of I/O jitter.

Source may be a variable and of type: Bit, Byte, Word or Long, a Constant, an expression or a Function.

It will SET TargetBit to 1 if Source evaluates to anything other than zero. TargetBit will always be a 1
or a 0 regardless of the variable type of TargetBit.

Example:

 ' This program will reflect the state of SW1(RA3) on LED DS1(RC0) of the Microchip
 ' Low Pin Count Demo Board. Notice that because SW1 is normally High the state has to
 ' be inverted to turn on the LED (DS1) when SW1 is pressed.

 #chip 16f690 ' declare the target Device

 #Define SW1 PORTA.3
 #Define DS1 PORTC.0

 DIR DS1 Out
 DIR SW1 In

 Do
 ' set the Bit DS1 to equal the Bit SW1
 SetWith(DS1, !SW1)
 Loop
 END

See Also Bitwise Operations Overview and Conditions

132

Memory
This is the Memory section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

MCU EEPROM (DFM)

This is the EEPROM (PFM) section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

EPRead

Syntax:

 EPRead location, store

Command Availability:

Available on all Microchip PIC and Atmel AVR microcontrollers with EEPROM data memory.

Explanation:

EPRead is used to read information from the EEPROM data storage that many microcontroller chips are
equipped with. location represents the location to read data from, and varies from one chip to
another. store is the variable in which to store the data after it has been read from EEPROM.

Note Do not exceed the location (also known as the EEProm address) of the physical EEProm. If the
EEProm size is 256 ensure location is in the range of 0 to 255; If the EEProm size is 512 ensure location
is in the range of 0 to 511 and use a Word variable as the location parameter. Example:

Example:

133

 'Program to turn a light on and off
 'Will remember the last status

 #chip tiny2313, 1
 #define Button PORTB.0
 #define Light PORTB.1

 Dir Button In
 Dir Light Out

 'Load saved status
 EPRead 0, LightStatus

 If LightStatus = 0 Then
 Set Light Off
 Else
 Set Light On
 End If

 Do
 'Wait for the button to be pressed
 Wait While Button = On
 Wait While Button = Off
 'Toggle value, record
 LightStatus = !LightStatus
 EPWrite 0, LightStatus

 'Update light
 If LightStatus = 0 Then
 Set Light Off
 Else
 Set Light On
 End If
 Loop

For more help, see EPWrite

EPWrite

Syntax:

 EPWrite location, data

Command Availability:

134

Available on all Microchip PIC and Atmel AVR microcontrollers with EEPROM data memory.

Explanation:

EPWrite is used to write information to the EEPROM data storage, so that it can be accessed later by a
programmer on the PC, or by the EPRead command. location represents the location to write data to,
and the location varies from one chip to another. data is the data that is to be written to the EEPROM,
and can be a value or a variable.

NOTE

Do not exceed the location (also known as the EEProm address) of the physical
EEProm. If the EEProm size is 256 ensure location is in the range of 0 to 255; If the
EEProm size is 512 ensure location is in the range of 0 to 511 and use a Word variable
as the location parameter.

Example:

 #chip 16F819, 8

 'Set the input pin direction
 Dir PORTA.0 In

 'Loop to take readings until the EEPROM is full
 For CurrentAddress = 0 to 255

 'Take a reading and log it
 EPWrite CurrentAddress, ReadAD(AN0)

 'Wait 10 minutes before getting another reading
 Wait 10 min

 Next

For more help, see EPRead,Creating EEProm data from a Lookup Table

Dataset for EEPROM

Syntax:

 EEPROM DataSetName [[,]address]
 // multiples values, strings etc.
 0,1,2,3
 END EEPROM

Command Availability:

135

Available on all PIC microcontrollers with EEPROM memory. AVR support required use of AVR-ASM
assembler. GCASM does not support AVR EEPROM operations.

Explanation:

The EEPROM construct creates an EEPROM dataset for use with the specific microcontroller. An
EEPROM dataset is a list of values that are stored in the EEPROM memory of the microcontroller,
which then can be accessed using the EPREAD() command or other EEPROM read operations.

The advantage of an EEPROM dataset is that they are memory efficient being loaded directly into the
EEPROM during programming operations.

EEPROM datasets are defined as follows:

1. Byte values,

2. EEPROM addresses and EEPROM datasets CANNOT overlap,

3. EEPROM addresses must not overlap TABLE data,

4. TABLE data has precedence from address 0x00 until the the end of TABLE all data,

5. Strings must be expressed as ASCII byte value(s),

6. Multiple elements on a single line separated by commas,

7. Constants and calculations within the single line dataset entries are permitted,

8. Decimal values are NOT supported,

9. Access is via EPRread(), not supported by READTABLE().

10. 18F devices must use even address for EEPROM location, and, 18F will pad (with 0x00) datasets to
even number length. This is MPASM constraint and therefore the compiler and assembler will
isssue specific error messages for odd EEPROM locations.

Defining EEPROM datasets

Single data values

A single value on each line with in the dataset. The example dataset, shown below, has the data on
different line in within the set.

Simple example: This creates an EEPROM dataset at the first EEPROM location, then, the values of 12,
24, … 72 are the consecutive values.

136

 EEPROM EEDataSet
 12
 24
 36
 48
 60
 72
 End EEPROM

Multiple data values of the same line

The following example creates the EEPROM dataset at EEPROM offset address of 0x10.

Multiple elements on a single line separated by commas. The example dataset, shown below, has the
data separated by , and on different line in within the dataset.

 EEPROM EEDataSource 0x10
 12, 24, 36
 48, 60, 72
 End EEPROM

Data values as constants, and, with data transformation

Constants and calculations within the single line. The example dataset, shown below, uses a defined
constant to multiple the data with the dataset.

 #define calculation_constant 2

 EEPROM EEDataSource 0x20
 1 * calculation_constant
 2 * calculation_constant
 3 * calculation_constant
 8 * calculation_constant
 4 * calculation_constant
 5 * calculation_constant
 End EEPROM

Data values as Strings

Strings can be defined. Strings are delimited by double quotes. The following examples show the
methods.

137

Any ASCII characters between any two " " (double quotes) will be converted to dataset data. Also see
ASCII escape codes.

A source string can be one string per line or comma separated strings, therefore, on the same line.

Example:

 EEPROM Test_1
 "ABCDEFGHIJ"
 End EEPROM

ASCII Escape code

Accepted escape strings are shown in the dataset below.

Escape
sequence

Meaning

\a beep

\b backspace

\f formfeed

\l or \n newline

\r carriage return

\t tab

\0 Null value, equates to ASCII 0. Same as \&000

\&nnn ascii char in decimal

\\ backslash

\" double quote

\' single quote

Complete working example program

This example creates several EEPROM datasets. The example also create a lookup table. The EEPROM
dataset are addressed with the additional parameter to ensure there is no EEPROM dataset overlap.

 #chip 16F886
 #option explicit

 #DEFINE USART_BAUD_RATE 9600
 #DEFINE USART_TX_BLOCKING
 #DEFINE USART_DELAY OFF

138

 Dim EEdataaddress, myvar as Byte
 EEdataaddress = 2

 Readtable TwoBytes,EEdataaddress,myVar
 HSerPrint myVar

 // *********************** EXAMPLE EE DATA ************************
 // * THIS IS ONLY ACCESSIBLE VIA EPREAD or other EE read functions.
 /*
 Usage: EEProm EEPromBlockName [[,] OffSet Address]
 OffSet address defaults to 0x00 if not stated.

 Addresses and datasets CANNOT overlap.
 Addresses must not overlap TABLE data.
 TABLE data has precendence from address 0x00 until the the end of
TABLE data
 */

 EEProm EEDataSet1 0x10 // Locate EE Data at address
 3,2,1
 End EEProm

 EEProm VersionData 0x20 // Locate EE Data at address
 " PWM2Laser "
 " Fabrice ENGEL "
 " Version 1.4 "
 " November 2023 "
 End EEProm

 EEProm EEDataSet2 0x0D // Locate EE Data at address
 1,2,3
 End EEProm

 EEProm EEDataSet 0X04 // Locate EE Data at address
 1,2,3
 End EEProm

 // ********************** EXAMPLE TABLE DATA BEING LOADED INTO EE BY THE
COMIPILER
 // * THIS IS ONLY ACCESSIBLE VIA READTABLE

 Table TwoBytes STORE data // EE Data Address Allocated by compiler
 0X55,0XAA,0X55
 End Table

139

For more help, see EPRead, Creating EEProm data from a Lookup Table

140

HEFM (PFM)

This is the HEFM (PFM) section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

HEFM Overview

Introduction:

Some enhanced mid-range Microchip PIC devices support High-Endurance Flash (HEF) memory. These
devices lack the data EEPROM found on other devices. Instead, they implement an equivalent
amount of special flash memory, called HEF memory, that can provide an endurance comparable to
that of a traditional data EEPROM. HEF memory can be erased and written 100,000 times. HEF
memory appears in the regular program memory space and can be used for any purpose, like regular
flash program memory.

As with all flash memory, data must be erased before it can be written and writing this memory will
stall the device. Methods to read, write and erase the HEF memory are included in GCBASIC and they
are described in this introduction. Also see Microchip application note AN1673, Using the PIC16F1XXX
High-Endurance Flash (HEF) Block.

The hefsaf.h library supports HEF operations for GCBASIC.

Note: By default, GCBASIC will use HEF memory for regular executable code unless it is told
otherwise. If you wish to store data here, you should reserve the HEF memory by using the compiler
option, as shown below to reserve 128 words of HEF memory:

 #option ReserveHighProg 128

HEF memory is a block of memory locations found at the top of the flash program memory. Each
memory location can be used to hold a 8-bit byte value. To further explain, the PIC 16F Enhanced
Midrange Sevices memory architecture is 14-bits wide. Therefore, for a single 14-bit memory
location it is only practical to store an 8-bit byte value, and two 14-bit memory locations to hold one 16-
bit word value. This is because the memory architecture only allows the use of the the lower 8-bits
of each 14-bit flash memory location for HEF usage

The main difference between HEF memory and EEPROM is that EEPROM allows byte-by-byte erase
whereas the HEF memory does not. With HEF memory, data must be erased before a write and the
erase can only be performed in blocks of memory. The blocks, also called rows, are a fixed size
associated with the specific device.

GCBASIC handles the erase operation automatically. When a write operation is used by a user the
GCBASIC library reads to a cache, updates the cache, erase the block and finally write the caches. The
complexity of using HEF memory is reduced with the automatically handling of these operations.

141

The hefsaf.h library provides a set of methods to support the use of HEF memory.

Method Parameters Usage

HEFWrite a
subroutine
with the
parameters:
location,
byte value

HEFWrite (location, byte_variable)

HEFWriteWord a
subroutine
with the
parameters:
location,
word_value

HEFWriteWord (location,
word_variable)

HEFRead a function
with the
parameters:
location
returns a
byte value

byte_variable = HEFRead (location)

HEFRead a
subroutine
with the
paramers:
location,
byte_value

HEFRead (location , out_byte_variable)

HEFReadWord a function
with the
parameters:
location
returns a
word value

word_variable = HEFRead (location)

HEFReadWord a
subroutine
with the
parameters:
location,
word_value

HEFRead (location , out_word_variable
)

142

HEFEraseBlock a
subroutine
with the
parameters:
block_num
ber

HEFEraseBlock (0)

A value of 0,1,2,3 etc.

HEFWriteBlock a
subroutine
with the
parameters:
block_num
ber,
buffer() [,
HEF_ROWS
IZE_BYTES]

HEFWriteBlock(0, myMemoryBuffer)
'where myMemoryBuffer is an Array or
a String

The Array or a String will contain the
values to be wrttin to the HEFM.

HEFReadBlock a
subroutine
with the
parameters:
block_num
ber,
buffer() [,
HEF_ROWS
IZE_BYTES]

HEFReadBlock(0, myMemoryBuffer)
'where myMemoryBuffer is an Array or
a String.

The Array or a String will contain the
values from the HEFM.

The library also defines a set constants that are specific to the device. These may be useful in the user
program. These constants are used by the library. A user may use these public constants.

Constant Type Usage

HEF_ROWSIZE_BYTES Byte Size of an HEFM block in words

HEF_WORDS and HEF_BYTES Word or a
Byte

ChipHEFMemWords parameter from
the device .dat file

HEF_START_ADDR Word Starting address of HEFM

HEF_NUM_BLOCKS Byte Number of blocks of HEFM

CHIPWORDS Word Device specific constant for the total
flash size

CHIPHEFMEMWORDS Word Device specific constant for the number
of HEFM words available

143

CHIPERASEROWSIZEWORDS Word Device specific constant for the number
of HEFM in an erase row

Warning

Whenever you update the hex file of your Microchip PIC micro-controller with your programmer you
MAY erase the data that are stored in HEF memory. If you want to avoid that you will have to flash
your Microchip PIC micro-controller with software that allows memory exclusion when flashing. This
is the case with Microchip PIC MPLAB IPE (Go to Advanced Mode/Enter password/Select Memory/Tick
“Preserve Flash on Program”/ Enter Start and End address of your HEFM). Or, simply use the
PICkitPlus suite of software to preserve HEF memory during programming.

See also HEFRead, HEFReadWord, HEFWrite, HEFWriteWord, HEFReadBlock, HEFWriteBlock,
HEFEraseBlock

HEFRead

Syntax:

 'as a subroutine
 HEFRead (location, data)

 'as a function
 data = HEFRead (location)

Command Availability:

Available on all PIC micro-controllers with HEFM memory

Explanation:

HEFRead is used to read information, byte values, from HEFM, so that it can be accessed for use in a
user program.

location represents the location or relative address to read. The location will range from location 0 to
HEF_BYTES - 1, or for all practical purposes 0-127 since all PIC Microcontrollers with HEF support 128
bytes of HEF Memory. HEF_BYTES is a GCBASIC constant that represents the number of bytes of HEF
Memory.

144

data is the data that is to be read from the HEFM data storage area. This can be a byte value or a byte
variable.

This method reads data from HEFM given the specific relative location. This method is similar to the
EPRead method for EEPROM.

Example 1:

 '... code preamble to select part
 '... code to setup PPS
 '... code to setup serial

 'The following example reads the HEFM data value into the byte variable “byte_value”
using a subroutine.

 Dim data_byte as byte

 ;Write a byte of data to HEFM Location 34
 HEFWrite(34, 144)

 ;Read the byte back from HEFM location 34
 HEFread(34, byte_value)

 ;Display the data on a terminal
 HserPrint "byte_value = "
 Hserprint byte_value

Example 2:

145

 '... code preamble to select part '... code preamble to select part
 '... code to setup PPS
 '... code to setup serial

 'The following example reads the HEFM data value into the byte variable “byte_value”
using a function.

 Dim data_byte as byte

 ;Write a byte of data to HEF Location 34
 HEFWrite(34, 144)

 ;Read the byte back from HEF location 34
 byte_value = HEFread(34)

 ;Display the data on a terminal
 HserPrint "byte_value = "
 Hserprint byte_value

See also HEFM Overview, HEFRead, HEFReadWord, HEFWrite, HEFWriteWord, HEFReadBlock,
HEFWriteBlock, HEFEraseBlock

HEFReadWord

Syntax:

 'as a subroutine
 HEFReadWord (location, data_word_variable)

 'as a function
 data_word_variable = HEFReadWord (location)

Command Availability:

Available on all PIC micro-controllers with HEFM memory

Explanation:

HEFReadWord is used to read information, word values, from HEFM so that it can be accessed for use
in a user program.

location represents the location or relative address to read. The location will range from location 0 to
HEF_BYTES - 1, or for all practical purposes 0-127 since all PIC Microcontrollers with HEF support 128

146

bytes of HEF Memory. HEF_BYTES is a GCBASIC constant that represents the number of bytes of HEF
Memory.

data is the data that is to be read from the HEFM data storage. This must be a word variable.

This method reads data from HEFM given the specific relative location.

Example 1:

 '... code preamble to select part
 '... code to setup serial

 'The following example reads the HEFM value into the word variable
“data_word_variable” by initially writing some word values.

 dim data_word_variable as word
 HEFWriteWord(254, 4660)

 HEFReadWord(254, data_word_variable)

 HSerPrint "Value = "
 HSerPrint data_word_variable
 HSerPrintCRLF

If example 1 were displayed on a serial terminal. The result would show:

 Value = 4660

Example 2:

147

 '... code preamble to select part
 '... code to setup serial

 'The following example uses a function to read the HEFM value into the word variable
“data_word_variable”.

 dim data_word_variable as word
 HEFWriteWord(254, 17185)

 data_word_variable = HEFReadWord(254)

 HSerPrint "Value = "
 HSerPrint data_word_variable
 HSerPrintCRLF

If example 2 were displayed on a serial terminal. The result would show:

 Value = 17185

See also HEFM Overview, HEFRead, HEFReadWord, HEFWrite, HEFWriteWord, HEFReadBlock,
HEFWriteBlock, HEFEraseBlock

HEFWrite

Syntax:

 HEFWrite (location, data)

Command Availability:

Available on all PIC micro-controllers with HEFM memory

Explanation:

HEFWrite is used to write information, byte values, to HEFM so that it can be accessed later for use in a
user program.

location represents the location or relative address to write. The location will range from location 0 to
HEF_BYTES - 1, or for all practical purposes 0-127 since all PIC Microcontrollers with HEF support 128
bytes of HEF Memory. HEF_BYTES is a GCBASIC constant that represents the number of bytes of HEF

148

Memory.

data is the data that is to be written to the HEFM location. This can be a byte value or a byte variable.

This method writes information to the HEFM given the specific location. This method is similar to the
EPWrite method for EEPROM.

Example 1:

 '... code preamble to select part
 '... code to setup serial

 'The following example writes a byte value of 126 into HEFM location 34

 HEFWrite(34, 126)

Example 2:

 '... code preamble to select part
 '... code to setup serial

 'This example will populate all 128 bytes of HEF memory with a value that is same as
the HEFM location

 Dim Rel_Address, DataByte as Byte
 Dim NVM_Address as Long
 Dim DataWord, as Word
 Dim HEFaddress as Byte

 For Rel_Address = 0 to 127
 HEFWrite (Rel_Address, Rel_Address)
 Next
 HEFM_DUMP

 End

 ; This subroutine displays the High Endurance Flash Memory on a terminal.
 ; Words are in reverse byte order relative to address.
 ; HEF data resides in the low byte of each 14bit program memory word.
 ; The high byte is not HEF and should always read "3F".

 Sub HEFM_DUMP

149

 Dim Blocknum as Byte
 NVM_Address = HEF_START_ADDR
 BlockNum = 0

 Repeat HEF_BYTES ;128

 If NVM_Address % HEF_ROWSIZE_BYTES = 0 then
 If BlockNum > 0 then HSERPRINTCRLF
 HSerprintCRLF
 HserPrint "Block"
 HSerprint BlockNum
 HSerprint " 0 1 2 3 4 5 6 7"
 BlockNum++
 End if

 IF NVM_Address % 8 = 0 then
 HSerPrintCRLF
 hserprint hex(NVM_Address_H)
 hserprint hex(NVM_ADDRESS)
 hserprint " "
 end if

 Rel_Address = (NVM_ADDRESS - HEF_START_ADDR)
 HEFRead(Rel_Address, DataWord)

 hserprint hex(DataWord_H)
 hserprint hex(DataWord)
 hserprint " "

 NVM_Address++
 End Repeat
 HserPrintCRLF
End sub

If example 2 were displayed on a serial terminal. The result would show:

150

Block0 0 1 2 3 4 5 6 7
3F80 3F00 3F01 3F02 3F03 3F04 3F05 3F06 3F07
3F88 3F08 3F09 3F0A 3F0B 3F0C 3F0D 3F0E 3F0F
3F90 3F10 3F11 3F12 3F13 3F14 3F15 3F16 3F17
3F98 3F18 3F19 3F1A 3F1B 3F1C 3F1D 3F1E 3F1F

Block1 0 1 2 3 4 5 6 7
3FA0 3F20 3F21 3F22 3F23 3F24 3F25 3F26 3F27
3FA8 3F28 3F29 3F2A 3F2B 3F2C 3F2D 3F2E 3F2F
3FB0 3F30 3F31 3F32 3F33 3F34 3F35 3F36 3F37
3FB8 3F38 3F39 3F3A 3F3B 3F3C 3F3D 3F3E 3F3F

Block2 0 1 2 3 4 5 6 7
3FC0 3F40 3F41 3F42 3F43 3F44 3F45 3F46 3F47
3FC8 3F48 3F49 3F4A 3F4B 3F4C 3F4D 3F4E 3F4F
3FD0 3F50 3F51 3F52 3F53 3F54 3F55 3F56 3F57
3FD8 3F58 3F59 3F5A 3F5B 3F5C 3F5D 3F5E 3F5F

Block3 0 1 2 3 4 5 6 7
3FE0 3F60 3F61 3F62 3F63 3F64 3F65 3F66 3F67
3FE8 3F68 3F69 3F6A 3F6B 3F6C 3F6D 3F6E 3F6F
3FF0 3F70 3F71 3F72 3F73 3F74 3F75 3F76 3F77
3FF8 3F78 3F79 3F7A 3F7B 3F7C 3F7D 3F7E 3F7F

See also HEFM Overview, HEFRead, HEFReadWord, HEFWrite, HEFWriteWord, HEFReadBlock,
HEFWriteBlock, HEFEraseBlock

HEFWriteWord

Syntax:

 HEFWriteWord (location, data_word_value)

Command Availability:

Available on all PIC micro-controllers with HEFM memory

Explanation:

HEFWriteWord is used to write information, word values, to HEFM, so that it can be accessed in a user
program via the HEFReadWord command.

location presents the location or relative address to write write. A data Word requires 2 HEF Locations,

151

therefore the location will range from 0 to 126 in steps of 2.

data is the data that is to be written to the HEFM location. This can be a word value or a word
variable.

This method writes information to the HEFM given the specific location in the HEFM data storage . This
method is similar to the methods for EEPROM but this method supports Word values.

Example 1:

 '... code preamble to select part
 '... code to setup serial

 'The following example stores a word value in HEFM location 0

 HEFWrite(0, 0x1234)

Example 2:

 '... code preamble to select part
 '... code to setup serial

 'This example will write two word values to two specific locations.
 HEFWriteWord (16, 0xAA01)
 HEFWriteWord (18, 0xBB02)

If example 2 were displayed on a serial terminal. The result would show, where -- is the existing
value.

 Block0
 3F00 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 3F10 01 AA 02 BB -- -- -- -- -- -- -- -- -- -- -- --
 3F20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 3F30 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

See also HEFM Overview, HEFRead, HEFReadWord, HEFWrite, HEFWriteWord, HEFReadBlock,

152

HEFWriteBlock, HEFEraseBlock

HEFReadBlock

Syntax:

 HEFReadBlock (block_number, buffer(), [, num_bytes])

Command Availability:

Available on all PIC micro-controllers with HEFM memory.

Explanation:

HEFReadBlock is used to read information from the HEFM data storage into the buffer. Once the
buffer is populated it can be accessed for use within a user program.

The parameters are as follows:

block_number represents the block to be written to. The block_number parameter is used to calculate
the physical memory location(s) that are updated.

buffer() represents an array or string. The buffer will be used as the data target for the block read
operation. The buffer is handled as a buffer of bytes values. In most cases the buffer should be the
same size as a row/block of HEFM. For most PIC Microcontrollers this will be 32 bytes. For PIC
microcontrollers with 2KW or less of Flash Program Memory this will be 16 Bytes. Once data is read
into the buffer from HEFM, the user program must handle the data as Byte, Word or String values, as
appropriate.

num_bytes is an optional parameter, and can be used to specify number of bytes to read from HEFM,
starting at the first location in the selected HEFM block. This parameter is not normally required as
the default is set to the GCBASIC constant HEF_ROWSIZE_BYTES.

Example 1:

153

 '... code preamble to select part
 '... code to setup serial

 Dim My_Buffer(HEF_ROWSIZE_BYTES)
 Dim index as byte

 ;Write some data to Block 2
 My_Buffer =
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32
 HEFWriteBlock(2, My_Buffer())

 ;Read the data back from HEFM using HEFReadBock
 HEFReadBlock(2 , My_buffer())

 ;Send the data to a terminal in decimal format
 index = 1
 Repeat HEF_ROWSIZE_BYTES
 Hserprint(My_Buffer(index))
 HserPrint " "
 index++
 End Repeat

See also HEFM Overview, HEFRead, HEFReadWord, HEFWrite, HEFWriteWord, HEFReadBlock,
HEFWriteBlock, HEFEraseBlock

HEFWriteBlock

Syntax:

 HEFWriteBlock (block_number, buffer(), [, num_bytes])

Command Availability:

Available on all PIC micro-controllers with HEFM memory.

Explanation:

HEFWriteBlock is used to write information from a user buffer to HEFM. Once the block is written it
can be accessed for use within a user program.

The parameters are as follows:

block_number represents the block to be written to. The block_number parameter is used to calculate

154

the physical memory location(s) that are updated.

buffer() represents an array or string. The buffer will be used as the data source that is written to the
HEFM block. The buffer is handled as a buffer of bytes values. In most cases the buffer should be
the same size as a row/block of HEFM. For most PIC Microcontrollers this will be 32 bytes. For PIC
microcontrollers with 2KW or less of Flash Program Memory this will be 16 Bytes. Best practice is to
size the buffer using the HEF_ROWSIZE_BYTES constant. If the size of the buffer exceeds the device
specific HEF_ROWSIZE_BYTES, the excess data will not be handled and the buffer will be truncated at
the HEF_ROWSIZE_BYTES limit.

num_bytes is an optional parameter, and can be used to specify number of bytes to write to HEFM,
starting at the first location in the selected HEFM block. This parameter is not normally required as
the default is set to the GCBASIC constant HEF_ROWSIZE_BYTES.

Example 1:

 '... code preamble to select part
 '... code to setup serial

 Dim My_Buffer(HEF_ROWSIZE_BYTES)

 My_Buffer =
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32

 'HEFwriteBlock operation!!
 HEFwriteBlock(2, My_Buffer)

 'A utility method to show the contents of HEFM.
 HEFM_Dump

For HEFM_Dump routine, see HEFRead

If example 1 were displayed on a serial terminal using HEFM_Dump. The result would show. Note the
value display at the start of block 2 @ 0x3F80.

155

Block0 1 0 3 2 5 4 7 6 9 8 B A D C F E
7F00 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
7F10 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
7F20 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
7F30 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

Block1 1 0 3 2 5 4 7 6 9 8 B A D C F E
7F40 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
7F50 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
7F60 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
7F70 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

Block2 1 0 3 2 5 4 7 6 9 8 B A D C F E
7F80 0201 0403 0605 0807 0A09 0C0B 0E0D 100F
7F90 1211 1413 1615 1817 1A19 1C1B 1E1D 201F
7FA0 2120 2322 2524 2726 2928 2B2A 2D2C 2F2E
7FB0 3130 3332 3534 3736 3938 3B3A 3D3C 3F3E

Block3 1 0 3 2 5 4 7 6 9 8 B A D C F E
7FC0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
7FD0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
7FE0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
7FF0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

See also HEFM Overview, HEFRead, HEFReadWord, HEFWrite, HEFWriteWord, HEFReadBlock,
HEFWriteBlock, HEFEraseBlock

HEFEraseBlock

Syntax:

 HEFEraseBlock (block_number)

Command Availability:

Available on all PIC micro-controllers with HEFM memory.

Explanation:

HEFEraseBlock is used to erase all data locations within the HEFM block. HEFM data within the
HEFM block to the erase state value of the device. This Value is 0xFF and will read 0x3FFF if the
entire 14bit program memory word is displayed. Use Caution. Once the HEFM block is erased, the
HEFM data is gone forever and cannot be recovered unless it was previpusly saved.

156

The single parameter is as follows:

block_number represents the block to be erased. The block_number parameter is used to calculate the
physical memory location(s) that are updated.

Example 1:

Erase a specific block of HEFM.

 '... code preamble to select part
 '... code to setup serial, if needed

 'Erase block 2 of HEFM
 HEFEraseBlock (2)

See also HEFM Overview, HEFRead, HEFReadWord, HEFWrite, HEFWriteWord, HEFReadBlock,
HEFWriteBlock, HEFEraseBlock

157

PROGMEM (PFM)

This is the PROGMEM (PFM) section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

PFMRead

Syntax:

 PFMRead (location, store)

Command Availability:

Available on all Microchip PIC microcontrollers with PFM self write capability.

Explanation:

PFMRead reads information from the program memory on chips that support this feature. location is a
word variable, and store can be a byte of word.

The largest value possible for location depends on the amount of program memory on the Microchip
PIC microcontroller.

This is an advanced command which should only be used by advanced developers.

For more help, see PFMWrite

PFMWrite

Syntax:

 PFMWrite (location, value)

Command Availability:

Available on all Microchip PIC microcontrollers with PFM self write capability.

Explanation:

PFMWrite writes information to the program memory on chips that support this feature. location is a
word variable, and store can be a byte of word.

The largest value possible for location depends on the amount of program memory on the
microcontroller.

This is an advanced command which should only be used by advanced developers.

158

Example:

For more help, see *PFMRead

DATA

Syntax:

 DATA DataSetName [as Byte | Word]
 // multiples values, strings etc.
 0,1,2,3
 END DATA

Command Availability:

Available on all PIC microcontrollers with DATA memory.

Explanation:

The DATA construct creates an DATA dataset for use with the specific microcontroller. An DATA
dataset is a list of values that are stored in the PROGMEM memory of the microcontroller, which then
can be accessed using the ProgRead() command or other DATA read operations.

The advantage of an DATA dataset is that they are memory efficient being loaded directly into the
DATA during programming operations.

DATA datasets are defined as follows:

1. Byte or Word values,

2. Multiple numeric elements on a single line separated by commas,

3. Constants and calculations within the single line dataset entries are permitted,

4. Decimal values are NOT supported,

5. Access is via ProgRead().

Defining DATA datasets

Single data values

A single value on each line with in the dataset. The example dataset, shown below, has the data on
different line in within the set.

Simple example: This creates an DATA dataset at the first DATA location, then, the values of 12, 24, … 72
are the consecutive values.

159

 DATA EEDataSet as Byte
 12
 24
 36
 48
 60
 72
 End DATA

Multiple data values of the same line

The following example creates the DATA dataset at DATA offset address of 0x10.

Multiple elements on a single line separated by commas. The example dataset, shown below, has the
data separated by , and on different line in within the dataset.

 DATA EEDataSource as Byte
 12, 24, 36
 48, 60, 72
 End DATA

Data values as constants, and, with data transformation

Constants and calculations within the single line. The example dataset, shown below, uses a defined
constant to multiple the data with the dataset.

 #define calculation_constant 2

 DATA EEDataSource as Word
 1 * calculation_constant
 2 * calculation_constant
 3 * calculation_constant
 8 * calculation_constant
 4 * calculation_constant
 5 * calculation_constant
 End DATA

Data values as Strings

Strings can be defined. Strings are delimited by double quotes. The following examples show the
methods.

160

Any ASCII characters between any two " " (double quotes) will be converted to dataset data. Also see
ASCII escape codes.

A source string can be one string per line or comma separated strings, therefore, on the same line.

Example:

 DATA Test_1 as Byte
 "ABCDEFGHIJ"
 End DATA

ASCII Escape code

Accepted escape strings are shown in the dataset below.

Escape
sequence

Meaning

\a beep

\b backspace

\f formfeed

\l or \n newline

\r carriage return

\t tab

\0 Null value, equates to ASCII 0. Same as \&000

\&nnn ascii char in decimal

\\ backslash

\" double quote

\' single quote

Complete working example program

This example creates several DATA datasets. The example also create a lookup table. The DATA dataset
are addressed with the additional parameter to ensure there is no DATA dataset overlap.

161

 #chip 16F886
 #option explicit

 #DEFINE USART_BAUD_RATE 9600
 #DEFINE USART_TX_BLOCKING
 #DEFINE USART_DELAY OFF

 Dim dataaddress, datavalue as Byte

 DATA DataSet1 as Byte
 3,2,1
 End DATA

 DATA VersionData as Byte
 " PWM2Laser "
 " Fabrice ENGEL "
 " Version 1.4 "
 " November 2023 "
 End DATA

 For dataaddress = 0 to 2
 ProgramRead (@DataSet1 + dataaddress , datavalue)
 HserPrint datavalue
 Next

For more help, see ProgramRead, Creating DATA data from a Lookup Table

ProgramErase

Syntax:

 ProgramErase (location)

Command Availability:

Available on all Microchip PIC microcontrollers with self write capability. Not available on Atmel AVR
at present.

Explanation:

ProgramErase erases information from the program memory on chips that support this feature. The
largest value possible for location depends on the amount of program memory on the Microchip PIC
microcontroller, which is given on the datasheet.

This command must be called before writing to a block of memory. It is slow in comparison to other

162

GCBASIC commands. Note that it erases memory in 32-byte blocks - see the relevant Microchip PIC
microcontroller datasheet for more information.

This is an advanced command which should only be used by advanced developers. Care must be taken
with this command, as it can easily erase the program that is running on the microcontroller.

For more help, see ProgramRead and ProgramWrite

ProgramRead

Syntax:

 ProgramRead (location, store)

 or for the 18FxxQ41 family of chips use:
 PFMRead (location, store)

Command Availability:

Available on all Microchip PIC microcontrollers with self write capability. Not available on Atmel AVR
at present.

Explanation:

ProgramRead reads information from the program memory on chips that support this feature. location
and store are both word variables, meaning that they can store values over 255.

The largest value possible for location depends on the amount of program memory on the Microchip
PIC microcontroller, which is given on the datasheet. store is 14 bits wide, and thus can store values up
to 16383.

This is an advanced command which should only be used by advanced developers.

For more help, see ProgramErase and ProgramWrite

ProgramWrite

Syntax:

 ProgramWrite (location, value)

Command Availability:

Available on all Microchip PIC microcontrollers with self write capability. Not available on Atmel AVR
at present.

163

Explanation:

ProgramWrite writes information to the program memory on chips that support this feature. location
and value are both word variables.

The largest value possible for location depends on the amount of program memory on the
microcontroller , which is given on the datasheet. value is 14 bits wide, and thus can store values up to
16383.

This is an advanced command which should only be used by advanced developers. ProgramErase must
be used to clear a block of memory BEFORE ProgramWrite is called.

Example:

For more help, see ProgramErase and ProgramRead

164

PROGMEM (MCU Configuration)

This is the PROGMEM (MCU Configuration) section of the Help file. Please refer the sub-sections for
details using the contents/folder view.

DeviceConfigurationRead

Syntax:

 deviceconfigurationRead (location, store)

Command Availability:

Available on all Microchip PIC microcontrollers with self read capability. Not available on Atmel AVR at
present.

Explanation:

deviceconfigurationRead reads information from the configurations area of the memory on chips that
support this feature. location and store are both word variables, meaning that they can be values
greater than 255.

The location depends on the amount Microchip PIC microcontroller, which is given on the datasheet.
store is 14 bits wide, and thus can store values up to 16383.

This is an advanced command which should only be used by advanced developers.

165

SAFM

This is the SAFM section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

SAFM Overview

Introduction:

Some Advanced (18F) and some Enhanced Mid-Range (16F) Microchip PIC devices support Storage
Area Flash (SAF) memory. These devices also include EEPROM memory. SAF memory is not High
Endurance, meaning it does not have an endurance of 100K write cyces. SAF has the same endurance
as regular flash memmory, usually specified as 10K write cycles.

SAF memory appears at the top of program memory space and can be used for any purpose, like
regular flash program memory. Storage Area Flash is intended to be used to store data, such a device
calibration data, RF device register settings, and other data. SAFEM can be Read as frequently as
necessary. However, it is not intended to be written frequently like EEPROM. If non-volatile memory
need to be written frequenily, it is best to use the EEPROM on these devices.

As with all flash memory, data must be erased before it can be written and writing this memory will
stall the device for a few ms. Methods to read, write and erase the SAF memory are included in
GCBASIC and they are described in this introduction.

The hefsaf.h library supports SAF operations for GCBASIC.

Note: By default, GCBASIC will use SAF memory for regular executable code unless it is told
otherwise. If you wish to store data here, you should reserve the SAF memory by using the compiler
option, as shown below to reserve 128 Words of SAF memory: This equates to 256 bytes on PIC 18F
microcontrollers and 128 Bytes on PIC 16F microcontrollers

 #option ReserveHighProg 128

SAF memory is a block of memory locations found at the top of the Flash program memory. Each
memory location can be used to hold a variable value, either a byte or a word dependent on the
specific device. The main difference between SAF memory and EEPROM is that EEPROM allows byte-
by-byte erase whereas the SAF memory does not. With SAF memory data must be erased before a
write and the erase can only be performed in blocks of memory. The blocks, also called rows, are a
fixed size associated with the specific device.

GCBASIC handles the erase operation automatically. When a write operation is used by a user the
GCBASIC library reads to a buffer, update the buffer, erase the block and finally write the buffer back
to SAFM. The complexity of using SAF memory is reduced with the automatically handling of these
operations.

166

The library provides a set of methods to support use of SAF memory.

Method Parameters Usage

SAFWrite a
subroutine
with the
parameters:
location,
byte value

SAFWrite (location, byte_variable)

SAFWriteWord a
subroutine
with the
parameters:
location,
word_value

SAFWriteWord (location,
word_variable)

SAFRead a function
with the
parameters:
location
returns a
byte value

byte_variable = SAFRead (location)

SAFRead a
subroutine
with the
paramers:
location,
byte_value

SAFRead (location , out_byte_variable)

SAFReadWord a function
with the
parameters:
location
returns a
word value

word_variable = SAFRead (location)

SAFReadWord a
subroutine
with the
parameters:
location,
word_value

SAFRead (location , word_variable)

167

SAFEraseBlock a
subroutine
with the
parameters:
block_num
ber

SAFEraseBlock (0)

A value of 0,1,2,3 etc.

SAFWriteBlock a
subroutine
with the
parameters:
block_num
ber,
buffer()
[,num_bloc
ks]

SAFWriteBlock(0, myMemoryBuffer)
'where myMemoryBuffer is an Array or
a String

The Array or a String will contain the
values to be wrttin to the SAFM.

SAFReadBlock a
subroutine
with the
parameters:
block_num
ber,
buffer() [,
num_blocks
]

SAFReadBlock(0, myMemoryBuffer)
'where myMemoryBuffer is an Array or
a String.

The Array or a String will contain the
values from the SAFM.

The library also defines a set constants that are specific to the device. These may be useful in the user
program. These constants are used by the library. A user may use these public constants.

Constant Type Usage

SAF_ROWSIZE_BYTES Byte Size of an SAFM block in bytes

SAF_WORDS and SAF_BYTES Word or a
Byte

ChipSAFMemWords parameter from
the device .dat file

SAF_START_ADDR Word Starting address of SAFM

SAF_NUM_BLOCKS Byte Number of block of SAFM

CHIPWORDS Word Device specific constant for the total
flash size

CHIPSAFMEMWORDS Word Device specific constant for the number
of SAFM words available

168

CHIPERASEROWSIZEWORDS Word Device specific constant for the number
of SAFM in an erase row

Warning

Whenever you update the hex file of your Microchip PIC micro-controller with your programmer you
MAY erase the data that are stored in SAF memory. If you want to avoid that you will have to flash
your Microchip PIC micro-controller with software that allows memory exclusion when flashing. This
is the case with Microchip PIC MPLAB IPE (Go to Advanced Mode/Enter password/Select Memory/Tick
“Preserve Flash on Program”/ Enter Start and End address of your SAFM). Or, simply use the
PICkitPlus suite of software to preserve SAF memory during programming.

See also SAFRead, SAFReadWord, SAFWrite, SAFWriteWord, SAFReadBlock, SAFWriteBlock,
SAFEraseBlock

SAFRead

Syntax:

 'as a subroutine
 SAFRead (location, data)

 'as a function
 data = SAFRead (location)

Command Availability:

Available on all PIC micro-controllers with SAFM memory

Explanation:

SAFRead is used to read information, byte values, from SAFM, so that it can be accessed for use in a
user program.

location represents the location or relative address to read. The location will range from location 0 to
SAF_BYTES - 1. This cab be from 0-127 or 0-255m depending upon the specific device. HEF_BYTES is a
GCBASIC constant that represents the number of bytes of SAF Memory.

data is the data that is to be read from the SAFM data storage area. This can be a byte value or a byte
variable.

This method reads data from SAFM given the specific relative location. This method is similar to the
EPRead method for EEPROM.

169

Example 1:

 '... code preamble to select part
 '... code to setup serial
 '... code to setup PPS

 'The following example reads the SAFM data value into the byte variable “byte_value”
using a subroutine.

 Dim data_byte as byte

 ;Write a byte of data to SAF Location 34
 SAFWrite(34, 144)

 ;Read the byte back from SAF location 34
 byte_value = SAFread(34)

 ;Display the data on a terminal
 HserPrint "byte_value = "
 Hserprint byte_value

Example 2:

 '... code preamble to select part
 '... code to setup serial
 '... code to setup PPS

 'The following example reads the SAFM data value into the byte variable “byte_value”
using a function.

 Dim data_byte as byte

 ;Write a byte of Data to SAF Location 34
 SAFWrite(34, 144)

 ;Read the byte back from SAF location 34
 byte_value = SAFread(34)

 ;Display the data on a terminal
 HserPrint "byte_value = "
 Hserprint byte_value

170

See also SAFM Overview, SAFRead, SAFReadWord, SAFWrite, SAFWriteWord, SAFReadBlock,
SAFWriteBlock, SAFEraseBlock

SAFReadWord

Syntax:

 'as a subroutine
 SAFReadWord (location, data_word_variable)

 'as a function
 data_word_variable = SAFReadWord (location)

Command Availability:

Available on all PIC micro-controllers with SAFM memory

Explanation:

SAFReadWord is used to read information, word values, from SAFM so that it can be accessed for use
in a user program.

location represents the location or relative address to read. The location will range from 0 to
SAF_BYTES -1. Each data Word requires 2 SAF Locations, therefore the location will range from either
0 to 254 or 0 to 126 (in steps of 2), depending upon the device.

data is the word data that is to be read from the SAFM location. This must be a word variable.

This method reads word information from SAFM given the relative location in SAFM.

Example 1:

171

 '... code preamble to select part
 '... code to setup serial

 'The following example uses a subroutine to read an SAFM location into a word
variable.

 dim data_word_variable as word

 ;Write a word to SAF location 64
 SAFWriteWord(64, 0x1234)

 ; Read the Word from SAF location 64
 SAFReadWord (64, data_word_variable)

 HSerPrint "Value = "
 HSerPrint data_word_variable
 HSerPrintCRLF

If example 1 were displayed on a serial terminal. The result would show:

 Value = 4660

Example 2:

 '... code preamble to select part
 '... code to setup serial

 'The following example uses a function to read an SAFM location into a word variable.

 dim data_word_variable as word

 ;Write a word to SAF location 64
 SAFWriteWord(64, 0x4321)

 ; Read the Word from SAF location 64
 data_word_variable = SAFReadWord (64)

 HSerPrint "Value = "
 HSerPrint data_word_variable
 HSerPrintCRLF

172

If example 2 were displayed on a serial terminal. The result would show:

 Value = 17185

See also SAFM Overview, SAFRead, SAFReadWord, SAFWrite, SAFWriteWord, SAFReadBlock,
SAFWriteBlock, SAFEraseBlock

SAFWrite

Syntax:

 SAFWrite (location, data)

Command Availability:

Available on all PIC micro-controllers with SAFM memory

Explanation:

SAFWrite is used to write information, byte values, to SAFM so that it can be accessed later for use in a
user program.

location represents the location or relative address to write. The location will range from location 0 to
SAF_BYTES - 1, or for all practical purposes 0-255 since all PIC Microcontrollers with SAFM support 256
bytes of SAF Memory. HEF_BYTES is a GCBASIC constant that represents the number of bytes of SAF
Memory.

data is the data that is to be written to the SAFM location. This can be a byte value or a byte variable.
This method writes information to SAFM given the specific location. This method is similar to the
EPWrite method for EEPROM.

Example 1:

 #chip 18F24K42, 16
 '... code to setup PPS
 '... code to setup serial

 'The following example writes a byte value of 126 into HEFM location 34

 SAFWrite(34,126)

173

Example 2:

 #chip 18F24K42, 16
 '... code to setup PPS
 '... code to setup serial

 'This example will populate the 256 bytes of SAF memory with a value that is same as
the SAFM location

 Dim Rel_Address, DataByte as Byte
 Dim NVM_Address as Long
 Dim DataWord, as Word

 For Rel_Aaddress = 0 to 255
 SAFWrite (Rel_Address, Rel_Address)
 Next

 SAFM_Dump
 end

 ; This subroutine displays the SAF Flash Memory on a terminal
 ; Words in reverse byte order relative to address
 sub SAFM_Dump

 Dim Blocknum as Byte
 NVM_Address = SAF_START_ADDR
 BlockNum = 0

 Repeat SAF_WORDS ;128
 If NVM_Address % SAF_ROWSIZE_BYTES = 0 then
 If BlockNum > 0 then HSERPRINTCRLF
 HSerprintCRLF

 HserPrint "Block"
 HSerprint BlockNum
 HSerprint " 1 0 3 2 5 4 7 6 9 8 B A D C F E"
 BlockNum++
 End if

 IF NVM_Address % 16 = 0 then
 HSerPrintCRLF
 hserprint hex(NVM_Address_H)
 hserprint hex(NVM_Address)
 hserprint " "
 end if

174

 Rel_Address = NVM_ADDRESS - SAF_START_ADDR
 SAFReadWord(Rel_Address,DataWord)

 hserprint hex(DataWord_H)
 hserprint hex(DataWord)
 hserprint " "

 NVM_Address+=2 ' Next "WORD"
 End Repeat
End sub

If example 2 were displayed on a serial terminal. The result would show:

Block0 1 0 3 2 5 4 7 6 9 8 B A D C F E
7F00 0100 0302 0504 0706 0908 0B0A 0D0C 0F0E
7F10 1110 1312 1514 1716 1918 1B1A 1D1C 1F1E
7F20 2120 2322 2524 2726 2928 2B2A 2D2C 2F2E
7F30 3130 3332 3534 3736 3938 3B3A 3D3C 3F3E

Block1 1 0 3 2 5 4 7 6 9 8 B A D C F E
7F40 4140 4342 4544 4746 4948 4B4A 4D4C 4F4E
7F50 5150 5352 5554 5756 5958 5B5A 5D5C 5F5E
7F60 6160 6362 6564 6766 6968 6B6A 6D6C 6F6E
7F70 7170 7372 7574 7776 7978 7B7A 7D7C 7F7E

Block2 1 0 3 2 5 4 7 6 9 8 B A D C F E
7F80 8180 8382 8584 8786 8988 8B8A 8D8C 8F8E
7F90 9190 9392 9594 9796 9998 9B9A 9D9C 9F9E
7FA0 A1A0 A3A2 A5A4 A7A6 A9A8 ABAA ADAC AFAE
7FB0 B1B0 B3B2 B5B4 B7B6 B9B8 BBBA BDBC BFBE

Block3 1 0 3 2 5 4 7 6 9 8 B A D C F E
7FC0 C1C0 C3C2 C5C4 C7C6 C9C8 CBCA CDCC CFCE
7FD0 D1D0 D3D2 D5D4 D7D6 D9D8 DBDA DDDC DFDE
7FE0 E1E0 E3E2 E5E4 E7E6 E9E8 EBEA EDEC EFEE
7FF0 F1F0 F3F2 F5F4 F7F6 F9F8 FBFA FDFC FFFE

See also SAFM Overview, SAFRead, SAFReadWord, SAFWrite, SAFWriteWord, SAFReadBlock,
SAFWriteBlock, SAFEraseBlock

175

SAFWriteWord

Syntax:

 SAFWriteWord (location, data_word_value)

Command Availability:

Available on all PIC micro-controllers with SAFM memory

Explanation:

SAFWriteWord is used to write information, word values, to the SAFM data storage, so that it can be
accessed later by a programmer on a Personal, or by the SAFRead commands.

location presents the location or relative address to write. The location will range from 0 to SAF_BYTES
-1. Each data Word requires 2 SAF Locations, therefore the location will range from either 0 to 254 or
0 to 126 (in steps of 2), depending upon the device.

data is the data that is to be written to the SAFM location. This can be a word value or a word variable.

This method writes information to SAFM given the specific location in SAFM. This method is similar
to the methods for EEPROM, but supports Word values.

Example 1:

 '... code preamble to select part
 '... code to setup serial

 'The following example stores in the word value of 0x1234 as SAFM location 34

 SAFWriteWord(34, 0x1234)

Example 2:

176

 #chip 18F24K42, 16
 '... code to setup PPS
 '... code to setup serial

 'This example will write two word values to two specific locations.

 dim Word_Variable1 as Word
 dim Word_Variable2 as Word

 ;Write the data
 SAFWriteWord (16, 0x1234) 'location 16, in this device, equates to 0x7F10
 SAFWriteWord (18, 0x4321) 'location 18, in this device, equates to 0x7F12

 ;Read the data and send to terminal
 SAFReadWord(16, Word_Variable1)
 SAFReadWord(18, Word_Variable2)

 HserPrint "Word_Variable1 = "
 Hserprint Word_Variable1
 HSerPrintCRLF
 HserPrint "Word_Variable2 = "
 Hserprint Word_Variable2
 HSerPrintCRLF

If example 2 were displayed on a serial terminal. The result would show, where ---- is the existing
value.

Word_Variable1 = 4660
Word_Variable2 = 17185

See also SAFM Overview, SAFRead, SAFReadWord, SAFWrite, SAFWriteWord, SAFReadBlock,
SAFWriteBlock, SAFEraseBlock

SAFReadBlock

Syntax:

 SAFReadBlock (block_number, buffer(), [, num_bytes])

Command Availability:

177

Available on all PIC micro-controllers with SAFM memory.

Explanation:

HEFReadBlock is used to read information from the HEFM data storage into the buffer. Once the
buffer is populated it can be accessed for use within a user program.

The parameters are as follows:

block_number represents the block to be written to. The block_number parameter is used to calculate
the physical memory location(s) that are updated.

buffer() represents an array or string. The buffer will be used as the data target for the block read
operation. The buffer is handled as a buffer of bytes values. In most cases the buffer should be the
same size as a row/block of SAFM. For most PIC Microcontrollers with SAFM this will be 32 bytes.

num_bytes is an optional parameter, and can be used to specify number of bytes to read from SAFM,
starting at the first location in the selected SAFM block. This parameter is not normally required as
the default is set to the GCBASIC constant SAF_ROWSIZE_BYTES.

Example 1:

 #chip 18F24K42, 16
 '... code preamble to setup PPS
 '... code to setup serial

 Dim My_Buffer(HEF_ROWSIZE_BYTES)
 Dim index as byte

 ;Write some data to Block 2
 My_Buffer =
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32
 SAFWriteBlock(2, My_Buffer())

 ;Read the data back from SAFM using SAFReadBock
 SAFReadBlock(2 , My_buffer())

 ;Send the data to a terminal in decimal format
 index = 1
 Repeat SAF_ROWSIZE_BYTES
 Hserprint(My_Buffer(index))
 HserPrint " "
 index++
 End Repeat

178

See also SAFM Overview, SAFRead, SAFReadWord, SAFWrite, SAFWriteWord, SAFReadBlock,
SAFWriteBlock, SAFEraseBlock

SAFWriteBlock

Syntax:

 SAFWriteBlock (block_number, buffer(), [, num_bytes])

Command Availability:

Available on all PIC micro-controllers with SAFM memory.

Explanation:

SAFWriteBlock is used to write information from a user buffer to SAFM. Once the block is written it
can be accessed for use within a user program.

The parameters are as follows:

block_number represents the block to be written to. The block_number parameter is used to calculate
the physical memory location(s) that are updated.

buffer() represents an array or string. The buffer will be used as the data source that is written to the
SAFM block. The buffer is handled as a buffer of bytes values. In most cases the buffer should be the
same size as a row/block of SAFM. For most PIC Microcontrollers this will be 32 bytes. Best practice
is to size the buffer using the SAF_ROWSIZE_BYTES constant. If the size of the buffer exceeds the
device specific SAF_ROWSIZE_BYTES, the excess data will not be handled and the buffer will be
truncated at the SAF_ROWSIZE_BYTES limit.

num_bytes is an optional parameter, and can be used to specify the number of bytes to write to HEFM,
starting at the first location in the selected HEFM block. This parameter is not normally required as
the default is set to the GCBASIC constant HEF_ROWSIZE_BYTES.

Example 1:

179

 #chip 18F24K42, 16
 '... code preamble to setup PPS
 '... code to setup serial

 Dim My_Buffer(HEF_ROWSIZE_BYTES)
 Dim index as byte

 ;Write some data to Block 2
 My_Buffer =
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32
 SAFWriteBlock(2, My_Buffer())

 ;Read the data back from SAFM using SAFReadBock
 SAFReadBlock(2 , My_buffer())

 ;Send the data to a terminal in decimal format
 index = 1
 Repeat SAF_ROWSIZE_BYTES
 Hserprint(My_Buffer(index))
 HserPrint " "
 index++
 End Repeat

See also SAFM Overview, SAFRead, SAFReadWord, SAFWrite, SAFWriteWord, SAFReadBlock,
SAFWriteBlock, SAFEraseBlock

SAFEraseBlock

Syntax:

 SAFEraseBlock (block_number)

Command Availability:

Available on all PIC micro-controllers with SAFM memory. Explanation:

SAFEraseBlock is used to erase all data locations within the SAFM block. HEFM data within the HEFM
block to the erase state value of the device. This Value is 0xFF for each location and will read 0xFFFF
if the program memory word is displayed. Use Caution. Once the SAFM block is erased, the SAFEM data
is gone forever and cannot be recovered unless it was previpusly saved.

The single parameter is as follows:

180

block_number represents the block to be erased. The block_number parameter is used to calculate the
physical memory location(s) that are updated.

Example 1:

Erase a specific block of SAFEM.

 '... code preamble to select part
 '... code to setup PPS, if needed
 '... code to setup serial, if needed

 'Erase block 2 of HEFM
 HEFEraseBlock (2)

See also SAFM Overview, SAFRead, SAFReadWord, SAFWrite, SAFWriteWord, SAFReadBlock,
SAFWriteBlock, SAFEraseBlock

181

EERAM (Device)

This is the EERAM section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

47xxx EERam Devices

This section covers the 47xxx EERam devices.

The 47xxx EERam device is a memory device is organized as 512 x 8 bits or 2,048 x 8 bits of memory
and utilizes the I2C serial interface.

The 47xxx provides infinite read and write cycles to the SRAM while EEPROM cells provide high-
endurance nonvolatile storage of data with more than one million store cycles to EEPROM & a Data
retention of > 200 years.

With an external capacitor (~10uF), SRAM data is automatically transferred to the EEPROM upon loss
of power, giving the advantages of NVRAM whilst eliminating the need for backup batteries.

Data can also be backed up manually by using either the Hardware Store pin (HS) or software control.

On power-up, the EEPROM data is automatically recalled to the SRAM. EEPROM data Recall can also
be initiated through software control.

Connectivity is shown below:

 __ __
 Vcap-->| U |<-- Vcc
 A1 -->| |<-- HS
 A2 -->| |<-> SCL
 Vss -->|_____|<-> SDA

Modes of Operation

The SRAM allows for fast reads and writes and unlimited endurance. As long as power is present, the
data stored in the SRAM can be updated as often as desired.

To preserve the SRAM image, the AutoStore function copies the entire SRAM image to an EEPROM
array whenever it detects that the voltage drops below a predetermined level. The power for the
AutoStore process is provided by the externally connected VCAP capacitor. Upon power-up, the entire
memory contents are restored by copying the EEPROM image to the SRAM. This automatic restore
operation is completed in milliseconds after power-up, at the same time as when other devices would
be initializing.

There is no latency in writing to the SRAM. The SRAM can be written to starting at any random
address, and can be written continuously throughout the array, wrapping back to the beginning after
the end is reached. There is a small delay, specified as TWC in the data sheet, when writing to the

182

nonvolatile configuration bits of the STATUS Register (SR).

Besides the AutoStore function, there are two other methods to store the SRAM data to EEPROM:

• One method is the Hardware Store, initiated by a rising edge on the HS pin.

• The other method is the Software Store, initiated by writing the correct instruction to the command
register via I2C.

The_paragraph_above_is_copyright_Microchip:_AN2047

Explanation

The GCBASIC constants and commands shown below control the configuration of the 47xxx EE-RAM
device. GCBASIC supports I2C hardware and software connectivity - this is shown in the tables
below.

To use the 47xxx driver simply include the following in your user code. This will initialise the driver.

 #include <47xxx_EERAM.H>

 ; ----- Define Hardware settings for EERAM Module
 #define I2C_Adr_EERAM 0x30 ; EERAM base Address
 #define EERAM_HS PortB.1 ; Optional hardware Store Pin

 Dir EERAM_HS Out ; Rising edge initiates Backup

 EERAM_AutoStore(ON) ; Enable Automatic Storage on power loss

 'EERAM_AutoStore(OFF) ; Disable Automatic Storage on power loss

The device parameters for the device are shown in the table below.

Part Number Density (bits) VCC Range Max. I2C
Frequency

Tstore Delay Trecall Delay

47L04 4K 2.7-3.6V 1 MHz 8ms 25ms

47C04 4K 4.5-5.5V 1 MHz 8ms 2ms

47L16 16K 2.7-3.6V 1 MHz 25ms 5ms

47C16 16K 4.5-5.5V 1 MHz 25ms 5ms

The GCBASIC constants for control of the device are:

183

Constant Context Example Default

EERAM_I2C_Adr 8-bit I2C Address of
device

#define I2C_Adr_EERAM
0x30

Default is 0x30. This is
mandated

EERAM_HS Optional hardware
Store Pin

#define EERAM_HS
portb.1

No default - this is not
mandated

EERAM_Tstore Delay period for write to
device

#define EERAM_Tstore
25

25 (ms)

EERAM_Trecall Delay period to read
from device

#define EERAM_Trecall
5

5 (ms)

The GCBASIC commands for control of the device are:

Command Context Example

EERAM_AutoStore Enable Automatic Storage on
power loss or Disable Automatic
Storage on power loss

EERAM_AutoStore(ON), or
EERAM_AutoStore(OFF)

EERAM_Status Read the Status Register User_byte_variable =
EERAM_Status()

EERAM_Backup Backup / Store Now EERAM_Backup()

EERAM_Recall Restore Now EERAM_Recall()

EERAM_HWStore Force Backup with HS Pin EERAM_HWStore()

EERAM_Write Write a Byte of Data to address
at the specified address. The
address must be a word value
and the data is byte value.

ERAM_Write(
EERAM_Address_word,
EERAM_Data_byte)

EERAM_Read Read a Byte of Data from
address. The address must be a
word value and returned data is
byte value.

User_byte_variable =
EERAM_Read(EERAM_Address_
word)

This example shows how to use the device.

Example:

 #CHIP 16F18855,32
 #OPTION EXPLICIT

 #INCLUDE <47XXX_EERAM.H>

 #startup InitPPS, 85

184

 Sub InitPPS
 'PPS is explicit to a specific chip. Use PPSTool to ensure the PPS settings
are correct.

 'Module: EUSART
 RC0PPS = 0x0010 'TX > RC0
 TXPPS = 0x0008 'RC0 > TX (bi-directional)
 'Module: MSSP1
 SSP1DATPPS = 0x0013 'RC3 > SDA1
 RC3PPS = 0x0015 'SDA1 > RC3 (bi-directional)
 RC4PPS = 0x0014 'SCL1 > RC4
 SSP1CLKPPS = 0x0014 'RC4 > SCL1 (bi-directional)

 End Sub

 ; ----- Define Hardware Serial Print

 #DEFINE USART_BAUD_RATE 115200
 #DEFINE USART_TX_BLOCKING

 ; ----- Define Hardware settings for hwi2c

 #DEFINE HI2C_BAUD_RATE 400
 #DEFINE HI2C_DATA PORTC.3
 #DEFINE HI2C_CLOCK PORTC.4

 'I2C pins need to be input for legacy I2C modules
 DIR HI2C_DATA IN
 DIR HI2C_CLOCK IN

 'Initialise I2C Master
 hi2cMode Master

 ; ----- Define Hardware settings for EERAM Module

 #define EERAM_I2C_Adr 0x30 ; EERAM base Address
 #define EERAM_HS PortB.1 ; Optional hardware Store Pin

 Dir EERAM_HS Out ; Rising edge initiates Backup

 'Library function
 EERAM_AutoStore(ON) ; Enable Automatic Storage on power loss

 ; ----- Main body of program commences here.

 dim Idx as Byte

185

 HserPrintCRLF 2

 HserPrint "Hardware I2C EERAM Read Test at I2C Adr 0x"
 HserPrint Hex(EERAM_I2C_Adr)
 HserPrint " Reading RAM addresses 0x0 to 0xF" : HserPrintCRLF 2

 for Idx = 0x0 to 0xF

 HserPrint hex(Idx) + " = " : HserPrint Hex(EERAM_Read(Idx))
 If Idx = 7 or Idx = 0xf then
 HserPrintCRLF
 Else
 HserPrint " : "
 End if

 next

 HserPrintCRLF : HserPrint "Control Byte = " Hex(EERAM_Status()) : HserPrintCRLF 2

 wait 100 ms ; time for serial operations to complete
 end

For more help, see Software I2C or Hardware I2C

186

SRAM (Device)

This is the SRAM section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

SRAM Overview

Introduction:

Serial SRAM is a standalone volatile memory that provides an easy and inexpensive way to add more
RAM to application. These are 8-pin low-power devices. They are high-performance devices have
unlimited endurance and zero write times, making them ideal for applications involving continuous
data transfer, buffering, data logging, audio, video, internet, graphics and other math and data-
intensive functions.

These devices are available from 64 Kbit up to 1 Mbit in density and support SPI, SDI and SQI™ bus
modes.

The GCBASIC library only supports SPI bus mode. The GCBASIC library supports hardware and
software SPI - this is controlled via a constant, see below.

To use the SRAM libray simply include the following in your user code.

This will initialise the driver.

 #define SPISRAM_CS Porta.2 'Also known as SS, or Slave Select
 #define SPISRAM_SCK Portc.3 'Also known as CLK
 #define SPISRAM_DO Portc.5 'Also known as MOSI
 #define SPISRAM_DI Portc.4 'Also known as MISO

 #define SPISRAM_HARDWARESPI
 #define SPISRAM_TYPE SRAM_23LC1024

SRAM memory operations.

The library exposes a set of method to support use of SRAM memory.

Method Parameters Usage

SRAM
Write

eepAddr as long,
eepromVal as byte

A subroutine that required the address and
the value to be written to SRAM.

187

SRAMR
ead

eepAddr as long,
eepromVal as byte

A subroutine that required the address and
variable to updated with the byte value
from the specified SRAM address.

SRAMR
ead

eepAddr as long A function that required the address. The
function returns a byte value from the
specified SRAM address.

The library requires a set of constants to support use of SRAM memory.

Constant Parameters Usage

SPISRAM_T
YPE

Specifies the type of
SRAM.

Requires one of the following constants
SRAM_23LC1024,
SRAM_23LCV1024,
SRAM_23LC1024,
SRAM_23A1024,
SRAM_23LCV512,
SRAM_23LC512,
SRAM_23A512,
SRAM_23K256,
SRAM_23A256,
SRAM_23A640, or
SRAM_23K640

SPISRAM_C
S

Specifies the port for the
chip select port.

Required

SPISRAM_S
CK

Specifies the port for the
SPI clock port.

Required

SPISRAM_D
O

Specifies the port for the
SPI data out, or MOSI,
port.

Required

SPISRAM_D
I

Specifies the port for the
data in, or MISO, port.

Required

HWSPIMod
e

Specifies the speed of the
SPI communications for
Hardware SPI only.

Optional defaults to MASTERFAST.
Options are MASTERSLOW,
MASTER,
MASTERFAST, or
MASTERULTRAFAST for specific AVRs
only.

188

SPISRAM_H
ARDWARES
PI

Instructs the library to
use hardware SPI,
remove or comment out if
you want to use software
SPI.

Optional

The library also exposes a constant that is specific to the device.

These may be useful in the user program.

This constant is used by the library.

A user may use this public constant.

Constant Type Usage

SPISRA
M_CAPA
CITY

Long value Use to determine the size of the SRAM device

Examples

 #include <uno_mega328p.h>
 #option explicit

 ' USART settings
 #define USART_BAUD_RATE 57600
 #define USART_DELAY 0 ms
 #define USART_BLOCKING
 #define USART_TX_BLOCKING

 'SD card attached to SPI bus as follows:
 '
 'UNO: MOSI - pin 11, MISO - pin 12, CLK - pin 13, CS - pin 4 (CS pin can be
changed) and pin #10 (SS) must be an output
 'Mega: MOSI - pin 51, MISO - pin 50, CLK - pin 52, CS - pin 4 (CS pin can be
changed) and pin #52 (SS) must be an output
 'Leonardo: Connect to hardware SPI via the ICSP header

 #define SPISRAM_CS DIGITAL_5 'Also known as SS, or Slave Select
 #define SPISRAM_SCK DIGITAL_13 'Also known as CLK
 #define SPISRAM_DO DIGITAL_11 'Also known as MOSI
 #define SPISRAM_DI DIGITAL_12 'Also known as MISO

189

 #define SPISRAM_HARDWARESPI
 #define SPISRAM_TYPE SRAM_23LC1024

 #define HWSPIMode MASTERULTRAFAST 'MASTERSLOW | MASTER | MASTERFAST |
MASTERULTRAFAST for specific AVRs only. Defaults to MASTERFAST

 '**

 'Main program

 'Wait 2 seconds to open the serial terminal
 wait 2 s

 HSerPrintCRLF 2
 HSerPrint "Writing..."
 HSerPrintCRLF
 For SRAM_location=0 to SPISRAM_CAPACITY - 1
 SRAMWrite ([long]SRAM_location, SRAM_location and 255)
 Next

 dim spirambyteread as Byte
 spirambyteread = 11
 HSerPrintCRLF 2
 dim SRAM_location as long
 HSerPrint "Reading..."
 HSerPrintCRLF
 For SRAM_location=0 to SPISRAM_CAPACITY - 1
 'choose one....
 'SRAMread (SRAM_location, spirambyteread)
 'or, as a function
 spirambyteread = SRAMread (SRAM_location)

 if spirambyteread = (SRAM_location and 255) then
 HSerPrint hex(spirambyteread)
 else
 HSerPrint "**"
 end if
 HSerPrint ":"
 Next
 HSerPrintCRLF
 HSerPrint "Wait..."
 HSerPrintCRLF
 Wait 2 s

 HSerPrint "Rewriting to 0x00 ..."

190

 HSerPrintCRLF
 For SRAM_location=0 to SPISRAM_CAPACITY - 1
 SRAMWrite ([long]SRAM_location, 0)
 Next

 Dim errorcount as long
 errorcount = 0
 For SRAM_location=0 to SPISRAM_CAPACITY - 1
 SRAMRead (SRAM_location, spirambyteread)
 if spirambyteread <> 0 then
 errorcount++
 end if
 Next
 HSerPrint "Error Count (should be 0) = "
 HSerPrint errorcount
 HSerPrintCRLF
 HSerPrint "End..."
 HSerPrintCRLF
 end

or, for a PIC with PPS

 'Chip Settings.
 #chip 18F47k42, 64
 #config MCLRE = ON
 #option explicit

 'PPS Tool version: 0.0.5.27
 'PinManager data: v1.78
 'Generated for 18F47K42
 '
 'Template comment at the start of the config file
 '
 #startup InitPPS, 85
 #define PPSToolPart 18F47K42

 Sub InitPPS
 'This has been added to turn off PPS SPI when in SPI software mode
 #ifdef SPISRAM_HARDWARESPI
 'Module: SPI1
 RC3PPS = 0x001E 'SCK1 > RC3
 SPI1SCKPPS = 0x0013 'RC3 > SCK1 (bi-directional)
 RC5PPS = 0x001F 'SDO1 > RC5
 SPI1SDIPPS = 0x0014 'RC4 > SDI1
 'Module: UART pin directions
 #endif

191

 'Module: UART pin directions
 Dir PORTC.6 Out ' Make TX1 pin an output
 'Module: UART1
 RC6PPS = 0x0013 'TX1 > RC6
 End Sub
 'Template comment at the end of the config file

 ' USART settings
 #define USART_BAUD_RATE 57600
 #define USART_DELAY 0 ms
 #define USART_BLOCKING
 #define USART_TX_BLOCKING

 #define SPISRAM_CS Porta.2 'Also known as SS, or Slave Select
 #define SPISRAM_SCK Portc.3 'Also known as CLK
 #define SPISRAM_DO Portc.5 'Also known as MOSI
 #define SPISRAM_DI Portc.4 'Also known as MISO

 #define SPISRAM_HARDWARESPI
 #define SPISRAM_TYPE SRAM_23LC1024

 '**

 'Main program

 'Wait 2 seconds to open the serial terminal
 wait 2 s
 dim sizeofSPIRAM as long
 sizeofSPIRAM = SPISRAM_CAPACITY
 HSerPrintCRLF 2
 HSerPrint "Writing...SPISRAM_CAPACITY = 0x"
 HSerPrint hex(sizeofSPIRAM_U)
 HSerPrint hex(sizeofSPIRAM_H)
 HSerPrint hex(sizeofSPIRAM)
 HSerPrintCRLF
 wait 100 ms

 dim SRAM_location as long
 For SRAM_location=0 to SPISRAM_CAPACITY - 1
 SRAMWrite ([long]SRAM_location, SRAM_location and 255)
 Next

 dim spirambyteread as Byte
 spirambyteread = 11 'could be any number....
 HSerPrintCRLF 2

192

 HSerPrint "Reading..."
 HSerPrintCRLF
 For SRAM_location=0 to SPISRAM_CAPACITY - 1
 'choose one....
 'SRAMRead (SRAM_location, spirambyteread)
 'or, as a function
 spirambyteread = SRAMRead (SRAM_location)

 if spirambyteread = (SRAM_location and 255) then
 HSerPrint hex(spirambyteread)
 else
 HSerPrint "**"
 end if
 HSerPrint ":"
 Next
 HSerPrintCRLF
 HSerPrint "Wait..."
 HSerPrintCRLF
 Wait 2 s

 HSerPrint "Rewriting to 0x00 ..."
 HSerPrintCRLF
 For SRAM_location=0 to SPISRAM_CAPACITY - 1
 SRAMWrite ([long]SRAM_location, 0)
 Next

 Dim errorcount as long
 errorcount = 0
 For SRAM_location=0 to SPISRAM_CAPACITY - 1
 SRAMRead (SRAM_location, spirambyteread)
 if spirambyteread <> 0 then
 errorcount++
 end if
 Next
 HSerPrint "Error Count (should be 0) = "
 HSerPrint errorcount
 HSerPrintCRLF
 HSerPrint "End..."
 HSerPrintCRLF

 do

 loop

For more help, see SRAMRead or SRAMWrite

193

SRAMRead

Syntax:

 SRAMRead location, store

 or

 store = SRAMRead location

Command Availability:

Available on all Microchip PIC and Atmel AVR microcontrollers with SRAM data memory attached.

Explanation:

SRAMRead is the method, a function or a subroutine, used to read information from the SRAM data
storage.

location represents the location to read data from.

store is the variable in which to store the data after it has been read from SRAM.

Example:

194

 #include <uno_mega328p.h>
 #option explicit

 'Set up SRAM
 #define SPISRAM_CS DIGITAL_5 'Also known as SS, or Slave Select
 #define SPISRAM_SCK DIGITAL_13 'Also known as CLK
 #define SPISRAM_DO DIGITAL_11 'Also known as MOSI
 #define SPISRAM_DI DIGITAL_12 'Also known as MISO

 #define SPISRAM_HARDWARESPI
 #define SPISRAM_TYPE SRAM_23LC1024

 '**

 'Main program

 dim in_byte as byte

 'Using a function: Read from SRAM location 0x10 and place the results in the variable
in_byte
 in_byte = SRAMRead (0x10)

 'Using a subroutine: Read from SRAM location 0x10 and place the results in the
variable in_byte
 SRAMRead (0x10, in_byte)

For more help, see SRAM Overview or SRAMWrite

SRAMWrite

Syntax:

 SRAMWrite location, data

Command Availability:

Available on all Microchip PIC and Atmel AVR microcontrollers with SRAM data memory attached.

Explanation:

SRAMWrite is the method used to write information to the SRAM data storage, so that it can be accessed
by the SRAMRead command.

location represents the location to read data from, and this location will vary from one
application/solution to another.

195

data is the data that is to be written to the SRAM, a byte value or a byte variable.

Example:

 #include <uno_mega328p.h>
 #option explicit

 'Set up SRAM
 #define SPISRAM_CS DIGITAL_5 'Also known as SS, or Slave Select
 #define SPISRAM_SCK DIGITAL_13 'Also known as CLK
 #define SPISRAM_DO DIGITAL_11 'Also known as MOSI
 #define SPISRAM_DI DIGITAL_12 'Also known as MISO

 #define SPISRAM_HARDWARESPI
 #define SPISRAM_TYPE SRAM_23LC1024

 '**

 'Main program

 dim out_byte as byte

 'A subroutine: Weite to SRAM location 0x10 and the variable out_byte
 SRAMRead (0x10, out_byte)

For more help, see SRAMOverview or SRAMRead

196

Flow control
This is the Flow control section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Do

Syntax:

 Do [{While | Until} condition]
 ...
 program code
 ...
 <condition> Exit Do
 ...
 Loop [{While | Until} condition]

Command Availability:

Available on all microcontrollers.

Explanation:

The Do command will cause the code between the Do and the Loop to run repeatedly while condition is
true or until condition is true, depending on whether While or Until has been specified.

Note that the While or Until and the condition can only be specified once, or not at all. If they are not
specified, then the code will repeat endlessly.

Optionally, you can specify a condition to EXIT the Do-Loop immediately.

Example 1:

197

 'This code will flash a light until the button is pressed
 #chip 12F629, 4

 #define BUTTON GPIO.3
 #define LIGHT GPIO.5

 Dir BUTTON In
 Dir LIGHT Out

 Do Until BUTTON = 1
 PulseOut LIGHT, 1 s
 Wait 1 s
 Loop

Example 2:

This code will also flash a light until the button is pressed. This example uses EXIT DO within a
continuous loop.

 #chip 12F629, 4

 #define BUTTON GPIO.3
 #define LIGHT GPIO.5

 Dir BUTTON In
 Dir LIGHT Out

 Do
 PulseOut LIGHT, 1 s
 Wait 1 s
 if BUTTON = 1 then EXIT DO
 Loop

For more help, see Conditions

End

Syntax:

 End

Command Availability:

Available on all microcontrollers.

198

Explanation:

When the End command is used, the program will immediately stop running. There are very few cases
where this command is needed - generally, the program should be an endless loop.

Example:

 'This program will turn on the red light, but not the green light
 Set RED On
 End
 Set GREEN On

Exit

Syntax options:

 Exit Sub | Exit Function | Exit Do | Exit For | Exit Repeat

Command Availability:

Available on all microcontrollers.

Explanation:

This command will make the program exit the routine it is currently in, as it would if it came to the end
of the routine.

Applies to Subroutines, Functions, For-Next loops, Do-Loop loops and Repeat loops.

Example:

199

 #chip tiny13, 1

 #define SENSOR PORTB.0
 #define BUZZER PORTB.1
 #define LIGHT PORTB.2
 Dir SENSOR In
 Dir BUZZER Out
 Dir LIGHT Out

 Do
 Burglar
 Loop

 'Burglar Alarm subroutine
 Sub Burglar
 If SENSOR = 0 Then
 Set BUZZER Off
 Set LIGHT Off
 Exit Sub
 End If
 Set BUZZER On
 Set LIGHT On
 End Sub

For more help, see Do, For, Sub, Functions and Repeat

For

Syntax:

 For counter = start To end [Step increment]
 ...
 program code
 ...
 <condition> Exit For
 ...
 Next

Command Availability:

Available on all microcontrollers.

Explanation:

The For command is ideal for situations where a piece of code needs to be run a set number of times,

200

and where it is necessary to keep track of how many times the code has run. When the For command is
first executed, counter is set to start. Then, each successive time the program loops, increment is added
to counter, until counter is equal to end. Then, the program continues beyond the Next.

Step and increment are optionals. If Step is not specified, GCBASIC will increment counter by 1 each time
the code is run.

Step is an integer value. Step value can positive of negative. When using advanced variable you must
cast the step value as an integer, see the example below.

increment can be a positive or negative constant or an integer.

The Exit For is optional and can be used to exit the loop upon a specific condition.

WARNING

#define USELEGACYFORNEXT to enable legacy FOR-NEXT support. The GCBASIC
compiler was revised in 2021 to improve the handling of the FOR-NEXT support.
You can revert to the legacy FOR-NEXT support by using #DEFINE USELEGACYFORNEXT
but using this legacy support will cause your program to operate incorrectly. The
use of #DEFINE USELEGACYFORNEXT is NOT recommended.

Examples.

Example 1:

 'This code will flash a green light 6 times.

 #chip 16F88, 8

 #define LED PORTB.0
 Dir LED Out

 For LoopCounter = 1 to 6

 PulseOut Led, 1 s
 Wait 1 s

 Next

Example 2:

201

'This code will flash alternate LEDS until the switch is pressed.

 #chip 16F88, 8

 #define LED1 PORTB.0
 Dir LED1 Out
 #define LED2 PORTB.2
 Dir LED2 Out

 #define SWITCH1 PORTA.0
 Dir SWITCH1 In
 main:
 PulseOut LED1, 1 s
 For LoopCounterOut = 1 to 250

 PulseOut LED2, 4 Ms
 if switch = On then Exit For

 Next
 Set LED2 OFF
 goto main

Example 3:

This example show casting the step value as an integer. The step value in this example is the integer
value of 2.

 #script
 // Create a constant
 Pi = 22/7
 #endscript

 Dim myCircumference, myRadius as Single
 Dim myDiameter as Single Alias myCircumference_E, myCircumference_U,
myCircumference_H, myCircumference

 HserPrintCRLF

 For MyRadius = 0.5 to 10.5 step [integer]2
 myCircumference=myRadius * Pi * 2
 HSerPrint "myRadius = " + ltrim(SingleToString(myRadius))
 HSerPrintStringCRLF " myCircumference = " +
ltrim(SingleToString(myCircumference))
 next

202

For more help, see Repeat

Gosub

Syntax:

 Gosub label

Command Availability:

Available on all microcontrollers.

Explanation:

The Gosub command is used to jump to a label as a subroutine, in a similar way to Goto. The difference
is that Return can then be used to return to the line of code after the Goto.

NOTE

Gosub should NOT be used if it can be avoided. It is not required to call a subroutine that has been
defined using Sub, just write the name of the subroutine.

Example:

 'This program will flash an LED on portb bit 0 and play a beep on
 'porta bit 4. until the microcontroller is turned off.

 #chip 16F628A, 4 'Change this to suit your circuit

 #define SOUNDOUT PORTA.4
 #define LIGHT PORTB.0
 Dir LIGHT Out

 Do
 'Flash Light
 PulseOut LIGHT, 1 s
 Wait 1 s
 'Beep
 Gosub PlayBeep
 Loop

 PlayBeep:
 Tone 200, 10
 Tone 100, 10
 Return

203

For more help, see Goto and Labels

Goto

Syntax:

 Goto label

Command Availability:

Available on all microcontrollers.

Explanation:

The Goto command will make the microcontroller jump to the line specified, and continue running the
program from there. The Goto command is mainly useful for exiting out of loops - if you need to create
an infinite loop, use the Do command instead.

Be careful how you use Goto. If used too much, it can make programs very hard to read.

To define a label, put the name of the label alone on a line, with just a colon (:) after it.

Example:

 'This program will flash the light until the button is pressed
 'off. Notice the label named SWITCH_OFF.

 #chip 16F628A, 4 'Change this line to suit your circuit

 #define BUTTON PORTB.0
 #define LIGHT PORTB.1
 Dir BUTTON In
 Dir LIGHT Out

 Do
 PulseOut LIGHT, 500 ms
 If BUTTON = 1 Then Goto SWITCH_OFF
 Wait 500 ms
 If BUTTON = 1 Then Goto SWITCH_OFF
 Loop

 SWITCH_OFF:
 Set LIGHT Off
 'Chip will enter low power mode when program ends

For more help, see Gosub and Labels

204

If

Syntax:

Short form:

 If condition Then command

Long form:

 If condition Then
 ...
 program code
 ...
 End If

Using Else:

 If condition Then
 code to run if true
 Else
 code to run if false
 End If

Using If Else:

 If condition Then
 code to run if true
 Else if nextcondition then
 code to run if nextcondition true
 Else
 code to run if false
 End If

Command Availability:

Available on all microcontrollers.

Explanation:

The If command is the most common command used to make decisions. If condition is true, then
command (short) or program code (long) will be run. If it is false, then the microcontroller will skip to the
code located on the next line (short) or after the End If (long form).

If Else is used, then the condition between If and Else will run if the condition is true, and the code
between Else and End If will run if the condition is false.

205

If Else if is used, then the condition after the Else if will run if the condition is true.

Note: Else must be on a separate line in the source code.

Supported:

 <instruction> 'is supported
 Else
 <instruction>

 <instruction> Else 'Not Supported, but will compile
 <instruction>

Example:

 'Turn a light on or off depending on a light sensor

 #chip 12F683, 8

 #define LIGHT GPIO.1
 #define SENSOR AN3
 #define SENSOR_PORT GPIO.4

 Dir LIGHT Out
 Dir SENSOR_PORT In

 Do
 If ReadAD(SENSOR) > 128 Then
 Set LIGHT Off
 Else
 Set LIGHT On
 End If
 Loop

For more help, see Conditions

IndCall

Syntax:

 IndCall Address

Command Availability:

206

Available on all microcontrollers.

Explanation:

IndCall provides a basic implementation of function pointers. Address is the program memory location
of the subroutine that is to be called. There are two ways to specify this - either by providing a direct
reference to the subroutine using the @ operator, or by specifying a word variable that contains the
address.

This command is useful for callbacks. For example, a particular subroutine might read bytes from a
serial connection, but different actions may need to be taken at different times. A different subroutine
could be created for each action, and then the subroutine for the appropriate action could be passed to
the serial connection reading routine each time it is called.

Note: Calling subroutines that have parameters using IndCall is not supported. Errors may occur. If
data needs to be passed, use a variable instead.

Example:

 'Flash an LED using an indirect call
 #chip 12F683

 'Create a word variable, and set it to the memory location of the
 'Blink subroutine.
 Dim FlashingSub As Word
 FlashingSub = @Blink

 'Main loop
 Do
 'Indirect call to subroutine at location FlashingSub
 IndCall FlashingSub
 Loop

 'LED flashing subroutine
 Sub Blink
 PulseOut GPIO.0, 500 ms
 Wait 500 ms
 End Sub

Pause

Syntax:

Fixed Length Delay:
 Pause time_ms

207

Command Availability:

Available on all microcontrollers.

Explanation:

The Pause command will cause the program to pause for a specified time in milliseconds. The only unit
of time permitted is milliseconds.

Please use the wait command to use other units of time.

For more help, see Wait

Repeat

Syntax:

 Repeat times
 ...
 program code
 ...
 <condition> Exit Repeat
 ...
 End Repeat

Command Availability:

Available on all microcontrollers.

Explanation:

The Repeat command is ideal for situations where a piece of code needs to be run a set number of
times. It uses less memory and runs faster than the For command, and should be used wherever it is
not necessary to count how many times the code has run.

Optionally, you can specify a condition to Exit the Repeat-Loop immediately.

Repeat has a maximum repeat value of 65535.

Example:

208

 'This code will flash a green light 6 times.

 #chip 16F88, 20

 #define LED PORTB.0
 dir LED out

 Repeat 6
 PulseOut LED, 1 s
 Wait 1 s
 End Repeat

See Also For

Select

Syntax:

 Select Case var

 Case value1
 code1

 Case value2
 code2

 Case value_3 To _value4
 code3

 Case Else
 code4

 End Select

Command Availability:

Available on all microcontrollers.

Explanation:

The Select Case control structure is used to select and run a particular section of code, based on the
value of var. If var equals value1 then code1 will be run. Once code1 has run, the chip will jump to the
End Select command and continue running the program. If none of the other conditions are true, then
the code under the Case Else section will be run.

209

Case var TO var is a range of values. If the value is within the range the code section will be executed.

Case Else is optional, and the program will function correctly without it.

If there is only one line of code after the Case, the code may look neater if the line is placed after the
Case. This is shown below in the example, for cases 3, 4 and 5.

It is important to note that only one section of code will be run when using Select Case.

There are two examples shown below.

Example 1:

210

 'Program to read a value from a potentiometer, and display a
 'different word based on the result

 #chip 16F877a, 4

 'LCD connection settings
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_DB4 PORTD.4
 #define LCD_DB5 PORTD.5
 #define LCD_DB6 PORTD.6
 #define LCD_DB7 PORTD.7
 #define LCD_RS PORTD.0
 #define LCD_NO_RW
 #define LCD_Enable PORTD.2

 DIR PORTA.0 IN
 Do
 Temp = ReadAD(AN0) / 20
 CLS
 Select Case Temp
 Case 0
 Print "None!"
 Case 1
 Print "One"
 Case 2
 Print "Two"
 Case 3: Print "Three"
 Case 4: Print "Four"
 Case 5: Print "Five"
 Case Else
 Print "A lot!"
 End Select
 Wait 250 ms
 Loop

Example 2:

This code demonstrates how to receive codes from a handheld remote control unit. This has been
tested and supports a Sony TV remote and also a universal remote set to Sony TV mode.

The program gets both the device number and the key number, and also translates the key number to
English. The received results are displayed on an LCD.

The circuit for the IR receiver and the chip is shown below.

211

 'A program to receive IR codes sent by a Sony
 'compatible handheld remote control.

 #chip 16F88, 8 'PIC16F88 running at 8 MHz
 #config mclr=off 'reset handled internally

 '----- Constants

 #define LCD_IO 4 '4-bit mode
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RS PortB.2 'pin 8 is Register Select
 #define LCD_Enable PortB.3 'pin 9 is Enable
 #define LCD_DB4 PortB.4 'DB4 on pin 10
 #define LCD_DB5 PortB.5 'DB5 on pin 11
 #define LCD_DB6 PortB.6 'DB6 on pin 12
 #define LCD_DB7 PortB.7 'DB7 on pin 13
 #define LCD_NO_RW 'ground RW line on LCD
 #define IR PortA.0 'sensor on pin 17

 '----- Variables

 dim device, cmd, count, i as byte
 dim pulse(12) 'pulse count array
 dim button as string 'ASCII for button label

 '----- Program

 dir PortA in 'A.0 is IR input
 dir PortB out 'B.2 - B.6 for LCD

 cls 'clear the LCD
 print "Dev: Cmd:" 'logo for top line
 locate 1,0
 print "Button:" 'logo for second line

 do
 getIR, cmd 'wait for IR signal
 printCmd 'show device and command
 printKey 'show key label
 wait 10 mS 'ignore any repeats
 loop 'repeat forever

 '----- Subroutines

 sub getIR
 tarry1:
 count = 0 'wait for start bit

212

 do while IR = 0 'measure width (active low)
 wait 100 uS '24 X 100 uS = 2.4 mS
 count += 1
 loop
 if count < 20 then goto tarry1 'less than this so wait

 for i=1 to 12 'read/store the 12 pulses
 tarry2:
 count = 0
 do while IR = 0 'zero = 6 units = 0.6 mS
 wait 100 uS 'one = 12 units = 1.2 mS
 count += 1
 loop
 if count < 4 then goto tarry2 'too small to be legit
 pulse(i) = count 'else store pulse width
 next

 cmd = 0 'command built up here
 for i = 1 to 7 '1st seven bits are the cmd
 cmd = cmd / 2 'shift into place
 if pulse(i) > 10 then 'longer than 10 mS
 cmd = cmd + 64 'so call it a one
 end if
 next

 device = 0 'device number built up here
 for i=8 to 12 'next 5 bits are device number
 device = device / 2
 if pulse(i) > 10 then
 device = device + 16
 end if
 next
 end sub

 sub printCmd 'print device number
 locate 0,5
 print " "
 locate 0,5
 print device

 locate 0,13 'print raw command number
 print " "
 locate 0,13
 print cmd
 end sub

 sub PrintKey 'print translated button
 locate 1,9

213

 print " "
 locate 1,9

 select case cmd 'translate command code
 case 0
 button = "One"
 case 1
 button = "Two"
 case 2
 button = "Three"
 case 3
 button = "Four"
 case 4
 button = "Five"
 case 5
 button = "Six"
 case 6
 button = "Seven"
 case 7
 button = "Eight"
 case 8
 button = "Nine"
 case 9
 button = "Zero"
 case 10
 button = "#####"
 case 11
 button = "Enter"
 case 12
 button = "#####"
 case 13
 button = "#####"
 case 14
 button = "#####"
 case 15
 button = "#####"
 case 16
 button = "Chan+"
 case 17
 button = "Chan-"
 case 18
 button = "Vol+"
 case 19
 button = "Vol-"
 case 20
 button = "Mute"
 case 21
 button = "Power"

214

 case else
 button = " "
 end select
 print button
 end sub

Wait

Syntax:

Fixed Length Delay:

 Wait time units

Conditional Delay:

 Wait {While | Until} condition

Using a variable to specific US Delay with Warning supression:

 Wait timevalue US #OVERRIDEWARNING

215

Command Availability:

Available on all microcontrollers.

Explanation:

The Wait command will cause the program to wait for either a specified amount of time (such as 1
second), or while/until a condition is true.

When using the fixed-length delay, there is a variety of units that are available:

Unit Length of unit Delay range

us 1 microsecond 1 us - 65535 us

10us 10 microseconds 10 us - 2.55 ms

ms 1 millisecond 1 ms - 65535 ms

10ms 10 milliseconds 10 ms - 2.55 s

s 1 second 1 s - 255 s

m 1 minute 1 min - 255 min

h 1 hour 1 hour - 255 hours

At one stage, GCBASIC variables could not hold more than 255. The 10us and 10ms units were added as a
way to work around this limit. There is now no such limit (Wait 1000 ms will work for example), so
these are not really needed. However, you may see them in some older examples or programs, and the
10us units are sometimes the shortest delay that will work accurately.

WARNING

PIC Devices Only
MS Delays at Clock frequency’s below 28kHz are not supported and will silently
fail.
US Delays at Clock frequency’s below 250kHz are not supported and will silently
fail.
US Delays at lower Clock frequency’s is accurate ONLY when nn is divisible by 4.
This is caused by the minimum ASM delay loop being a specific number of
instructions.
US Delays at lower Clock frequency’ when not divisible by 4 will silently accept the
nn value and incorrect delays will be produced. + Use #OVERRIDEWARNING to supress
warnings. Delays at Clock frequency’s below 500kHz may be impacted by previous
instructions; testing of actual delays is advised.

Example:

216

 'This code will wait until a button is pressed, then it will flash
 'a light every half a second and produce a 440 Hz tone.

 #chip 16F819, 8

 #define BUTTON PORTB.0
 #define SPEAKER PORTB.1
 #define LIGHT PORTB.2
 Dir BUTTON In
 Dir SPEAKER Out
 Dir LIGHT Out

 'Assumes Button switches on when pressed
 Wait Until BUTTON = 1
 Wait Until BUTTON = 0

 Do
 'Flash the light
 Set LIGHT On
 Wait 500 ms
 Set LIGHT Off

 'Produce the tone
 '440 Hz = 880 changes = tone on for 1.14 ms
 Repeat 440
 PulseOut SPEAKER, 1140 us
 Wait 114 10us 'Wait for 114 x 10 us (1.14 ms)
 End Repeat
 Loop

To suppress warnings when using US.

 dim timevariable as Word
 timevariable = 100 // 100 is an example value that assigns the variable.

 // Use #OVERRIDEWARNING to prevent warning messages
 wait timevariable US #OVERRIDEWARNING

For more help, see Conditions

217

Fixed Voltage Reference
This is the Fixed Voltage Reference section of the Help file. Please refer the sub-sections for details
using the contents/folder view.

FVRInitialize

Syntax:

 FVRInitialize (FVR_OFF | FVR_1x | FVR_2x | FVR_4x)

Command Availability:

Available on all Microchip microcontrollers with the Fixed Voltage Reference (FVR) module.

Explanation:

The method is a subroutine that sets the state of the FVR.

FVR_Off = Fixed Voltage Reference is set to OFF

FVR_1x = Fixed Voltage Reference is set to 1.024v

FVR_2x = Fixed Voltage Reference is set to 2.048v

FVR_4x = Fixed Voltage Reference is set to 4.096v

Using the the following device’s datasheet, as a general case,
 http://ww1.microchip.com/downloads/en/DeviceDoc/40001419F.pdf that can be downloaded from
the device’s page, http://www.microchip.com/wwwproducts/en/pic16f1828 parameter AD06 in table
30-8 at page 359, and the corresponding Note 4, tell us that the Vref voltage (Vref+ minus Vref-) should
not be less than 1.8V, regardless of the reference voltage used, in order for the ADC module to work
within the datasheet specifications. Also, as Vref- cannot be a negative voltage (voltages below GND)
the lowest voltage on it is 0V. Then an FVR of 1.024V cannot be used as VREF+ for the ADC, but only
2.048 and 4.098 values.

The 1.024V FVR value exists for usage with other modules not just the ADC module.

Example:

218

http://ww1.microchip.com/downloads/en/DeviceDoc/40001419F.pdf
http://www.microchip.com/wwwproducts/en/pic16f1828

 '// use FVR 4096 as Reference
 FVRInitialize (FVR_4x)
 wait while FVRIsOutputReady = false
 ADVal = ReadAd(AN0)

 '// Turn off FVR
 FVRInitialize (FVR_Off)

For more help, see FVRIsOutputReady

FVRIsOutputReady

Syntax:

 user_var = FVRIsOutputReady()

Command Availability:

Available on all Microchip microcontrollers with the Fixed Voltage Reference (FVR) module.

Explanation:

The method is a function that returns the state of the FVR. The returned value can be assigned to a
variable to used as function.

The method returns 0 or 1. As follows:

0 = Fixed Voltage Reference output is not ready or not enabled

1 = Fixed Voltage Reference output is ready for use

Example:

 '// use FVR 4096 as Reference
 FVRInitialize (FVR_4x)
 wait while FVRIsOutputReady = false
 ADVal = ReadAd(AN0)

For more help, see FVRInitialize

219

Interrupts
This is the Interrupt section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Interrupts overview

Introduction

Interrupts are a feature of many microcontrollers. They allow the microcontroller to temporarily
pause (interrupt) the code it is running and then start running another piece of code when some event
occurs. Once it has dealt with the event, it will return to where it was and continue running the
program.

Many events can trigger an interrupt, such as a timer reaching its limit, a serial message being
received, or a special pin on the microcontroller receiving a signal.

Using Interrupts

There are two ways to use interrupts in GCBASIC. The first way is to use the On Interrupt command.
This will automatically enable a given interrupt, and run a particular subroutine when the interrupt
occurs.

The other way to deal with interrupts is to create a subroutine called Interrupt. GCBASIC will call this
subroutine whenever an interrupt occurs, and then your code can check the "flag" bits to determine
which interrupt has occured, and what should be done about it. If you use this approach, then you’ll
need to enable the desired interrupts manually. It is also essential that your code clears the flag bits, or
else the interrupt routine will be called repeatedly.

Some combination of these two methods is also possible - the code generated by On Interrupt with
check to see if the interrupt is one it recognises. If the interrupt is recognised, On Interrupt will deal
with it - if not, the Interrupt subroutine will be called to deal with the interrupt.

The recommended way is to use On Interrupt, as it is both more efficient and easier to set up.

During some sections of code, it is desirable not to have any interrupts occur. If this is the case, then
use the IntOff command to disable interrupts at the start of the section, and IntOn to re-enable them at
the end. If any interrupt events occur while interrupts are disabled, then they will be processed as
soon as interrupts are re-enabled. If the program does not use interrupts, IntOn and IntOff will be
removed automatically by GCBASIC.

See Also IntOff, IntOn, On Interrupt

IntOff

Syntax:

220

 IntOff

Command Availability:

Available on Microchip PIC and Atmel AVR microcontrollers with interrupt support. Will be
automatically removed on chips without interrupts.

Explanation:

IntOff is used to disable interrupts on the microcontroller. It should be used at the start of code which
is timing-sensitive, and which would not function correctly if paused and restarted.

It is essential that IntOn is used to turn interrupts on again after the timing-sensitive code has finished
running. If not, no interrupts will be handled.

It is recommended that IntOff be placed before all code that is timing sensitive, in case interrupts are
implemented later.

IntOff will be removed from the assembler if no interrupts are used.

See also IntOn, Interrupts

IntOn

Syntax:

 IntOn

Command Availability:

Available on Microchip PIC and Atmel AVR microcontrollers with interrupt support. Will be
automatically removed on chips without interrupts.

Explanation:

IntOn is used to enable interrupts on the microcontroller after IntOff has disabled them. It should be
used at the end of code which is timing-sensitive.

IntOn will be removed from the assembler if no interrupts are used.

See also IntOff, Interrupts

On Interrupt

Syntax:

221

 On Interrupt event Call handler
 On Interrupt event Ignore

Command Availability:

Available on Microchip PIC and Atmel AVR microcontrollers with interrupt support.

Explanation:

On Interrupt will add code to call the subroutine handler whenever the interrupt event occurs. When
Call is specified, GCBASIC will enable the interrupt, and call the interrupt handler when it occurs.
When Ignore is specified, GCBASIC will disable the interrupt handler and prevent it from being called
when the event occurs. If the event occurs while the handler is disabled, then the handler will be
called as soon as it is re-enabled. The only way to prevent this from happening is to manually clear the
flag bit for the interrupt.

There are many possible interrupt events that can occur, and the events vary greatly from chip to chip.
GCBASIC will display an error if a given chip cannot support the specified event.

On Interrupt may require the setting or clearing of the interrupt register bit(s), and, On Interrupt may
require setting of explicit enable register bits. You should always consult the device datasheet for these
On Interrupt additional specific settings of register bits. Typically, you will need define the 1) source
event register bit(s) in the main program, and, 2) clear or set the register bit at the start of the of the
interrupt handler subroutine.

GCBASIC has many demonstrations showing how to set and enable appropiate interrupt register bits to
support the On Interrupt method.

If On Interrupt is used to handle an event, then the Interrupt() subroutine will not be called for that
event. However, it will still be called for any events not dealt with by On Interrupt.

Events:

GCBASIC supports the events shown on the table below. Some events are only implemented on a few
specialised chips. Events in grey are supported by Microchip PIC and Atmel AVR microcontrollers,
events in blue are only supported by some Microchip PIC microcontrollers, and events in red are only
supported by Atmel AVR microcontrollers.

Note that GCBASIC doesn’t fully support all of the hardware which can generate interrupts - some work
may be required with various system variables to control the unsupported peripherals.

Event Name Description Supported

ADCReady The analog/digital converter has finished a conversion Microchip&
AVR

222

Event Name Description Supported

BatteryFail The battery has failed in some way. This is only implemented on the
ATmega406

AVR

CANActivity CAN bus activity is taking place Microchip

CANBadMessag
e

A bad CAN message has been received Microchip

CANError Some CAN error has occured Microchip&
AVR

CANHighWater
mark

CAN high watermark reached Microchip

CANRx0Ready New message present in buffer 0 Microchip

CANRx1Ready New message present in buffer 1 Microchip

CANRx2Ready New message present in buffer 2 Microchip

CANRxReady New message present Microchip

CANTransferCo
mplete

Transfer of data has been completed AVR

CANTx0Ready Buffer 0 has been sent Microchip

CANTx1Ready Buffer 1 has been sent Microchip

CANTx2Ready Buffer 2 has been sent Microchip

CANTxReady Sending has completed Microchip

CCADCAccRead
y

CC ADC accumulate conversion finished (ATmega406 only) AVR

CCADCReady CC ADC instantaneous conversion finished (ATmega406 only) AVR

CCADCRegular CC ADC regular conversion finished (ATmega406 only) AVR

CCP1 The CCP1 module has captured an event Microchip

CCP2 The CCP2 module has captured an event Microchip

CCP3 The CCP3 module has captured an event Microchip

CCP4 The CCP4 module has captured an event Microchip

CCP5 The CCP5 module has captured an event Microchip

Comp0Change The output of comparator 0 has changed Microchip&
AVR

Comp1Change The output of comparator 1 has changed Microchip&
AVR

223

Event Name Description Supported

Comp2Change The output of comparator 2 has changed Microchip&
AVR

Crypto The KEELOQ module has generated an interrupt Microchip

EEPROMReady An EEPROM write has finished Microchip&
AVR

Ethernet The Ethernet module has generated an interrupt. This must be dealt
within the handler.

Microchip

ExtInt0 External Interrupt pin 0 has been detected Microchip&
AVR

ExtInt1 External Interrupt pin 1 has been detected Microchip&
AVR

ExtInt2 External Interrupt pin 2 has been detected Microchip&
AVR

ExtInt3 External Interrupt pin 3 has been detected Microchip&
AVR

ExtInt4 External Interrupt pin 4 has been detected AVR

ExtInt5 External Interrupt pin 5 has been detected AVR

ExtInt6 External Interrupt pin 6 has been detected AVR

ExtInt7 External Interrupt pin 7 has been detected AVR

GPIOChange The pins on port GPIO have changed Microchip

LCDReady The LCD is about to draw a segment Microchip&
AVR

LPWU The Low Power Wake Up has been detected Microchip

OscillatorFail The external oscillator has failed, and the microcontroller is running
from an internal oscillator.

Microchip

PinChange Logic level of PCINT pin has changed AVR

PinChange0 Logic level of PCINT0 pin has changed AVR

PinChange1 Logic level of PCINT1 pin has changed AVR

PinChange2 Logic level of PCINT2 pin has changed AVR

PinChange3 Logic level of PCINT3 pin has changed AVR

PinChange4 Logic level of PCINT4 pin has changed AVR

PinChange5 Logic level of PCINT5 pin has changed AVR

224

Event Name Description Supported

PinChange6 Logic level of PCINT6 pin has changed AVR

PinChange7 Logic level of PCINT7 pin has changed AVR

PMPReady A Parallel Master Port read or write has finished Microchip

PORTChange The pins on ports ABCEDEF have changed. This is generic port change
interrupt. You must inspect the source to ensure you are handlign the
correct interrupt.

Microchip

PORTAChange The pins on port A have changed Microchip

PORTABChange The pins on port A and/or B have changed Microchip

PORTBChange The pins on port B have changed Microchip&
AVR

PSC0Capture The counter for Power Stage Controller 0 matches the value in a
compare register, the value of the counter has been captured, or a
synchronisation error has occurred

AVR

PSC0EndCycle Power Stage Controller 0 has reached the end of its cycle AVR

PSC1Capture The counter for Power Stage Controller 1 matches the value in a
compare register, the value of the counter has been captured, or a
synchronisation error has occurred

AVR

PSC1EndCycle Power Stage Controller 1 has reached the end of its cycle AVR

PSC2Capture The counter for Power Stage Controller 2 matches the value in a
compare register, the value of the counter has been captured, or a
synchronisation error has occurred

AVR

PSC2EndCycle Power Stage Controller 2 has reached the end of its cycle AVR

PSPReady A Parallel Slave Port read or write has finished Microchip

PWMTimeBase The PWM time base matches the PWM Time Base Period register
(PTPER)

Microchip

SPIReady The SPI module has finished the previous transfer AVR

SPMReady A write to program memory by the spm instruction has finished AVR

SPPReady A SPP read or write has finished Microchip

SSP1Collision SSP1 has detected a bus collision Microchip

SSP1Ready The SSP/SSP1/MSSP1 module has finished sending or receiving Microchip

SSP2Collision SSP2 has detected a bus collision Microchip

SSP2Ready The SSP2/MSSP2 module has finished sending or receiving Microchip

225

Event Name Description Supported

Timer0Capture An input event on the pin ICP0 has caused the value of Timer 0 to be
captured in the ICR0 register

AVR

Timer0Match1 Timer 0 matches the Timer 0 output compare register A (OCR0A) AVR

Timer0Match2 Timer 0 matches the Timer 0 output compare register B (OCR0B) AVR

Timer0Overflo
w

Timer 0 has overflowed Microchip&
AVR

Timer1Capture An input event on the pin ICP1 has caused the value of Timer 1 to be
captured in the ICR1 register

AVR

Timer1Error The Timer 1 Fault Protection unit has been detected by an input on the
INT0 pin

AVR

Timer1Match1 Timer 1 matches the Timer 1 output compare register A (OCR1A)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

Timer1Match2 Timer 1 matches the Timer 1 output compare register B (OCR1B)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

Timer1Match3 Timer 1 matches the Timer 1 output compare register C (OCR1C)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

Timer1Match4 Timer 1 matches the Timer 1 output compare register D (OCR1D)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

Timer1Overflo
w

Timer 1 has overflowed Microchip&
AVR

Timer2Match Timer 2 matches the Timer 2 output compare register (PR2)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

Microchip

Timer2Match1 Timer 2 matches the Timer 2 output compare register A (OCR2A)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

Timer2Match2 Timer 2 matches the Timer 2 output compare register B (OCR2B)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

Timer2Overflo
w

Timer 2 has overflowed AVR

Timer3Capture An input event on the pin ICP3 has caused the value of Timer 3 to be
captured in the ICR3 register

AVR

226

Event Name Description Supported

Timer3Match1 Timer 3 matches the Timer 3 output compare register A (OCR3A)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

Timer3Match2 Timer 3 matches the Timer 3 output compare register B (OCR3B)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

Timer3Match3 Timer 3 matches the Timer 3 output compare register C (OCR3C)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

Timer3Overflo
w

Timer 3 has overflowed Microchip&
AVR

Timer4Capture An input event on the pin ICP4 has caused the value of Timer 4 to be
captured in the ICR4 register

AVR

Timer4Match Timer 4 matches the Timer 4 output compare register (PR4)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

Microchip

Timer4Match1 Timer 4 matches the Timer 4 output compare register A (OCR4A)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

Timer4Match2 Timer 4 matches the Timer 4 output compare register B (OCR4B)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

Timer4Match3 Timer 4 matches the Timer 4 output compare register C (OCR4C)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

Timer4Overflo
w

Timer 4 has overflowed AVR

Timer5CAP1 An input on the CAP1 pin has caused the value of Timer 5 to be
captured in CAP1BUF

Microchip

Timer5CAP2 An input on the CAP2 pin has caused the value of Timer 5 to be
captured in CAP2BUF

Microchip

Timer5CAP3 An input on the CAP3 pin has caused the value of Timer 5 to be
captured in CAP3BUF

Microchip

Timer5Capture An input event on the pin ICP5 has caused the value of Timer 5 to be
captured in the ICR5 register

AVR

Timer5Match1 Timer 5 matches the Timer 5 output compare register A (OCR5A)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

227

Event Name Description Supported

Timer5Match2 Timer 5 matches the Timer 5 output compare register B (OCR5B)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

Timer5Match3 Timer 5 matches the Timer 5 output compare register C (OCR5C)
Within the Interrupt handling sub routine ensure the timer reset and
cleartimer is set appropriately.

AVR

Timer5Overflo
w

Timer 5 has overflowed Microchip&
AVR

Timer6Match Timer 6 matches the Timer 6 output compare register (PR6) Microchip

Timer7Overflo
w

Timer 7 has overflowed Microchip

Timer8Match Timer 8 matches the Timer 8 output compare register (PR8) Microchip

Timer10Match Timer 10 matches the Timer 10 output compare register (PR10) Microchip

Timer12Match Timer 12 matches the Timer 12 output compare register (PR12) Microchip

TWIConnect The Atmel AVR has been connected to or disconnected from the TWI
(I2C) bus

Microchip&
AVR

TWIReady The TWI has finished the previous transmission and is ready to send or
receive more data

Microchip&
AVR

UsartRX1Ready UART/USART 1 has received data Microchip&
AVR

UsartRX2Ready UART/USART 2 has received data Microchip&
AVR

UsartRX3Ready UART/USART 3 has received data AVR

UsartRX4Ready UART/USART 4 has received data AVR

UsartTX1Ready UART/USART 1 is ready to send data Microchip&
AVR

UsartTX1Sent UART/USART 1 has finished sending data AVR

UsartTX2Ready UART/USART 2 is ready to send data Microchip&
AVR

UsartTX2Sent UART/USART 2 has finished sending data AVR

UsartTX3Ready UART/USART 3 is ready to send data AVR

UsartTX3Sent UART/USART 3 has finished sending data AVR

UsartTX4Ready UART/USART 4 is ready to send data AVR

UsartTX4Sent UART/USART 4 has finished sending data AVR

228

Event Name Description Supported

USBEndpoint A USB endpoint has generated an interrupt AVR

USB The USB module has generated an interrupt. This must be dealt with in
the handler.

Microchip&
AVR

USIOverflow The USI counter has overflowed from 15 to 0 AVR

USIStart The USI module has detected a start condition AVR

VoltageFail The input voltage has dropped too low Microchip

VoltageRegulat
or

An interrupt has been generated by the voltage regulator
(ATmega16HVA only)

AVR

WakeUp The Wake-Up timer has overflowed AVR

WDT An interrupt has been generated by the Watchdog Timer AVR

Example 1:

229

 'This program increments a counter every time Timer1 overflows
 #chip 16F877A, 20

 'LCD connection settings
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_DB4 PORTD.4
 #define LCD_DB5 PORTD.5
 #define LCD_DB6 PORTD.6
 #define LCD_DB7 PORTD.7
 #define LCD_RS PORTD.0
 #define LCD_RW PORTD.1
 #define LCD_Enable PORTD.2

 InitTimer1 Osc, PS1_1/8
 StartTimer 1
 CounterValue = 0

 Wait 100 ms
 Print "Int Test"

 On Interrupt Timer1Overflow Call IncCounter

 Do
 CLS
 Print CounterValue
 Wait 100 ms
 Loop

 Sub IncCounter
 CounterValue ++
 End Sub

Example 2:

230

 'This example reflects the input signal on the output port.
 #chip mega328p, 16
 #option explicit

 'set out SOURCE interrupt port as an output
 dir portb.0 in

 'set/enable the mask for the specific input port
 'this is crutial - for a lot of the On Interrupt methods you will need to specify the
interrupt source via a mask.bit.
 PCINT0 = 1

 'set out signal port as an output
 dir portB.5 out

 'setup the On Interrupt method
 On Interrupt PinChange0 Call TogglePin

 'maintain a loop
 do

 loop

 'handle the output signal
 'Note. The AVR automatically clears the Interrupt. Please study the datasheet for
each specific microcontroller

 sub togglePin
 portb.5 = !pinb.5
 end sub

Example 3:

231

 'This example reflects the input signal on the output port from the external
interrupt port.
 #Chip mega328p, 16
 #option explicit

 'Set external interrupt INTO input pin as an input
 dir portd.2 in

 'set out signal port as an output
 dir portB.5 out

 'hardware interrupt on Port D2
 INT0 = 1

 'set interrupt to a failing or rising edge
 'interrupt on falling edge
 EICRA = b'00000010'
 'or, alternatively you can set to a rising edge
 'EICRA = b'00000011'

 'set out signal port as an output
 dir portB.5 out

 'setup the On Interrupt method on external interrupt 0
 On Interrupt EXTINT0 Call togglePin

 'maintain a loop
 do

 loop

 'handle the output signal
 'Note. The AVR automatically clears the Interrupt. Please study the datasheet for
each specific microcontroller

 sub togglePin
 portb.5 = !pinb.5
 end sub

For more help, see InitTimer0 article contains an example of using Timer 0 and On Interrupt to
generate a Pulse Width Modulation signal to control a motor.

See also IntOff, IntOn

232

On Interrupt: The default handler

Introduction

GCBASIC supports a default interrupt handler in two modes:

1. You can define the interrupt flags and the default handler (a sub routine) will executed

2. You can define an On Interrupt event Call handler where the handler is executed that matches the
event and where all other define/valid events are handled by the default handler (a sub routine),
The easiest way to write an interrupt handler is to write it in GCBASIC in conjunction with the On
Interrupt statement. On Interrupt tells microcontroller to activate its internal interrupt handling
and to jump to a predetermined interrupt handler (a sub routine that has been defined) when the
interrupt handler (the sub routine) has completed processing returns to correct address in the
program. See On Interrupt.

This method of supports the handling interrupts by enabling a default interrupt subroutine.

Example 1

This example shows if an event occurs the microcontroller will be program to jump to the interrupt
vector and the program will not know the event type, it will simple execute the Interrupt subroutine.
This code is not intended as a meaningful solution and intended to show the functionality only. An LED
is attached to PORTB.1 via a suitable resistor. It will light up when the Interrupt event has occurred.

 #chip 16f877a, 4
 dir PORTB.1 out
 Set PORTB.1 Off

 'Note: there is NO On Interrupt handler
 InitTimer1 Osc, PS1_8
 SetTimer 1, 1
 StartTimer 1
 'Manually set Timer1Overflow to the overflow event
 'this will event will be handled by the Interrupt sub routine
 TMR1IE = 1
 end

 Sub Interrupt
 Set PORTB.1 On
 TMR1IF = 0
 End Sub

Example 2

Any events that are not dealt with by On Interrupt will result in the code in the Interrupt subroutine
executing. This example shows the operation of two interrupt handlers - is not intended as a

233

meaningful solution.

LEDs are attached to PORTB.1 and PORTB.2 via suitable resistors. They will light up when the
Interrupt events occur.

 #chip 16f877a, 4
 On Interrupt Timer1Overflow call Overflowed

 dir PORTB.1 out
 Set PORTB.1 Off

 dir PORTB.2 out
 Set PORTB.2 Off

 InitTimer1 Osc, PS1_8
 SetTimer 1, 1
 StartTimer 1

 InitTimer2 PS2_16, PS2_16
 SetTimer 2, 255
 StartTimer 2

 'Manually set Timer2Overflow to create a second event
 'this will event will be handled by the Interrupt sub routine
 TMR2IE = 1
 end

 Sub Interrupt
 Set PORTB.2 On
 TMR2IF = 0
 End Sub

 Sub Overflowed
 Set PORTB.1 On
 TMR1IF = 0
 End Sub

234

Keypad
This is the Keypad section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Keypad Overview

Introduction

The keypad routines allow for a program to read from a 4 x 4 matrix keypad.

There are two ways that the keypad routines can be set up. One option is to connect the wires from the
keypad in a particular order, and then to set the KeypadPort constant. The other option is to connect
the keypad in whatever way is easiest, and then set the KEYPAD_ROW_x and KEYPAD_COL_x constants. The
option (setting KeypadPort) will generate slightly more efficient code.

Configuration using KEYPAD_ROW_x and KEYPAD_COL_x:

These constants must be set:

Constant
Name

Controls Default
Value

KEYPAD_ROW_1 The pin on the microcontroller that connects to the Row 1 pin on the
keypad

N/A

KEYPAD_ROW_2 The pin on the microcontroller that connects to the Row 2 pin on the
keypad

N/A

KEYPAD_ROW_3 The pin on the microcontroller that connects to the Row 3 pin on the
keypad

N/A

KEYPAD_ROW_4 The pin on the microcontroller that connects to the Row 4 pin on the
keypad

N/A

KEYPAD_COL_1 The pin on the microcontroller that connects to the Col 1 pin on the
keypad

N/A

KEYPAD_COL_2 The pin on the microcontroller that connects to the Col 2 pin on the
keypad

N/A

KEYPAD_COL_3 The pin on the microcontroller that connects to the Col 3 pin on the
keypad

N/A

KEYPAD_COL_4 The pin on the microcontroller that connects to the Col 4 pin on the
keypad

N/A

If using a 3 x 3 keypad, do not set the KEYPAD_ROW_4 or KEYPAD_COL_4 constants.

Configuration using KeypadPort:

235

When setting up the keypad code using the KeypadPort constant, only KeypadPort needs to be set.

Pull-ups or pull-downs go on the columns only, and are typically 4.7k to 10k in value.

Constant Name Controls Default Value

KeypadPort The port on the microcontroller chip that the keypad is connected to. N/A

Configuration when using Pull down resistors

The keypad routine has a feature when using pull-down resistors, simply add the constant to your
program and the and the scan logic will be inverted appropriately.

Constant Name Controls Default Value

KEYPAD_PULLDOWN Support pull down resistors. N/A

For this to work, the keypad must be connected as follows:

Microcontroller port pin Keypad connector

0 Row 1

1 Row 2

2 Row 3

3 Row 4

4 Column 1

5 Column 2

6 Column 3

7 Column 4

Note: To use a 3 x 3 keypad in this mode, the pins on the microcontroller for any unused columns must
be pulled up.

KeypadData

Syntax:

 var = KeypadData

Command Availability:

Available on all microcontrollers.

236

Explanation:

This function will return a value corresponding to the key that is pressed on the keypad. Note that if
two or more keys are pressed, then only one value will be returned. var can have one of the following
values:

Value Constant Name Key Pressed

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 KEY_A A

11 KEY_B B

12 KEY_C C

13 KEY_D D

14 KEY_STAR Asterisk/Star (*)

15 KEY_HASH Hash (#)

255 KEY_NONE None

Example:

237

 'Program to show the value of the last pressed key on the LCD
 #chip 18F4550, 20

 'LCD connection settings
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_DB4 PORTD.4
 #define LCD_DB5 PORTD.5
 #define LCD_DB6 PORTD.6
 #define LCD_DB7 PORTD.7
 #define LCD_RS PORTD.0
 #define LCD_RW PORTD.1
 #define LCD_Enable PORTD.2

 'Keypad connection settings
 #define KeypadPort PORTB

 'Main loop
 Do
 'Get key
 Temp = KeypadData

 'If a key is pressed, then display it
 If Temp <> KEY_NONE Then
 CLS
 Print Temp
 Wait 100 ms
 End If
 Loop

For more help, see Keypad Overview

KeypadRaw

Syntax:

 largevar = KeypadRaw

Command Availability:

Available on all microcontrollers.

Explanation:

238

This function will return a 16 bit value, in which each bit corresponds to a key on the keypad. If the key
is pressed its bit will hold 1, and if it is released its bit will contain a 0.

This table shows the key that each bit corresponds to:

Bit Key Position (row, col) Common Key Symbol

15 1,1 1

14 1,2 2

13 1,3 3

12 1,4 A

11 2,1 4

10 2,2 5

9 2,3 6

8 2,4 B

7 3,1 7

6 3,2 8

5 3,3 9

4 3,4 C

3 4,1 *

2 4,2 0

1 4,3 #

0 4,4 D

Example:

239

 'Program to show the keypad status using LEDs
 #chip 16F877A, 20

 'Keypad connection settings
 #define KeypadPort PORTB

 'LEDs
 #define LED1 PORTC
 #define LED2 PORTD
 Dir LED1 Out
 Dir LED2 Out

 'Declare a 16 bit variable for the key value
 Dim KeyStatus As Word

 'Main loop
 Do
 'Get key
 KeyStatus = KeypadRaw

 'Display
 LED1 = KeyStatus_H 'High Byte
 LED2 = KeyStatus 'Low Byte
 Loop

For more help, see Keypad Overview

240

Graphical LCD
This is the GLCD section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

GLCD Overview

The GLCD commands are used to control a Graphical Liquid Crystal Display (GLCD) based on the a
number of GLCD chipsets. These are often 128x64 pixel displays but the size can vary. GLCD devices
draw graphical elements by enabling or disabling pixels.

A GLCD is an upgrade from the popular 16x2 LCDs (see Liquid Crystal Display Overview) but the GLCD
allows full graphical control of the display.

Typical displays are

• Color or mono displays

• Low power white LED, OLED with or without back-light

• e-Paper with low power consumption

• Driven by on-board interface chipsets amd/or interface controllers

• The GLCDs are very common and well documented

• Small to large view areas

• Typically requires from 3-pin to 36-pin header connections and 10K contrast pot

• Typically have back-lit pixels

• Require memory in the microcontroller to support graphial operations or can be used in text and
picture mode

GCBASIC makes this type of device easier to control with the commands for the GLCD.

Microcontroller Requirements: Specific GLCDs require different configurations of a microcontroller.
Parameters include

• Communications protocol: These incldue 8 wire bus, I2C, SPI etc

• Operating votlage: These are typically 3.3v or 5.v

• Memory required: For full GLCD capabilites you will require 1k or more, for text only and JPG
mode low memory devices are supported

Review your choice of microcontroller and GLCD carefully before commencing your project.

241

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

1 KS0
108

2.9
inch
and
less.
vario
us
sizes

128
* 64

Lar
ge

Mon
o

LCD
typica
lly
with
backli
ght

8-bit
parallel
PIC and
AVR:
Softwar
e device
specific
protocol

Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns 8-bit bus
required.

Bit 7 of the
bus is
read/write –
this could
cause
potential
lockup – this
is low
risk. Uses
the KS0107B
(or
NT7107C) a
64-channel
common
driver
which
generates
the timing
signal to
control the
two
KS0108B
segment
drivers.

Requires 12
ports/conne
ctions.

These are
low cost
mono
devices.

2 ILI9
481

3.2in
ch

320
*
240

Lar
ge

Colo
r

TFT
LCD
8-bit
parall
el

PIC: Set
per bit.
AVR: via
Shield
set via
AND
PORT
comma
nd

+VCC from
2.7 to 5.
Always
check
voltage
specificatio
ns

UNO shield
is excellent.
Very fast
display.

SPI requires
4 ports plus
2 ports.
Typically 6
in total.

Good GLCD
with very
good GLCD
performanc
e.

242

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

3 PCD
854
4

1.77i
nch

Nok
ia
331
0 or
511
0

160
*
128

Sma
ll
Mon
o
LCD
with
LED

SPI PIC and
AVR:
Device
specific
SPI
comma
nd, all
in
softwar
e.

Display can
operate in
text mode
only for low
RAM
microcontro
llers as full
GLCD
capabilities
requires
512bytes of
RAM. +VCC
3.3. Always
check
voltage
specificatio
ns Nice
display.
Sensitive to
operating
voltages.

Minimum
RAM
required is
512 bytes
then add
user
variables
for graphics
mode, this
display can
operate in
text mode
only for low
RAM
microcontro
llers.

SPI requires
4 ports plus
2 ports.
Typically 6
in total.

Good for
cost and
performanc
e

4 ILI9
341

2.8
Inch
or 3.2
Inch

320
*
240

Me
diu
m

Colo
r
TFT

SPI
PIC
and
AVR:
Hard
ware
and
softwa
re SPI

Typicall
y
operate
s at VCC
5.
Always
check
voltage
specific
ations

+VCC from
2.7 to 5.
Always
check
voltage
specificatio
ns

Very nice
display.

SPI requires
4 ports plus
2 ports.
Typically 6
in total.

Good for
cost and
performanc
e

5 SSD
128
9

3.2in
ch

240
*
320

Lar
ge

Colo
r

TFT
LCD

16-bit
parallel
AVR:
Softwar
e device
specific
protocol
.

Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns

Mega2560
shield
required.

Connectivity
requires 20
ports.

Good for
Mega2560
type shields

243

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

6 ST7
735

1.8
Inch

128
* 64

Lar
ge

Colo
r

TFT
LCD

SPI PIC and
AVR:
Hardware
and
software SPI

Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns Very nice
display.

SPI requires
4 ports plus
2 ports.
Typically 6
in total.

Good for
cost and
performanc
e

7 ST7
735
R

1.8
Inch

128
*
160

Lar
ge

Colo
r

TFT
LCD

SPI PIC and
AVR:
Hardware
and
software SPI

Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns Very nice
display.

SPI requires
4 ports plus
2 ports.
Typically 6
in total.

Good for
cost and
performanc
e

8 ST7
735
R_1
60_
80

1.8
Inch

160
* 80

Lar
ge

Colo
r

TFT
LCD

SPI PIC and
AVR:
Hardware
and
software SPI

Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns Very nice
display.

SPI requires
4 ports plus
2 ports.
Typically 6
in total.

Good for
cost and
performanc
e

9 ILI9
340

2.2
Inch

240
*
320

Me
diu
m

Mon
o

TFT
LCD

SPI PIC and
AVR:
Hardware
and
software SPI

Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns

SPI requires
4 ports plus
2 ports.
Typically 6
in total.

Good for
cost and
performanc
e

244

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

1
0

ILI9
486
L or
ILI9
486

4inch RPI
240
*
320

Lar
ge

Colo
r

TFT
LCD

SPI and
8Bit Bus

PIC and
AVR:
Hardware
and
software SPI
AVR: 8Bit
Bus using
an UNO
Shield. PIC:
8bit port
suppported.

Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns Great
pixel
display.

SPI requires
4 ports plus
2 ports.
Typically 6
in total. 8Bit
Bus requires
8 ports plus
4 control
ports.
Typically 13
in total
using an
8bit bus
solution.

An
expensive
option

1
1

Nex
ion

ITEA
D
Nexi
on

240
*
320
to
800
*
480

Lar
ge -
2.4
to
7in
che
s

Colo
r

TFT
LCD

Serial -
hardwa
re or
softwar
e serial
is
support
ed.

Nextion
specfic and
GLCD
command
set

Typically
operates at
VCC 5 with
external
power
supply.
Always
check
voltage
specificatio
ns Great
command
set, you
need to
learn the
GUI and
then
interface to
GCBASIC.

2 ports for
the
read/write
serial
operations.

A very nice
option but if
you need
flexibility
then the
best!

245

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

1
2

SH1
106

1.3
inch
or
0.96i
nch

128
* 64

Sm
all

Mon
o
OLE
D

I2C PIC and
AVR:
Hardwa
re and
softwar
e I2C

Always at
3.3v. Always
check
voltage
specificatio
ns

RAM for
Full Mode
GLCD is
1024 bytes
or Low
Memory
GLCD is 128
bytes or 0
bytes for
Text GLCD
Mode then
add user
variables
for graphics
mode.

I2C requires
2 ports.

Good OLED
display,
excellent
value for
money

246

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

1
3

SDD
130
6

0.96i
nch

128
* 64

Sm
all

Mon
o

OLED I2C and
SPI

PIC and
AVR:
Hardware
and
software
I2C, and
software SPI

RAM for
Full Mode
GLCD is
1024 bytes
or Low
Memory
GLCD is 128
bytes or 0
bytes for
Text GLCD
Mode then
add user
variables
for graphics
mode.
Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns Very
good OLED
display.
Driver
supports
gaming.
Minimum
RAM
required is
1024 bytes
then add
user
variables
for graphics
mode.
Display can
operate in
text mode
only for low
RAM
microcontro
llers

SPI requires
4 ports plus
2 ports.
Typically 6
in total. I2C
requires 2
ports.

Good OLED
display,
excellent
value for
money

247

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

1
4

SDD
130
6
Twi
n
Scr
een

0.96i
nch *
2

128
*
128

Sm
all

Mon
o

OLED I2C and
SPI

PIC and
AVR:
Hardware
and
software
I2C, and
software SPI

RAM for
Full Mode
GLCD is
2048 bytes
or Low
Memory
GLCD is 128
bytes or 0
bytes for
Text GLCD
Mode then
add user
variables
for graphics
mode.
Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns Very
good OLED
display.
Driver
supports
gaming.
Minimum
RAM
required is
1024 bytes
then add
user
variables
for graphics
mode.
Display can
operate in
text mode
only for low
RAM
microcontro
llers

SPI requires
4 ports plus
3 ports.
Typically 7
in total. I2C
requires 2
ports.

Good OLED
display,
excellent
value for
money

248

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

1
5

SDD
130
6_3
2

0.96i
nch

128
* 32

Ver
y
sma
ll

Mon
o

OLED I2C and
SPI

PIC and
AVR:
Hardware
and
software
I2C, and
software SPI

RAM for
Full Mode
GLCD is 512
bytes or
Low
Memory
GLCD is 128
bytes or 0
bytes for
Text GLCD
Mode then
add user
variables
for graphics
mode.
Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns Best
small OLED
display.
Driver
supports
gaming.
Minimum
RAM
required is
512 bytes
then add
user
variables
for graphics
mode, this
display can
operate in
text mode
only for low
RAM
microcontro
llers

SPI requires
4 ports plus
2 ports.
Typically 6
in total. I2C
requires 2
ports.

Good OLED
display,
excellent
value for
money

249

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

1
6

ST7
920

2.9in
ch

128
* 64

Lar
ge

Mon
o

LCD
typica
lly
with
backli
ght 8-
bit
parall
el

PIC and
AVR:
Softwar
e device
specific
protocol
.

Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns

8-bit bus
required.
Bit 7 of the
bus is
read/write –
this could
cause
potential
lockup – this
is low risk.
This looks
like a
KS0108 but
it is NOT!
Supports
Chinese font
set.

Requires 12
ports.

A very slow
device.

1
7

HX8
347
G

2.2in
ch

240
*
320

Lar
ge

Colo
r

TFT
LCD

SPI AVR 8 bit
bus

Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns Great
pixel
display.

Controller
requires 8
ports plus 5
control
ports.
Typically 13
in total with
an UNO
shield.

An very nice
display

1
8

SDD
133
1

0.96i
nch

96 *
48

Sm
all

Colo
r

OLED SPI PIC and
AVR:
Hardware
and
software
I2C, and
software SPI

Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns

SPI requires
typically 6
in total.

Very good
color OLED
display,
excellent
value for
money

250

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

1
9

ILI9
326

3.00i
nch

400
*
320

Lar
ge

Colo
r

OLED 8 bit bus PIC and
AVR: 8 bit
bus

Typically
operates at
VCC 3.3.
Always
check
voltage
specificatio
ns

Requires
typically 13
in total plus
0v, VCC and
LED.

Good color
OLED
display,
good value
for money
as it is fast.
But, the
rotate is all
executed in
software
and this
does slow
down
processing.
The LED
connected is
typically to
ground. You
can solder
the GND
connect to
make the
backlite
permanentl
y on.

251

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

2
0

NT7
108
C

2.9
inch
and
less.
vario
us
sizes

128
* 64

Lar
ge

Mon
o

LCD
typica
lly
with
backli
ght

8-bit
parallel
PIC and
AVR:
Softwar
e device
specific
protocol

Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns 8-bit bus
required.

Look similar
to KS0108,
but, it is
NOT the
same, hence
this
driver. Use
s the
Winstar’s
WDG0151-
TMI
module,
which is a
128×64 pixel
monochrom
atic
display. Thi
s uses two
Neotic
display
controller
chips: NT71
08C and
NT7107C.
The
WDG0151
module
contains
two sets of it
to drive 128
segments.
On the other
hand, the
KS0107B (or
NT7107C) is
a 64-
channel
common
driver
which
generates
the timing
signal to
control the
two
KS0108B
segment
drivers.

Requires 12
ports/conne
ctions.

These are
medium
cost mono
devices.

252

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

2
1

T69
63_
64

4inch
es by
2inch
es

240
* 64

Lar
ge

Mon
o

LCD
typica
lly
with
backli
ght

8-bit
parallel
PIC and
AVR:
Softwar
e device
specific
protocol

Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns 8-bit bus
required.

Operating
similar to
KS0108 and
an LCD.
segment
drivers.

Requires 12
ports/conne
ctions.

These are
medium
cost mono
devices.

2
2

T69
63_
128

4inch
es by
2inch
es

240
*
128

Lar
ge

Mon
o

LCD
typica
lly
with
backli
ght

8-bit
parallel
PIC and
AVR:
Softwar
e device
specific
protocol

Typically
operates at
VCC 5.
Always
check
voltage
specificatio
ns 8-bit bus
required.

Operating
similar to
KS0108 and
an LCD.
segment
drivers.

Requires 12
ports/conne
ctions.

These are
medium
cost mono
devices.

253

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

2
3

UC1
601

4.00i
nch

132
* 22

Me
diu
m

Mon
o

OLED I2C and
SPI

PIC and
AVR:
Hardware
and
software
I2C, and
software SPI

RAM for
Full Mode
GLCD is 396
bytes or
Low
Memory
GLCD is 128
bytes or 0
bytes for
Text GLCD
Mode then
add user
variables
for graphics
mode.
Typically
operates at
VCC 2.8v.
Always
check
voltage
specificatio
ns Very
good
display.
Driver
supports
gaming.
Minimum
RAM
required is
396 bytes
then add
user
variables
for graphics
mode.

Requires up
to 5
ports/conne
ctions.

Low cost
device

254

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

2
4

SDD
135
1

1.50i
nch

128
*
128

Sm
all

Colo
r

OLED SPI PIC and
AVR:
Hardware
and
software
I2C, and
software SPI

Typically
operates at
VCC 3.3 or 5.
Always
check
voltage
specificatio
ns

SPI requires
typically 6
in total.

Very good
color OLED
display,
excellent
value for
money

2
5

Wa
ves
har
e e-
Pap
er

Vario
us
Size
from
2.13
to 7.5
inche
s

104
*
112
to
640
*
384

Sm
all
to
ver
y
larg
e

Blac
k
and
Whi
te

Micro
encap
sulate
d
Electr
ophor
etic
Displa
y

SPI PIC and
AVR:
Hardware
and
software
I2C, and
software SPI

Typically
operates at
VCC 3.3.
Always
check
voltage
specificatio
ns

SPI requires
typically 6
in total.

Very good
color e-
Paper
displays,
excellent
value for
money
Display can
operate in
text mode
only for low
RAM
microcontro
llers using
SRAM
solution.

2
6

ST7
789

2.0
Inch

240
*
240
or
320
*
240

Me
diu
m

Colo
r
TFT

SPI
PIC
and
AVR:
Hard
ware
and
softwa
re SPI

Typicall
y
operate
s at 3v3.
Always
check
voltage
specific
ations

+VCC from
3v3. Always
check
voltage
specificatio
ns

Very nice
display.

SPI requires
3 ports
(data, clock
&
command/d
ata) plus 1
port (reset
). Typically 4
in total.

Good for
cost and
performanc
e

2
7

ST7
735
R_1
60_
80

1.8
Inch

160
* 80

Lar
ge

Colo
r

TFT
LCD

SPI PIC and
AVR:
Hardware
and
software SPI

Typically
operates
only at VCC
3.3. Always
check
voltage
specificatio
ns Very nice
display.

SPI requires
4 ports plus
2 ports.
Typically 6
in total.

Good for
cost and
performanc
e

255

Chi
pSe
t

Size Pix
els

De
pth

Typ
e

I/O Suppor
t

Operating Comments Requireme
nts

Assessment

2
8

ILI9
488

3.2in
ch

320
*
240

Lar
ge

Colo
r

TFT
LCD
SPI

PIC/&AV
R: SPI
Only

+VCC from
3v3 to 5.
GLCD I/O is
ONLY 3v3.
Always
check
voltage
specificatio
ns.

Display is
good,
however,
slower than
comparable
(size) GLCDs
as the color
definitions
are four
bytes (
typical color
definitions
are two
bytes)

SPI requires
4 ports plus
2 ports.
Typically 6
in total.

Acceptable
GLCD
performanc
e.

2
9

ST7
567

1.9in
ch

128
* 64

Me
diu
m

Mon
o

LCD I2C and
SPI

PIC and
AVR:
Software
I2C, and,
hardware
software
SPI.
Harware
IC2 fails as
the ST7567
does not
comply
witht the
I2C
standard.

+VCC from
3v3 to 5.
GLCD I/O is
ONLY 3v3.
Always
check
voltage
specificatio
ns.

SPI requires
4 ports plus
2 ports.
Typically 6
in total. I2C
requires 2
ports.

Typically
operates at
VCC 3v3 but
may support
5v0. Always
check
voltage
specificatio
ns Very
good LCD
display.
Driver
supports
gaming.
Minimum
RAM
required is
1024 bytes
then add
user
variables
for graphics
mode.

Setup:

You must include the glcd.h file at the top of your program. The file needs to be in brackets as shown
below.

256

 #include <GLCD.h>

Defines:

There are several connections that must be defined to use the GLCD commands with a GLCD display.
The I/O pin is the pin on the Microchip PIC or the Atmel AVR microcontroller that is connected to that
specific pin on the graphical LCD.

Example: KS0108 connectivity

 #define GLCD_RW _I/O pin_ ‘Read/Write pin connection
 #define GLCD_RESET _I/O pin_ ‘Reset pin connection
 #define GLCD_CS1 _I/O pin_ ‘CS1 pin connection
 #define GLCD_CS2 _I/O pin_ ‘CS2 pin connection
 #define GLCD_RS _I/O pin_ ‘RS pin connection
 #define GLCD_ENABLE _I/O pin_ ‘Enable pin Connection
 #define GLCD_DB0 _I/O pin_ ‘Data pin 0 Connection
 #define GLCD_DB1 _I/O pin_ ‘Data pin 1 Connection
 #define GLCD_DB2 _I/O pin_ ‘Data pin 2 Connection
 #define GLCD_DB3 _I/O pin_ ‘Data pin 3 Connection
 #define GLCD_DB4 _I/O pin_ ‘Data pin 4 Connection
 #define GLCD_DB5 _I/O pin_ ‘Data pin 5 Connection
 #define GLCD_DB6 _I/O pin_ ‘Data pin 6 Connection
 #define GLCD_DB7 _I/O pin_ ‘Data pin 7 Connection
 #define GLCD_PROTECTOVERRUN 'prevent screen overdrawing 'SSD1306 GLCD only
 #define GLCDDirection 'Invert GLCD Y axis 'KS0108 GCD only

Common commands supported across the range of supported GLCDs are:

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

GLCDPrin
t

Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

GLCDDraw
Char

Print character on GLCD using GCB font
set

GLCDDrawChar(Xposition, Yposition, CharCode)

GLCDDraw
String

Print characters on GLCD using GCB font
set

GLCDDrawString(Xposition, Yposition,
Stringvariable)

Box Draw a box on the GLCD to a specific size Box (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour as 0 or 1]
)

257

Comma
nd

Purpose Example

FilledBo
x

Draw a box on the GLCD to a specific size
that is filled with the foreground colour.

FilledBox (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

Line Draw a line on the GLCD to a specific
length that is filled with the specific
attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour 0 or
1)

Public variable supported across the range of supported GLCDs are shown in the table below. These
variables control the user definable parameters of a specific GLCD.

Variable Purpose Type

GLCDBackgrou
nd

Color of GLCD
background.

Can be monochrome or color.
For mono GLCDs the default is White or 0x0001. For color GLCDs
the default is White or 0xFFFF.

GLCDForegrou
nd

Color of GLCD
foreground.

Can be monochrome or color.
For mono GLCDs the default is non-white or 0x0000. For color
GLCDs the default is Black or 0x0000.

GLCDFontWidt
h

Width of the current
GLCD font.

Default is 6 pixels.

GLCDfntDefau
lt

Size of the current
GLCD font.

Default is 0.+ This equates to the standard GCB font set.

GLCDfntDefau
ltsize

Size of the current
GLCD font.

Default is 1.+ This equates to the 8 pixel high.

For color TFT displays any color can be defined using a valid hexidecimal word value between 0x0000
to 0xFFFF., see http://www.barth-dev.de/online/rgb565-color-picker/ for a wider range of color
parameters.

The following color constants are prevent-defined.

258

http://www.barth-dev.de/online/rgb565-color-picker/

 TFT_BLACK 0x0000
 TFT_NAVY 0x000F
 TFT_DARKGREEN 0x03E0
 TFT_DARKCYAN 0x03EF
 TFT_MAROON 0x7800
 TFT_PURPLE 0x780F
 TFT_OLIVE 0x7BE0
 TFT_LIGHTGREY 0xC618
 TFT_DARKGREY 0x7BEF
 TFT_BLUE 0x001F
 TFT_GREEN 0x07E0
 TFT_CYAN 0x07FF
 TFT_RED 0xF800
 TFT_MAGENTA 0xF81F
 TFT_YELLOW 0xFFE0
 TFT_WHITE 0xFFFF
 TFT_ORANGE 0xFD20
 TFT_GREENYELLOW 0xAFE5
 TFT_PINK 0xF81F

This example shows how to drive a KS0108 based Graphic LCD module with the built in commands of
GCBASIC. See Graphic LCD for details, this is an external web site.

Example:

259

http://www.greatcowbasic.com/sample-projects.html

 ;Chip Settings
 #chip 16F886,16
 '#config MCLRE = on 'enable reset switch on CHIPINO
 #include <GLCD.h>

 ;Defines (Constants)
 #define GLCD_RW PORTB.1 'D9 to pin 5 of LCD
 #define GLCD_RESET PORTB.5 'D13 to pin 17 of LCD
 #define GLCD_CS1 PORTB.3 'D12 to actually since CS1, CS2 can be inverted
 #define GLCD_CS2 PORTB.4 'D11 to actually since CS1, CS2 can be inverted
 #define GLCD_RS PORTB.0 'D8 to pin 4 D/I pin on LCD
 #define GLCD_ENABLE PORTB.2 'D10 to Pin 6 on LCD
 #define GLCD_DB0 PORTC.7 'D0 to pin 7 on LCD
 #define GLCD_DB1 PORTC.6 'D1 to pin 8 on LCD
 #define GLCD_DB2 PORTC.5 'D2 to pin 9 on LCD
 #define GLCD_DB3 PORTC.4 'D3 to pin 10 on LCD
 #define GLCD_DB4 PORTC.3 'D4 to pin 11 on LCD
 #define GLCD_DB5 PORTC.2 'D5 to pin 12 on LCD
 #define GLCD_DB6 PORTC.1 'D6 to pin 13 on LCD
 #define GLCD_DB7 PORTC.0 'D7 to pin 14 on LCD

 Start:
 GLCDCLS
 GLCDPrint 0,10,"Hello" 'Print Hello
 wait 5 s
 GLCDPrint 0,10, "ASCII #:" 'Print ASCII #:
 Box 18,30,28,40 'Draw Box Around ASCII Character
 for char = 15 to 129 'Print 0 through 9
 GLCDPrint 17, 20 , Str(char)+" "
 GLCDdrawCHAR 20,30, char
 wait 125 ms
 next
 line 0,50,127,50 'Draw Line using line command
 for xvar = 0 to 80 'Draw line using Pset command
 pset xvar,63,on '
 next '
 Wait 1 s
 GLCDPrint 0,10,"End " 'Print Hello
 wait 1 s
 Goto Start

For more help, see Graphical LCD Demonstration, GLCDCLS, GLCDDrawChar, GLCDPrint,
GLCDReadByte, GLCDWriteByte, Pset

260

Fonts and Characters

This section covers GLCD fonts and characters.

GLCD Support for Fonts

lorem ipsum.

GLCD Support for Characters

lorem ipsum.

GLCD Character Table

lorem ipsum.

GLCD Controlling Constants

The GCBASIC constants for control of fonts and characters are shown in the table below.

Constants Controls Options

CONSTANT Words Explaination

ANOTHER CONSTANT Words Explaination

261

For more help, see GLCDCLS, GLCDDrawChar

e-Paper Controllers

This section covers GLCD devices known as e-Papers.

An e-paper device is a Microencapsulated Electrophoretic Display, MED.

A MED display uses tiny spheres, in which the charged color pigments are suspending in the
transparent oil and would move depending on the electronic charge. The e-paper screen display
patterns by reflecting the ambient light, so it has no background light requirement. Under sunshine,
the e-paper screen still has high visibility with a wide viewing angle of 180 degree. It is the ideal
choice for e-reading or providing information that can be refeshed at a slow rate of change.

GLCD Support for e-Papers

GCBASIC supports covers the full range of GLCD capabilities like line, circle, print.

GCBASIC supports SPI communications for the e-Papers - both hardware and software. And, GCBASIC
suppors low memory configurations and SRAM for the display buffer.

See the demonstration programs to show you how to use these GCLD capabilities.

Memory Usage

The GCBASIC library uses RAM to buffer the e-paper display. The amount of RAM used is specific the
the total pixel of the specific e-paper display. You can control to amount of RAM used as the buffer
using the device specific constants, see below. Each device specific library has four memory options.
Each of the memory options uses different amount RAM. The greater the amount of RAM used the
faster the process of updating the e-paper display. Conversely, the smaller the amount of RAM used
the slower the process of updating the e-paper display.

GLCD Page Transactions

To make the operation of the library seamless - the library supports GLCDTransaction.
GLCDTransaction automatically manages the methods to update the e-paper via the buffer, where the
buffer can be small. The process of transaction send GLCD commands to the e-paper display on a page
and page basis. Each page is the size of the buffer and for a large e-paper display the number of pages
may be equivilent to the numbers of pixels high (height).

GLCDTransaction simplies the operation by ensure the buffer is setup correctly, handles the GLCD
appropiately, handles the sending of the buffer and then close out the process to update to the display.

To use GLCDTransaction use the followng two methods.

262

 GLCD_Open_PageTransaction

 glcd commands

 GLCD_Close_PageTransaction

It recommended to use GLCDTransactions at all times. These methods remove the complexity of the e-
paper update process.

When using GLCDTransaction you must start the transaction with`GLCD_Open_PageTransaction` then
include a series of GLCD commands and then terminate the transaction with
GLCD_Close_PageTransaction.

GLCDTransaction Insight: When using GLCDtransactions the number of buffer pages is probably be
greater then 1 (unless using the SRAM option), so the process of incrementing variables and calls to
non-GLCD methods must be considered carefully. The transaction process will increment variables
and call non-GLCD methods the same number of times as the number of pages. Therefore, design
GLCDTransaction operations with this is mind.

SRAM as the e-paper buffer

To improve memory usage the e-paper the e-Paper libraries support the use of SRAM. SRAM can be
used as an alternative to the microcontrollers RAM. Using SRAM does have a small performance
impact but does free up the critical resource of the microcontroller RAM. The use of SRAM within the
e-paper library is transparent to the user. To use SRAM as the e-paper buffer you will need to set-up
the SRAM library. See the SRAM library for more details on SRAM usage.

When using SRAM for the e-paper buffer it is still remcommend to use GLCDTransaction as this ensure
the SRAM buffer is correctly initialised.

Refresh mode

This library uses Full refresh: The e-Paper will flicker when full refreshing. This flicker removes the
ghost image from the display. You could use Partial refresh as this doesnot flicker. Note that you
cannot use Partial refresh all the time, you should full refresh e-paper regularly, otherwise, the ghost
problem will get worse and even damage the display.

Refresh rate

When using the e-Paper library, you should set the update interval at least 180seconds, except when
using Partial mode.

Please set the e-Paper to sleep mode in software or remove the power directly, otherwise, the e-Paper
will be damaged because of working in high voltage for extendedtime periods. You need to update the
content of the e-Paper at least once every 24 hours to avoid from burn-in problem.

263

Operating Voltages

The e-Paper should be driven with 3V3 operating voltages and signals.

If your Microcontroller (PIC, AVR and therefore an Arduino)cannot drive the e-Paper successfully. You
must convert the level to 3.3V. The I/O level of Arduino is 5V. HEALTH WARNING:You can also try to
connect the Vcc pin to the 5V of Arduino to see whether the e-Paper works, but we recommend you not
to use 5V for a long time.

The e-Paper looks a little black or grey

You can try to change the value of Vcom the library by setting the VCOM_AND_DATA_INTERVAL
constant. See the Vcom and data interval in the dataheet. VCOM_AND_DATA_INTERVAL can be 0x00
to 0x0F

GCBASIC library supports Black/White NOT Black/White/Red

The default is Black/White. To support Black/White/Red add `#define PANEL_SETTING_KWR 0x00`to
you user program.

The constant are the TFT_BLACK and TFT_WHITE constants.

The e-paper has ghosting problem after working for some days

Please set the e-paper to sleep mode or disconnect it if you do not refresh the e-paper but need to
power on your solution.

Do NOT leave power on for extended periods, otherwise, the voltage of panel remains high and it will
damage the e-paper display.

e-Paper Guidelines

Remove power if practical.

ALWAYS use GLCDDisplay Off or sleep mode.

When in storage CLEAR the screen…. avoid burn it - use

 GLCDCLD TFT_WHITE
 GLCDDisplay Off

The recommended method is:

264

 GLCDCLS TFT_WHITE
 GLCDDisplay Off
 do
 loop

Using the e-Paper Library

To use the e-Paper driver for a specific simply include the following in your user code.

This will initialise the driver.

 'Setup for the e-Paper
 #include <glcd.h>

 #define GLCD_TYPE GLCD_TYPE_EPD_EPD7in5
 #define GLCD_EXTENDEDFONTSET1
 #define GLCD_OLED_FONT
 #define GLCD_TYPE_EPD7in5_LOWMEMORY4_GLCD_MODE fastest but uses a lot of RAM
 '#define GLCD_TYPE_EPD7in5_LOWMEMORY3_GLCD_MODE
 '#define GLCD_TYPE_EPD7in5_LOWMEMORY2_GLCD_MODE
 '#define GLCD_TYPE_EPD7in5_LOWMEMORY1_GLCD_MODEslowest uses the least amount of RAM

 'Pin mappings for SPI - this GLCD driver supports Hardware SPI and Software SPI
 #define GLCD_DC portA.0 ' Data(hight)/ command(low) line
 #define GLCD_CS portC.1 ' Chip select line (negate)
 #define GLCD_RESETportD.2 ' Reset line (negate)
 #define GLCD_DO portC.5 ' GLCD MOSI connect to MCU SDO
 #define GLCD_SCKportC.3 ' Clock Line
 #define GLCD_Busy portC.0 ' Busy Line

 'The following should be used for hardware SPI remove or comment out if you want to
use software SPI.
 #define EPD_HardwareSPI

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Options

GLCD_TYPE GLCD_TYPE_EPD_EPD7in5 GLCD_TYPE_EPD_EPD7in5 and
GLCD_TYPE_EPD_EPD2in13D supported

265

Constants Controls Options

GLCD_TYPE_<de
vice_memory_m
ode>

Memory usage for the display buffer.
Memory management is crutial when
using the e-paper displays.

GLCD_TYPE_EPD7in5_LOWMEMORY4_GLCD_MODE …
 GLCD_TYPE_EPD7in5_LOWMEMORY1_GLCD_MODE,
or,
GLCD_TYPE_EPD2in13D_LOWMEMORY4_GLCD_MODE
…
GLCD_TYPE_EPD2in13D_LOWMEMORY1_GLCD_MODE

GLCD_DC Specifies the output pin that is connected
to Data/Command IO pin on the GLCD.

Required

GLCD_CS Specifies the output pin that is connected
to Chip Select (CS) on the GLCD.

Required

GLCD_Reset Specifies the output pin that is connected
to Reset pin on the GLCD.

Required

GLCD_DO Specifies the output pin that is connected
to Data Out (GLCD in) pin on the GLCD.

Required

GLCD_SCK Specifies the output pin that is connected
to Clock (CLK) pin on the GLCD.

Required

GLCD_BUSY Specifies the output pin that is connected
to Busy pin on the GLCD.

Required

EPD_HardwareS
PI

Instructs the library to use hardware SPI,
remove or comment out if you want to use
software SPI.

#define EPD_HardwareSPI

HWSPIMode Specifies the speed of the SPI
communications for Hardware SPI only.

Optional defaults to MASTERFAST. Options
are MASTERSLOW,
MASTER,
MASTERFAST, or
MASTERULTRAFAST for specific AVRs only.

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Default

GLCD_WIDTH The width parameter of the GLCD Specific to the e-Paper selected
This cannot be changed

GLCD_HEIGHT The height parameter of the GLCD Specific to the e-Paper selected
This cannot be changed

GLCDFontWid
th

Specifies the font width of the GCBASIC
font set.

6 or 5 for the OLED font set.

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the
appropiate library for the latest full set of supported commands.

266

Command Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

GLCDDisplay Enables sleep mode, or, enables operations GLCDDisplay Off, or, GLCDDisplay On

GLCDPrint Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

GLCDDrawCha
r

Print character on GLCD using GCB font set GLCDDrawChar(Xposition, Yposition,
CharCode)

GLCDDrawStr
ing

Print characters on GLCD using GCB font
set

GLCDDrawString(Xposition, Yposition,
Stringvariable)

Box Draw a box on the GLCD to a specific size Box (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour as 0
or 1])

FilledBox Draw a box on the GLCD to a specific size
that is filled with the foreground colour.

FilledBox (Xposition1, Yposition1,
Xposition2, Yposition2, [Optional In
LineColour 0 or 1])

Line Draw a line on the GLCD to a specific length
that is filled with the specific attribute.

Line (Xposition1, Yposition1,
Xposition2, Yposition2, [Optional In
LineColour 0 or 1])

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour 0
or 1)

GLCD_Open_P
ageTransact
ion

Commence a series of GLCD commands
with memory buffer management. Must be
followed a GLCD_Close_PageTransaction
command.

GLCD_Open_PageTransaction. Parameters may
be passed where the two parameters are
the range of pages to be updated

GLCD_Close_
PageTransac
tion

Terminate a series of GLCD commands.
Must follow a GLCD_Open_PageTransaction
command.

GLCD_Close_PageTransaction. Terminates the
GLCDTransaction.

Example Usage:

#chip mega328p, 16
#include <uno_mega328p.h>
#option explicit

 '***

'Setup the E-Paper
 #include <glcd.h>

 #define HWSPIMode ULTRAFAST

267

 #define GLCD_TYPE GLCD_TYPE_EPD_EPD2in13D
 #define GLCD_EXTENDEDFONTSET1
 #define GLCD_TYPE_EPD2in13D_LOWMEMORY4_GLCD_MODE
 #define GLCD_OLED_FONT
 #define GLCD_PROTECTOVERRUN

 'Pin mappings for SPI - this GLCD driver supports Hardware SPI and Software SPI
 #define GLCD_DC DIGITAL_9
 #define GLCD_CS DIGITAL_10
 #define GLCD_RESETDIGITAL_8
 #define GLCD_DO DIGITAL_11
 #define GLCD_SCKDIGITAL_13
 #define GLCD_Busy DIGITAL_7

 #define EPD_HARDWARESPI

 '***

'Main program

GLCDForeground=TFT_BLACK
GLCDBackground=TFT_WHITE

 GLCD_Open_PageTransaction
 GLCDPrintStringLN ("GCBASIC")
 GLCDPrintStringLN ("")
 GLCDPrintStringLN ("Test of the e-Paper")
 GLCDPrintStringLN ("")
 GLCDPrintStringLN ("December 2021")
 GLCD_Close_PageTransaction
 GLCDDisplay Off

 wait 2 s
 GLCDDisplay On
 GLCDCLS
 GLCDDisplay off

 do

 loop

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte, Pset or

268

GLCDTransaction

Supported in <GLCD.H>

HX8347G Controllers

This section covers GLCD devices that use the HX8347G graphics controller.

HX8347G is a 262k-color single-chip SoC driver for a-TFT liquid crystal display with resolution of
240 RGB x 320 dots.

The HX8347-G is designed to provide a single-chip solution that combines a gate driver, a source
driver, power supply circuit for 262k colors to drive a TFT panel with 240RGBx320 dots at maximum.

GCBASIC supports 65K-color mode operations.

The HX8347-G can be operated in low-voltage (1.4V) condition for the interface and integrated internal
boosters that produce the liquid crystal voltage, breeder resistance and the voltage follower circuit for
liquid crystal driver. In addition, The HX8347-G also supports various functions to reduce the power
consumption of a LCD system via software control.

The GCBASIC constants shown below control the configuration of the HX8347G controller. The
GCBASIC constants for control and data line connections are shown in the table below.

Connectivity is via an 8-bit bus. Where 8 pins are connected between the microcontroller and the
GLCD to control the data bus plus 5 control pins. This is simple when using an Arduino GLCD Shield.

To use the HX8347G driver simply include the following in your user code. This will initialise the
driver.

8-bit mode

269

 'This GLCD driver supports 8 bit only. UNO ports can be replaced with porta.b
constants.

 #include <glcd.h>
 #include <UNO_mega328p.h >
 #define GLCD_TYPE GLCD_TYPE_HX8347

 'Pin mappings for SPI - this GLCD driver supports Hardware SPI and Software SPI
 #define GLCD_RD ANALOG_0 ' read command line
 #define GLCD_WR ANALOG_1 ' write command line
 #define GLCD_RS ANALOG_2 ' Command/Data line
 #define GLCD_CS ANALOG_3 ' Chip select line
 #define GLCD_RST ANALOG_4 ' Reset line

 #define GLCD_DB0 DIGITAL_8
 #define GLCD_DB1 DIGITAL_9
 #define GLCD_DB2 DIGITAL_2
 #define GLCD_DB3 DIGITAL_3
 #define GLCD_DB4 DIGITAL_4
 #define GLCD_DB5 DIGITAL_5
 #define GLCD_DB6 DIGITAL_6
 #define GLCD_DB7 DIGITAL_7

The GCBASIC constants for the interface to the controller are shown in the table below.

Constants Controls Options

GLCD_TYPE GLCD_TYPE_HX8347

GLCD_DB0..
7

Specifies the pin that is connected to DB0..7 IO pin on the GLCD (8 bit DBI). Require
d

GLCD_RST Specifies the output pin that is connected to Reset IO pin on the GLCD. Require
d

GLCD_CS Specifies the output pin that is connected to Chip Select (CS) on the GLCD. Require
d

GLCD_RS Specifies the output pin that is connected to Data/Command pin on the GLCD. Require
d

GLCD_WR Specifies the output pin that is connected to Data In (RW or WDR) pin on the
GLCD.

Require
d

270

Constants Controls Options

GLCD_RD Specifies the output pin that is connected to Data Out (RD or RDR) pin on the
GLCD.

Require
d

The GCBASIC constants for control display characteristics are shown in the table below.

Constant
s

Controls Default

GLCD_WIDT
H

The width parameter of the GLCD 320

GLCD_HEIG
HT

The height parameter of the GLCD 480

GLCDFontW
idth

Specifies the font width of the GCBASIC font set. 6 for GCB fonts, and 5
for OLED fonts.

GLCD_OLED
_FONT

Specifies the use of the optional OLED font set. The
GLCDfntDefaultsize can be set to 1 or 2 only. GLCDfntDefaultsize=
1. A small 8 height pixel font with variable width.
GLCDfntDefaultsize= 2. A larger 10 width * 16 height pixel font.

Optional

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the
appropiate library for the latest full set of supported commands.

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS [,Optional LineColour]

GLCDPrin
t

Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition, Stringvariable
)

GLCDDraw
Char

Print character on GLCD using GCB font
set

GLCDDrawChar(Xposition, Yposition, CharCode
[,Optional LineColour])

GLCDDraw
String

Print characters on GLCD using GCB font
set

GLCDDrawString(Xposition, Yposition,
Stringvariable [,Optional LineColour])

Box Draw a box on the GLCD to a specific
size

Box (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour]

271

Comma
nd

Purpose Example

FilledBo
x

Draw a box on the GLCD to a specific
size that is filled with the foreground
colour.

FilledBox (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour])

Line Draw a line on the GLCD to a specific
length that is filled with the specific
attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour])

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour)

GLCDWrit
eByte

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDRead
Byte

Read a byte value from the controller,
see the datasheet for usage.

bytevariable = GLCDReadByte

GLCDRota
te

Rotate the display LANDSCAPE, PORTRAIT_REV, LANDSCAPE_REV and
PORTRAIT are supported

HX8347G_
[color]

Specify color as a parameter for many
GLCD commands

Color constants for this device are shown in the
list below.
Any color can be defined using a valid
hexidecimal word value between 0x0000 to
0xFFFF.

272

 HX8347G_BLACK 'hexidecimal value 0x0000
 HX8347G_RED 'hexidecimal value 0xF800
 HX8347G_GREEN 'hexidecimal value 0x0400
 HX8347G_BLUE 'hexidecimal value 0x001F
 HX8347G_WHITE 'hexidecimal value 0xFFFF
 HX8347G_PURPLE 'hexidecimal value 0xF11F
 HX8347G_YELLOW 'hexidecimal value 0xFFE0
 HX8347G_CYAN 'hexidecimal value 0x07FF
 HX8347G_D_GRAY 'hexidecimal value 0x528A
 HX8347G_L_GRAY 'hexidecimal value 0x7997
 HX8347G_SILVER 'hexidecimal value 0xC618
 HX8347G_MAROON 'hexidecimal value 0x8000
 HX8347G_OLIVE 'hexidecimal value 0x8400
 HX8347G_LIME 'hexidecimal value 0x07E0
 HX8347G_AQUA 'hexidecimal value 0x07FF
 HX8347G_TEAL 'hexidecimal value 0x0410
 HX8347G_NAVY 'hexidecimal value 0x0010
 HX8347G_FUCHSIA 'hexidecimal value 0xF81F

These examples show how to drive a HX8347G based Graphic LCD module with the built in commands
of GCBASIC. The 8 bit DBI example uses a UNO shield, this can easily adapted to Microchip
architecture. The 16 bit DBI example uses a Mega2560 board.

Example:

273

 #chip mega328p, 16
 #option explicit

 #include <glcd.h>
 #include <UNO_mega328p.h >

 #define GLCD_TYPE GLCD_TYPE_HX8347
 #define GLCD_OLED_FONT

 'Pin mappings for SPI - this GLCD driver supports Hardware SPI and Software SPI
 #define GLCD_RD ANALOG_0 ' read command line
 #define GLCD_WR ANALOG_1 ' write command line
 #define GLCD_RS ANALOG_2 ' Command/Data line
 #define GLCD_CS ANALOG_3 ' Chip select line
 #define GLCD_RST ANALOG_4 ' Reset line

 #define GLCD_DB0 DIGITAL_8
 #define GLCD_DB1 DIGITAL_9
 #define GLCD_DB2 DIGITAL_2
 #define GLCD_DB3 DIGITAL_3
 #define GLCD_DB4 DIGITAL_4
 #define GLCD_DB5 DIGITAL_5
 #define GLCD_DB6 DIGITAL_6
 #define GLCD_DB7 DIGITAL_7

 GLCDRotate (Portrait)
 GLCDCLS HX8347_RED
 GLCDPrint(0, 0, "Test of the HX8347G Device")
 end

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

ILI9326 Controllers

This section covers GLCD devices that use the ILI9326 graphics controller. The ILI9326 is a TFT LCD
Single Chip Driver with 400RGBx320 Resolution and 262K colors.

274

GCBASIC supports 65K-color mode operations.

The GCBASIC constants shown below control the configuration of the ILI9326 controller. GCBASIC
supports 8 bit bus connectivity - this is shown in the tables below.

To use the ILI9326 driver simply include the following in your user code. This will initialise the driver.

 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_ILI9326

 'Pin mappings for ILI9326 - these MUST be specified
 #define GLCD_RD porta.3 ' read command line
 #define GLCD_WR porta.2 ' write command line
 #define GLCD_RS porta.1 ' Command/Data line
 #define GLCD_CS porta.0 ' Chip select line
 #define GLCD_RST porta.5 ' Reset line
 #define GLCD_DataPort portD

The GCBASIC constants for the interface to the controller are shown in the table below.

Constants Controls Options

GLCD_TYPE GLCD_TYPE_ILI9326

GLCD_RD Specifies the output pin that is connected to RD IO pin on the GLCD. Required

GLCD_WR Specifies the output pin that is connected to WR on the GLCD. Required

GLCD_RS Specifies the output pin that is connected to RS pin on the GLCD. Required

GLCD_CS Specifies the output pin that is connected to CS pin on the GLCD. Required

GLCD_RST Specifies the output pin that is connected to RST pin on the GLCD. Required

GLCD_DataPort Specifies the output port that is connected to DB0 to DB7 pins on the GLCD. Required

The GCBASIC constants for control display characteristics are shown in the table below.

Constant
s

Controls Default

GLCD_WIDT
H

The width parameter of the GLCD 320

GLCD_HEIG
HT

The height parameter of the GLCD 240

GLCDFontW
idth

Specifies the font width of the GCBASIC font set. 6 for GCB fonts, and 5
for OLED fonts.

275

Constant
s

Controls Default

GLCD_OLED
_FONT

Specifies the use of the optional OLED font set. The
GLCDfntDefaultsize can be set to 1 or 2 only. GLCDfntDefaultsize=
1. A small 8 height pixel font with variable width.
GLCDfntDefaultsize= 2. A larger 10 width * 16 height pixel font.

Optional

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the
appropiate library for the latest full set of supported commands.

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS [,Optional LineColour]

GLCDPrin
t

Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

GLCDDraw
Char

Print character on GLCD using GCB font set GLCDDrawChar(Xposition, Yposition,
CharCode [,Optional LineColour])

GLCDDraw
String

Print characters on GLCD using GCB font set GLCDDrawString(Xposition, Yposition,
Stringvariable [,Optional LineColour])

Box Draw a box on the GLCD to a specific size Box (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour]

FilledBo
x

Draw a box on the GLCD to a specific size
that is filled with the foreground colour.

FilledBox (Xposition1, Yposition1,
Xposition2, Yposition2 [,Optional
LineColour])

Line Draw a line on the GLCD to a specific length
that is filled with the specific attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour])

PSet Set a pixel on the GLCD at a specific position
that is set with the specific attribute.

PSet(Xposition, Yposition, Pixel Colour)

GLCDWrit
eByte

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDRead
Byte

Read a byte value from the controller, see
the datasheet for usage.

bytevariable = GLCDReadByte

GLCDRota
te

Rotate the display LANDSCAPE, PORTRAIT_REV, LANDSCAPE_REV and
PORTRAIT are supported

ILI9326_
[color]

Specify color as a parameter for many GLCD
commands

Color constants for this device are shown in
the list below.

276

 ILI9326_BLACK 'hexidecimal value 0x0000
 ILI9326_RED 'hexidecimal value 0xF800
 ILI9326_GREEN 'hexidecimal value 0x07E0
 ILI9326_BLUE 'hexidecimal value 0x001F
 ILI9326_WHITE 'hexidecimal value 0xFFFF
 ILI9326_PURPLE 'hexidecimal value 0xF11F
 ILI9326_YELLOW 'hexidecimal value 0xFFE0
 ILI9326_CYAN 'hexidecimal value 0x07FF
 ILI9326_D_GRAY 'hexidecimal value 0x528A
 ILI9326_L_GRAY 'hexidecimal value 0x7997
 ILI9326_SILVER 'hexidecimal value 0xC618
 ILI9326_MAROON 'hexidecimal value 0x8000
 ILI9326_OLIVE 'hexidecimal value 0x8400
 ILI9326_LIME 'hexidecimal value 0x07E0
 ILI9326_AQUA 'hexidecimal value 0x07FF
 ILI9326_TEAL 'hexidecimal value 0x0410
 ILI9326_NAVY 'hexidecimal value 0x0010
 ILI9326_FUCHSIA 'hexidecimal value 0xF81F

For a ILI9326 datasheet, please refer to Google.

This example shows how to drive a ILI9326 based Graphic LCD module with the built in commands of
GCBASIC.

Example #1

 ;Chip Settings
 #chip 16F1789,32

 #config MCLRE=on
 #option explicit
 #include <glcd.h>
 #define GLCD_TYPE GLCD_TYPE_ILI9326

 #define GLCD_RD porta.3 ' read command line
 #define GLCD_WR porta.2 ' write command line
 #define GLCD_RS porta.1 ' Command/Data line
 #define GLCD_CS porta.0 ' Chip select line
 #define GLCD_RST porta.5 ' Reset line
 #define GLCD_DataPort portD

 GLCDPrint(0, 0, "Test of the ILI9326 Device")
 end

277

Example #2 This example shows how to drive a ILI3941 with the OLED fonts. Note the use of the
GLCDfntDefaultSize to select the size of the OLED font in use.

 'Chip Settings
 #chip 16F1789,32

 #config MCLRE=on
 #option explicit
 #include <glcd.h>
 #define GLCD_TYPE GLCD_TYPE_ILI9326

 #define GLCD_RD porta.3 ' read command line
 #define GLCD_WR porta.2 ' write command line
 #define GLCD_RS porta.1 ' Command/Data line
 #define GLCD_CS porta.0 ' Chip select line
 #define GLCD_RST porta.5 ' Reset line
 #define GLCD_DataPort portD

 #define GLCD_OLED_FONT 'The constant is required to support OLED fonts

 GLCDfntDefaultSize = 2
 GLCDFontWidth = 5
 GLCDPrint (40, 0, "OLED")
 GLCDPrint (0, 18, "Typ: ILI9326")
 GLCDPrint (0, 34, "Size: 400 x 240")

 GLCDfntDefaultSize = 1
 GLCDPrint(20, 56,"https://goo.gl/gjrxkp")

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

ILI9340 Controllers

This section covers GLCD devices that use the ILI9340 graphics controller. The ILI9340 is a TFT LCD
Single Chip Driver with 240RGBx320 Resolution and 262K colors.

GCBASIC supports 65K-color mode operations.

The GCBASIC constants shown below control the configuration of the ILI9340 controller. GCBASIC
supports SPI hardware and software connectivity - this is shown in the tables below.

To use the ILI9340 driver simply include the following in your user code. This will initialise the driver.

278

 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_ILI9340

 'Pin mappings for ILI9340 - these MUST be specified
 #define GLCD_DC porta.0 'example port setting
 #define GLCD_CS porta.1 'example port setting
 #define GLCD_RESET porta.2 'example port setting
 #define GLCD_DI porta.3 'example port setting
 #define GLCD_DO porta.4 'example port setting

The GCBASIC constants for the interface to the controller are shown in the table below.

Const
ants

Controls Options

GLCD_T
YPE

GLCD_TYPE_ILI9340

GLCD_D
C

Specifies the output pin that is connected to
Data/Command IO pin on the GLCD.

Required

GLCD_C
S

Specifies the output pin that is connected to Chip Select
(CS) on the GLCD.

Required

GLCD_R
eset

Specifies the output pin that is connected to Reset pin on
the GLCD.

Required

GLCD_D
I

Specifies the output pin that is connected to Data In
(GLCD out) pin on the GLCD.

Required

GLCD_D
O

Specifies the output pin that is connected to Data Out
(GLCD in) pin on the GLCD.

Required

GLCD_S
CK

Specifies the output pin that is connected to Clock (CLK)
pin on the GLCD. #define GLCD_SCK porta.5
'example port setting

Required

HWSPIM
ode

User can specify the hardware SPI mode. Must be one of
MasterSlow, Master, Masterfast

Optional. Defaults to Masterfast
when chipMhz is less than 64mhz

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Default

GLCD_WIDTH The width parameter of the GLCD 320+ Cannot be changed.

GLCD_HEIGHT The height parameter of the GLCD 240+ Cannot be changed.

GLCDFontWidth Specifies the font width of the GCBASIC font set. 6

279

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the
appropiate library for the latest full set of supported commands.

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS [,Optional LineColour]

GLCDPrin
t

Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition, Stringvariable
)

GLCDDraw
Char

Print character on GLCD using GCB font
set

GLCDDrawChar(Xposition, Yposition, CharCode
[,Optional LineColour])

GLCDDraw
String

Print characters on GLCD using GCB font
set

GLCDDrawString(Xposition, Yposition,
Stringvariable [,Optional LineColour])

Box Draw a box on the GLCD to a specific
size

Box (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour]]

FilledBo
x

Draw a box on the GLCD to a specific
size that is filled with the foreground
colour.

FilledBox (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour])

Line Draw a line on the GLCD to a specific
length that is filled with the specific
attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour])

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour)

GLCDWrit
eByte

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDRead
Byte

Read a byte value from the controller,
see the datasheet for usage.

bytevariable = GLCDReadByte

GLCDRota
te

Rotate the display LANDSCAPE, PORTRAIT_REV, LANDSCAPE_REV and
PORTRAIT are supported

ILI9340_
[color]

Specify color as a parameter for many
GLCD commands

Color constants for this device are shown in the
list below.
Any color can be defined using a valid
hexidecimal word value between 0x0000 to
0xFFFF.

280

 ILI9340_BLACK 'hexidecimal value 0x0000
 ILI9340_RED 'hexidecimal value 0xF800
 ILI9340_GREEN 'hexidecimal value 0x07E0
 ILI9340_BLUE 'hexidecimal value 0x001F
 ILI9340_WHITE 'hexidecimal value 0xFFFF
 ILI9340_PURPLE 'hexidecimal value 0xF11F
 ILI9340_YELLOW 'hexidecimal value 0xFFE0
 ILI9340_CYAN 'hexidecimal value 0x07FF
 ILI9340_D_GRAY 'hexidecimal value 0x528A
 ILI9340_L_GRAY 'hexidecimal value 0x7997
 ILI9340_SILVER 'hexidecimal value 0xC618
 ILI9340_MAROON 'hexidecimal value 0x8000
 ILI9340_OLIVE 'hexidecimal value 0x8400
 ILI9340_LIME 'hexidecimal value 0x07E0
 ILI9340_AQUA 'hexidecimal value 0x07FF
 ILI9340_TEAL 'hexidecimal value 0x0410
 ILI9340_NAVY 'hexidecimal value 0x0010
 ILI9340_FUCHSIA 'hexidecimal value 0xF81F

For a ILI9340 datasheet, please refer here.

This example shows how to drive a ILI9340 based Graphic LCD module with the built in commands of
GCBASIC.

Example:

 ;Chip Settings
 #chip 16F1937,32
 #config MCLRE_ON 'microcontroller specific configuration

 #include <glcd.h>

 'Defines for ILI9340
 #define GLCD_TYPE GLCD_TYPE_ILI9340

 'Pin mappings for ILI9340
 #define GLCD_DC porta.0
 #define GLCD_CS porta.1
 #define GLCD_RESET porta.2
 #define GLCD_DI porta.3
 #define GLCD_DO porta.4
 #define GLCD_SCK porta.5

 GLCDPrint(0, 0, "Test of the ILI9340 Device")
 end

281

http://gcbasic.sourceforge.net/library/DISPLAY/ILI9340.pdf

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

ILI9341 Controllers

This section covers GLCD devices that use the ILI9341 graphics controller. The ILI9341 is a TFT LCD
Single Chip Driver with 240RGBx320 Resolution and 262K colors.

GCBASIC supports 65K-color mode operations.

The GCBASIC supports different methods to controller the GLCD. These methods are shown below
control the configuration of the ILI9341 controller. GCBASIC supports SPI hardware and software
connectivity - this is shown in the tables below.

To use the ILI9341 driver simply include the following in your user code. This will initialise the driver
of a SPI method of connection.

 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_ILI9341

 'Pin mappings for ILI9341 - these MUST be specified
 #define GLCD_DC porta.0 'example port setting
 #define GLCD_CS porta.1 'example port setting
 #define GLCD_RESET porta.2 'example port setting
 #define GLCD_DI porta.3 'example port setting
 #define GLCD_DO porta.4 'example port setting
 #define GLCD_SCK porta.5 'example port setting

The GCBASIC constants for the interface to the controller are shown in the table below.

Const
ants

Controls Options

GLCD_
TYPE

GLCD_TYPE_ILI9341 Define the constant only

SPI Method The method can use hardware or software SPI

GLCD_
DC

Specifies the output pin that is connected to
Data/Command IO pin on the GLCD.

Required

GLCD_
CS

Specifies the output pin that is connected to
Chip Select (CS) on the GLCD.

Required

GLCD_
Reset

Specifies the output pin that is connected to
Reset pin on the GLCD.

Required

282

Const
ants

Controls Options

GLCD_
DI

Specifies the output pin that is connected to
Data In (GLCD out) pin on the GLCD. If using
hardware SPI this must be the hardware SPI
port.

Required

GLCD_
DO

Specifies the output pin that is connected to
Data Out (GLCD in) pin on the GLCD. If using
hardware SPI this must be the hardware SPI
port.

Required

GLCD_
SCK

Specifies the output pin that is connected to
Clock (CLK) pin on the GLCD. If using
hardware SPI this must be the hardware SPI
port.

Required

UNO Shield Method The method uses the ILI9341 attached via the UNO shield

GLCD_
CS

Specifies the output pin that is connected to
Chip Select (CS) on the GLCD.

Required

GLCD_
Reset

Specifies the output pin that is connected to
Reset pin on the GLCD.

Required

GLCD_
RD

Specifies the output pin that is connected to
Read (RD) pin on the GLCD.

Required

GLCD_
WR

Specifies the output pin that is connected to
Write (WR) pin on the GLCD.

Required

GLCD_
RS

Specifies the output pin that is connected to
Data/Command (RS) pin on the GLCD.

Required

GLCD_
DB0

DIGITAL_8 Mandated to this port

GLCD_
DB1

DIGITAL_9 Mandated to this port

GLCD_
DB2

DIGITAL_2 Mandated to this port

GLCD_
DB3

DIGITAL_3 Mandated to this port

GLCD_
DB4

DIGITAL_4 Mandated to this port

GLCD_
DB5

DIGITAL_5 Mandated to this port

GLCD_
DB6

DIGITAL_6 Mandated to this port

283

Const
ants

Controls Options

GLCD_
DB7

DIGITAL_7 Mandated to this port

8Bit Port Method The method uses a contigous 8bit port for the data port.

GLCD_
CS

Specifies the output pin that is connected to
Chip Select (CS) on the GLCD.

Required

GLCD_
Reset

Specifies the output pin that is connected to
Reset pin on the GLCD.

Required

GLCD_
RD

Specifies the output pin that is connected to
Read (RD) pin on the GLCD.

Required

GLCD_
WR

Specifies the output pin that is connected to
Write (WR) pin on the GLCD.

Required

GLCD_
RS

Specifies the output pin that is connected to
Data/Command (RS) pin on the GLCD.

Required

GLCD_
PORT

Any valid 8 bit port, like PORTC Required

SPI Controls

HWSPI
Mode

Specifies the speed of the SPI communications
for Hardware SPI only.

Optional defaults to MASTERFAST. Options are
MASTERSLOW,
MASTER,
MASTERFAST, or
MASTERULTRAFAST for specific AVRs only.

The GCBASIC constants for control display characteristics are shown in the table below.

Constant
s

Controls Default

GLCD_WIDT
H

The width parameter of the GLCD 320

GLCD_HEIG
HT

The height parameter of the GLCD 240

GLCDFontW
idth

Specifies the font width of the GCBASIC font set. 6 for GCB fonts, and 5
for OLED fonts.

GLCD_OLED
_FONT

Specifies the use of the optional OLED font set. The
GLCDfntDefaultsize can be set to 1 or 2 only. GLCDfntDefaultsize=
1. A small 8 height pixel font with variable width.
GLCDfntDefaultsize= 2. A larger 10 width * 16 height pixel font.

Optional

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the

284

appropiate library for the latest full set of supported commands.

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS [,Optional LineColour]

GLCDPri
nt

Print string of characters on GLCD using GCB
font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

GLCDDra
wChar

Print character on GLCD using GCB font set GLCDDrawChar(Xposition, Yposition,
CharCode [,Optional LineColour])

GLCDDra
wString

Print characters on GLCD using GCB font set GLCDDrawString(Xposition, Yposition,
Stringvariable [,Optional LineColour])

Box Draw a box on the GLCD to a specific size Box (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour]

FilledB
ox

Draw a box on the GLCD to a specific size that
is filled with the foreground colour.

FilledBox (Xposition1, Yposition1,
Xposition2, Yposition2 [,Optional
LineColour])

Line Draw a line on the GLCD to a specific length
that is filled with the specific attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour])

PSet Set a pixel on the GLCD at a specific position
that is set with the specific attribute.

PSet(Xposition, Yposition, Pixel Colour)

GLCDWri
teByte

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDRea
dByte

Read a byte value from the controller, see the
datasheet for usage.

bytevariable = GLCDReadByte

GLCDRot
ate

Rotate the display LANDSCAPE, PORTRAIT_REV, LANDSCAPE_REV and
PORTRAIT are supported

ILI9341
_[color
]

Specify color as a parameter for many GLCD
commands

Color constants for this device are shown in
the list below.

ReadPix
el

Read the pixel color at the specified XY
coordination. Returns long variable with
Red, Green and Blue encoded in the lower 24
bits.

ReadPixel(Xosition , Yposition) or
ReadPixel_ILI9341(Xosition , Yposition) Any
color can be defined using a valid
hexidecimal word value between 0x0000 to
0xFFFF.

285

 ILI9341_BLACK 'hexidecimal value 0x0000
 ILI9341_RED 'hexidecimal value 0xF800
 ILI9341_GREEN 'hexidecimal value 0x07E0
 ILI9341_BLUE 'hexidecimal value 0x001F
 ILI9341_WHITE 'hexidecimal value 0xFFFF
 ILI9341_PURPLE 'hexidecimal value 0xF11F
 ILI9341_YELLOW 'hexidecimal value 0xFFE0
 ILI9341_CYAN 'hexidecimal value 0x07FF
 ILI9341_D_GRAY 'hexidecimal value 0x528A
 ILI9341_L_GRAY 'hexidecimal value 0x7997
 ILI9341_SILVER 'hexidecimal value 0xC618
 ILI9341_MAROON 'hexidecimal value 0x8000
 ILI9341_OLIVE 'hexidecimal value 0x8400
 ILI9341_LIME 'hexidecimal value 0x07E0
 ILI9341_AQUA 'hexidecimal value 0x07FF
 ILI9341_TEAL 'hexidecimal value 0x0410
 ILI9341_NAVY 'hexidecimal value 0x0010
 ILI9341_FUCHSIA 'hexidecimal value 0xF81F

For a ILI9341 datasheet, please refer here.

This example shows how to drive a ILI9341 based Graphic LCD module with the built in commands of
GCBASIC.

Example #1

 ;Chip Settings
 #chip 16F1937,32
 #config MCLRE_ON 'microcontroller specific configuration

 #include <glcd.h>

 'Defines for ILI9341
 #define GLCD_TYPE GLCD_TYPE_ILI9341

 'Pin mappings for ILI9341
 #define GLCD_DC porta.0
 #define GLCD_CS porta.1
 #define GLCD_RESET porta.2
 #define GLCD_DI porta.3
 #define GLCD_DO porta.4
 #define GLCD_SCK porta.5

 GLCDPrint(0, 0, "Test of the ILI9341 Device")
 end

286

http://gcbasic.sourceforge.net/library/DISPLAY/ILI9341.pdf

Example #2 This example shows how to drive a ILI3941 with the OLED fonts. Note the use of the
GLCDfntDefaultSize to select the size of the OLED font in use.

 #define GLCD_OLED_FONT 'The constant is required to support OLED fonts

 GLCDfntDefaultSize = 2
 GLCDFontWidth = 5
 GLCDPrint (40, 0, "OLED")
 GLCDPrint (0, 18, "Typ: ILI9341")
 GLCDPrint (0, 34, "Size: 320 x 240")

 GLCDfntDefaultSize = 1
 GLCDPrint(20, 56,"https://goo.gl/gjrxkp")

Example #2 This example shows how to disable the large OLED Fontset. This disables the font to
reduce memory usage.

When the extended OLED fontset is disabled every character will be shown as a block character.

 #define GLCD_OLED_FONT 'The constant is required to support OLED fonts
 #define GLCD_Disable_OLED_FONT2 'The constant to disable the extended OLED
fontset.

 GLCDfntDefaultSize = 2
 GLCDFontWidth = 5
 GLCDPrint (40, 0, "OLED")
 GLCDPrint (0, 18, "Typ: ILI9341")
 GLCDPrint (0, 34, "Size: 320 x 240")

 GLCDfntDefaultSize = 1
 GLCDPrint(20, 56,"https://goo.gl/gjrxkp")

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

ILI9481 Controllers

This section covers GLCD devices that use the ILI9481 graphics controller.

287

ILI9481 is a 262k-color single-chip SoC driver for a-TFT liquid crystal display with resolution of
320 RGB x 480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600 bytes
GRAM for graphic data.

GCBASIC supports 65K-color mode operations.

The GCBASIC constants shown below control the configuration of the ILI9481controller. The GCBASIC
constants for control and data line connections are shown in the table below. Two options are
available for connectivity:

1) The 8-bit mode where 8 pins are connected between the microcontroller and the GLCD to control
the data bus.

2) The 16-bit mode where two data ports (8 pins each) are connected between the microcontroller and
the GLCD to control the data bus.

To use the ILI9481 driver simply include the following in your user code. This will initialise the driver.

8-bit mode

 'Pin mappings for Data Bus Interface (DBI)
 'this GLCD driver supports 8 bit and 16 bit parallel data lines

 '8 bit DBI
 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_ILI9481

 '8 bit control and parallel data lines (UNO Board)
 #define GLCD_RD ANALOG_0 ' read command line
 #define GLCD_WR ANALOG_1 ' write command line
 #define GLCD_RS ANALOG_2 ' Command/Data line
 #define GLCD_CS ANALOG_3 ' Chip select line
 #define GLCD_RST ANALOG_4 ' Reset line

 #define GLCD_DB0 DIGITAL_8 'Data port'
 #define GLCD_DB1 DIGITAL_9 'Data port'
 #define GLCD_DB2 DIGITAL_2 'Data port'
 #define GLCD_DB3 DIGITAL_3 'Data port'
 #define GLCD_DB4 DIGITAL_4 'Data port'
 #define GLCD_DB5 DIGITAL_5 'Data port'
 #define GLCD_DB6 DIGITAL_6 'Data port'
 #define GLCD_DB7 DIGITAL_7 'Data port'

288

16-bit mode

 '16 bit DBI
 #include <glcd.h>
 #define GLCD_TYPE GLCD_TYPE_ILI9481
 #define GLCD_ILI9481_16bit

 '16 bit control and dual data port lines (Mega2560 Board)
 #define ILI9481_GLCD_CS PortG.1 'Chip Select line
 #define ILI9481_GLCD_RS PortD.7 'DC data command line
 #define ILI9481_GLCD_WR PortG.2 'Write command line
 #define ILI9481_GLCD_RST PortG.0 'Reset line

 #define ILI9481_DataPortH PortA 'DB[15:8]
 #define ILI9481_DataPortL PortC 'DB[7:0]

The GCBASIC constants for the interface to the controller are shown in the table below.

Constants Controls Options

GLCD_TYPE GLCD_TYPE_ILI9481

GLCD_ILI9481_16b
it

Specifies 16 bit DBI mode

GLCD_DB0..7 Specifies the pin that is connected to DB0..7 IO pin on the GLCD (8 bit
DBI).

Require
d

ILI9481_DataPort
H

Specifies the port DB[15:8] pins on the GLCD (16 bit DBI). Require
d

ILI9481_DataPort
L

Specifies the port DB[7:0] pins on the GLCD (16 bit DBI). Require
d

GLCD_RST Specifies the output pin that is connected to Reset IO pin on the GLCD. Require
d

GLCD_CS Specifies the output pin that is connected to Chip Select (CS) on the GLCD. Require
d

GLCD_RS Specifies the output pin that is connected to Data/Command pin on the
GLCD.

Require
d

GLCD_WR Specifies the output pin that is connected to Data In (RW or WDR) pin on
the GLCD.

Require
d

289

Constants Controls Options

GLCD_RD Specifies the output pin that is connected to Data Out (RD or RDR) pin on
the GLCD.

Require
d

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Defaul
t

GLCD_WIDTH The width parameter of the GLCD 320

GLCD_HEIGHT The height parameter of the GLCD 480

GLCDFontWidth Specifies the font width of the GCBASIC font set. 6

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the
appropiate library for the latest full set of supported commands.

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS [,Optional LineColour]

GLCDPrin
t

Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition, Stringvariable
)

GLCDDraw
Char

Print character on GLCD using GCB font
set

GLCDDrawChar(Xposition, Yposition, CharCode
[,Optional LineColour])

GLCDDraw
String

Print characters on GLCD using GCB font
set

GLCDDrawString(Xposition, Yposition,
Stringvariable [,Optional LineColour])

Box Draw a box on the GLCD to a specific
size

Box (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour]

FilledBo
x

Draw a box on the GLCD to a specific
size that is filled with the foreground
colour.

FilledBox (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour])

Line Draw a line on the GLCD to a specific
length that is filled with the specific
attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour])

290

Comma
nd

Purpose Example

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour)

GLCDWrit
eByte

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDRead
Byte

Read a byte value from the controller,
see the datasheet for usage.

bytevariable = GLCDReadByte

GLCDRota
te

Rotate the display LANDSCAPE, PORTRAIT_REV, LANDSCAPE_REV and
PORTRAIT are supported

ILI9481_
[color]

Specify color as a parameter for many
GLCD commands

Color constants for this device are shown in the
list below.
Any color can be defined using a valid
hexidecimal word value between 0x0000 to
0xFFFF.

 ILI9481_BLACK 'hexidecimal value 0x0000
 ILI9481_RED 'hexidecimal value 0xF800
 ILI9481_GREEN 'hexidecimal value 0x0400
 ILI9481_BLUE 'hexidecimal value 0x001F
 ILI9481_WHITE 'hexidecimal value 0xFFFF
 ILI9481_PURPLE 'hexidecimal value 0xF11F
 ILI9481_YELLOW 'hexidecimal value 0xFFE0
 ILI9481_CYAN 'hexidecimal value 0x07FF
 ILI9481_D_GRAY 'hexidecimal value 0x528A
 ILI9481_L_GRAY 'hexidecimal value 0x7997
 ILI9481_SILVER 'hexidecimal value 0xC618
 ILI9481_MAROON 'hexidecimal value 0x8000
 ILI9481_OLIVE 'hexidecimal value 0x8400
 ILI9481_LIME 'hexidecimal value 0x07E0
 ILI9481_AQUA 'hexidecimal value 0x07FF
 ILI9481_TEAL 'hexidecimal value 0x0410
 ILI9481_NAVY 'hexidecimal value 0x0010
 ILI9481_FUCHSIA 'hexidecimal value 0xF81F

These examples show how to drive a ILI9481 based Graphic LCD module with the built in commands of

291

GCBASIC. The 8 bit DBI example uses a UNO shield, this can easily adapted to Microchip architecture.
The 16 bit DBI example uses a Mega2560 board.

Examples:

 '8 bit DBI
 #include <glcd.h>
 #include <UNO_mega328p.h >

 #define GLCD_TYPE GLCD_TYPE_ILI9481

 'Pin mappings for SPI - this GLCD driver supports Hardware SPI and Software SPI
 #define GLCD_RD ANALOG_0 ' read command line
 #define GLCD_WR ANALOG_1 ' write command line
 #define GLCD_RS ANALOG_2 ' Command/Data line
 #define GLCD_CS ANALOG_3 ' Chip select line
 #define GLCD_RST ANALOG_4 ' Reset line

 #define GLCD_DB0 DIGITAL_8
 #define GLCD_DB1 DIGITAL_9
 #define GLCD_DB2 DIGITAL_2
 #define GLCD_DB3 DIGITAL_3
 #define GLCD_DB4 DIGITAL_4
 #define GLCD_DB5 DIGITAL_5
 #define GLCD_DB6 DIGITAL_6
 #define GLCD_DB7 DIGITAL_7

 GLCDPrint(0, 0, "Test of the ILI9481 Device")
 end

 '16 bit DBI
 #chip mega2560, 16
 #include <glcd.h>

 #define GLCD_TYPE GLCD_TYPE_ILI9481
 #define GLCD_ILI9481_16bit

 #define ILI9481_GLCD_CS PortG.1
 #define ILI9481_GLCD_RS PortD.7

292

 #define ILI9481_GLCD_WR PortG.2
 #define ILI9481_GLCD_RST PortG.0
 #define ILI9481_DataPortH PortA
 #define ILI9481_DataPortL PortC

 #define ILI9481_YELLOW1 0xFFC1
 #define ILI9481_BlueViolet 0x895C

 GLCDCLS_ILI9481 ILI9481_Black
 wait 1 s
 GLCDCLS_ILI9481 ILI9481_White
 wait 1 s

 GLCDfntDefaultsize = 3
 GLCDBackground = ILI9481_BlueViolet
 GLCDForeground = ILI9481_Yellow1
 GLCDCLS
 wait 1 s

 Start:

 'demonstrate screen rotation
 GLCDRotate (Portrait)
 GLCDCLS
 GLCDDrawString (ILI9481_GLCD_WIDTH/2 - 24, ILI9481_GLCD_HEIGHT/2 - 62, "GCB")
 GLCDDrawString (ILI9481_GLCD_WIDTH/2 - 120, ILI9481_GLCD_HEIGHT/2 - 24, "ILI9481
Driver")
 wait 5 s

 GLCDRotate (Landscape)
 GLCDCLS
 GLCDDrawString (ILI9481_GLCD_WIDTH/2 - 24, ILI9481_GLCD_HEIGHT/2 - 62, "GCB")
 GLCDDrawString (ILI9481_GLCD_WIDTH/2 - 120, ILI9481_GLCD_HEIGHT/2 -24, "ILI9481
Driver")
 wait 5 s

 GLCDRotate (Portrait_REV)
 GLCDCLS
 GLCDDrawString (ILI9481_GLCD_WIDTH/2 - 24, ILI9481_GLCD_HEIGHT/2 - 62, "GCB")
 GLCDDrawString (ILI9481_GLCD_WIDTH/2 - 120, ILI9481_GLCD_HEIGHT/2 - 24, "ILI9481
Driver")
 wait 5 s

 GLCDRotate (Landscape_REV)
 GLCDCLS
 GLCDDrawString (ILI9481_GLCD_WIDTH/2 - 24, ILI9481_GLCD_HEIGHT/2 - 62, "GCB")
 GLCDDrawString (ILI9481_GLCD_WIDTH/2 - 120, ILI9481_GLCD_HEIGHT/2 - 24, "ILI9481
Driver")

293

 wait 5 s

 goto Start

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

ILI9486(L) Controllers

This section covers GLCD devices that use the ILI9486(L) graphics controller.

The ILI9486(L) is a 262kcolor single-chip SoC driver for a-Si TFT liquid crystal display with resolution of
320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes
GRAM for graphic data of 320RGBx480 dots.

The GCBASIC constants shown below control the configuration of the ILI9486(L) controller. GCBASIC
supports 1) SPI using the SPI hardware module, 2) software SPI, 3) UNO shields and 4) an 8bit port bus -
this is detailed in the tables below.

GCBASIC supports 65K-color mode operations.

To use the ILI9486(L) driver simply include the following in your user code. This will initialise the
driver.

 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_ILI9486L

The GCBASIC constants for the interface to the controller are shown in the table below.

Constants Controls Options

GLCD_TYPE GLCD_TYPE_ILI9486L or GLCD_TYPE_ILI9486

GLCD_DC Specifies the output pin that is connected to Data/Command IO pin on the GLCD. Required

GLCD_CS Specifies the output pin that is connected to Chip Select (CS) on the GLCD. Required

GLCD_Reset Specifies the output pin that is connected to Reset pin on the GLCD. Required

GLCD_DI Specifies the output pin that is connected to Data In (GLCD out) pin on the
GLCD.

Required

GLCD_DO Specifies the output pin that is connected to Data Out (GLCD in) pin on the
GLCD.

Required

294

Constants Controls Options

GLCD_SLK Specifies the output pin that is connected to Clock (CLK) pin on the GLCD. Required

The GCBASIC constants for the communicaton protocol for the controller are shown in the table below.

Communicatio
ns Constants

Use Comments

ILI9486L_Har
dwareSPI

Specifies that hardware SPI will be
used

SPI ports MUST be defined that match the SPI
module for each specific microcontroller #define
ILI9486L_HardwareSPI

HWSPIMode Specifies the speed of the SPI
communications for Hardware SPI
only.

Optional defaults to MASTERFAST. Options are
MASTERSLOW,
MASTER,
MASTERFAST, or
MASTERULTRAFAST for specific AVRs only.

UNO_8bit_Shi
eld

Specifies that a UNO shield will be
used

The shield will use 13 ports. These ports are pre-
defined by the shield. These ports must be
specified. #define UNO_8bit_Shield

GLCD_DataPor
t

Specifies that a full 8 port will be
used

The microcontroller will use 13 ports. These port is
defined as 8 contigous bits. These control port and
the data port must be specified. #define
GLCD_DataPort portb

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Defaul
t

GLCD_WIDTH The width parameter of the GLCD 320

GLCD_HEIGHT The height parameter of the GLCD 480

GLCDFontWidth Specifies the font width of the GCBASIC font set. 6

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the
appropiate library for the latest full set of supported commands.

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

GLCDPrin
t

Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition, Stringvariable
)

GLCDDraw
Char

Print character on GLCD using GCB font
set

GLCDDrawChar(Xposition, Yposition, CharCode
[,Optional LineColour])

295

Comma
nd

Purpose Example

GLCDDraw
String

Print characters on GLCD using GCB font
set

GLCDDrawString(Xposition, Yposition,
Stringvariable [,Optional LineColour])

Box Draw a box on the GLCD to a specific
size

Box (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour]

FilledBo
x

Draw a box on the GLCD to a specific
size that is filled with the foreground
colour.

FilledBox (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour])

Line Draw a line on the GLCD to a specific
length that is filled with the specific
attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional In LineColour])

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour)

GLCDWrit
eByte

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDRead
Byte

Read a byte value from the controller,
see the datasheet for usage.

bytevariable = GLCDReadByte

GLCDRota
te

Rotate the display LANDSCAPE, PORTRAIT_REV, LANDSCAPE_REV and
PORTRAIT are supported

ILI9486L
_[color]

Specify color as a parameter for many
GLCD commands

Color constants for this device are shown in the
list below.
Any color can be defined using a valid
hexidecimal word value between 0x0000 to
0xFFFF.

296

 TFT_BLACK 'hexidecimal value 0x0000
 TFT_RED 'hexidecimal value 0xF800
 TFT_GREEN 'hexidecimal value 0x07E0
 TFT_BLUE 'hexidecimal value 0x001F
 TFT_WHITE 'hexidecimal value 0xFFFF
 TFT_PURPLE 'hexidecimal value 0xF11F
 TFT_YELLOW 'hexidecimal value 0xFFE0
 TFT_CYAN 'hexidecimal value 0x07FF
 TFT_D_GRAY 'hexidecimal value 0x528A
 TFT_L_GRAY 'hexidecimal value 0x7997
 TFT_SILVER 'hexidecimal value 0xC618
 TFT_MAROON 'hexidecimal value 0x8000
 TFT_OLIVE 'hexidecimal value 0x8400
 TFT_LIME 'hexidecimal value 0x07E0
 TFT_AQUA 'hexidecimal value 0x07FF
 TFT_TEAL 'hexidecimal value 0x0410
 TFT_NAVY 'hexidecimal value 0x0010
 TFT_FUCHSIA 'hexidecimal value 0xF81F

For a ILI9486L datasheet, please refer to Google.

This example shows how to drive a ILI9486L based Graphic LCD module with the built in commands of
GCBASIC.

Example:

297

 #chip mega328p, 16
 #option explicit

 #include <glcd.h>
 #include <UNO_mega328p.h >

 #define GLCD_TYPE GLCD_TYPE_ILI9486L

 'Pin mappings for SPI - this GLCD driver supports Hardware SPI and Software SPI
 #define GLCD_DC DIGITAL_8 ' Data command line
 #define GLCD_CS DIGITAL_10 ' Chip select line
 #define GLCD_RST DIGITAL_9 ' Reset line

 #define GLCD_DI DIGITAL_13 ' Data in | MISO
 #define GLCD_DO DIGITAL_11 ' Data out | MOSI
 #define GLCD_SCK DIGITAL_13 ' Clock Line

 #define ILI9486L_HardwareSPI ' Remove/comment out if you want to use
software SPI.

 GLCDPrint(0, 0, "Test of the ILI9486L Device")
 end

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

ILI9488 Controllers

This section covers GLCD devices that use the ILI9488 graphics controller.

ILI9488 is a 262k-color single-chip SoC driver for a-TFT liquid crystal display with resolution of 320 x
240 resolution, 16.7M-color and with internal GRAM .

GCBASIC supports 65K-color mode operations.

The GCBASIC constants shown below control the configuration of the ILI9488 controller. The
GCBASIC constants for control and data line connections are shown in the table below. Only SPI is
available for connectivity:

To use the ILI9488 driver simply include the following in your user code. This will initialise the driver.

SPI mode

298

 'Pin mappings for SPI

 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_ILI9488

 #DEFINE GLCD_DC PORTB.3 ' Data command line
 #DEFINE GLCD_CS PORTB.5 ' Chip select line
 #DEFINE GLCD_RST PORTB.4 ' Reset line

 #DEFINE GLCD_DI PORTB.2 ' Data in | MISO
 #DEFINE GLCD_DO PORTB.0 ' Data out | MOSI
 #DEFINE GLCD_SCK PORTB.1 ' Clock Line

The GCBASIC constants for the interface to the controller are shown in the table below.

Constants Controls Option
s

GLCD_TYPE GLCD_TYPE_ILI9488

ILI9488_HARDWAR
ESPI

Specifies to use the microcontrollers SPI module. For PPS microcontrollers
the libary assumes PPS for SPI has been configured.

Option
al

HWSPIMODE
MASTERFAST

Specifies the speed of the SPI communications. Option
al

GLCD_RST Specifies the output pin that is connected to Reset IO pin on the GLCD. Requir
ed

GLCD_CS Specifies the output pin that is connected to Chip Select (CS) on the GLCD. Requir
ed

GLCD_RS Specifies the output pin that is connected to Data/Command pin on the
GLCD.

Requir
ed

GLCD_DI Specifies the output pin that is connected to Data In (RW or WDR) pin on the
GLCD.

Requir
ed

GLCD_DO Specifies the output pin that is connected to Data Out (RD or RDR) pin on the
GLCD.

Requir
ed

GLCD_SCK Specifies the output pin that is connected to Clock pin on the GLCD. Requir
ed

299

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Defaul
t

GLCD_WIDTH The width parameter of the GLCD 320

GLCD_HEIGHT The height parameter of the GLCD 480

GLCDFontWidth Specifies the font width of the GCBASIC font set. 6

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the
appropiate library for the latest full set of supported commands.

Command Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS [,Optional LineColour]

GLCDPrint Print string of characters on GLCD
using GCB font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

GLCDDrawCh
ar

Print character on GLCD using GCB font
set

GLCDDrawChar(Xposition, Yposition, CharCode
[,Optional LineColour])

GLCDDrawSt
ring

Print characters on GLCD using GCB
font set

GLCDDrawString(Xposition, Yposition,
Stringvariable [,Optional LineColour])

Box Draw a box on the GLCD to a specific
size

Box (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour]

FilledBox Draw a box on the GLCD to a specific
size that is filled with the foreground
colour.

FilledBox (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour])

Line Draw a line on the GLCD to a specific
length that is filled with the specific
attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour])

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour)

GLCDRotate Rotate the display LANDSCAPE, PORTRAIT_REV, LANDSCAPE_REV and
PORTRAIT are supported

300

Command Purpose Example

ILI9488__T
FT_[color]

Specify color as a parameter for many
GLCD commands

Color constants for this device are shown in the
list below, butm you can use the generic TFT
color scheme.
Any color can be defined using a valid
hexidecimal word value between 0x0000 to
0xFFFF.

 ILI9488_TFT_BLACK //0x000000
 ILI9488_TFT_RED //0xFC0000
 ILI9488_TFT_GREEN //0x00FC00
 ILI9488_TFT_BLUE //0x0000FC
 ILI9488_TFT_WHITE //0xFFFFFF

 ILI9488_TFT_CYAN //0x003F3F
 ILI9488_TFT_DARKCYAN //0x00AFAF
 ILI9488_TFT_DARKGREEN //0x002100
 ILI9488_TFT_DARKGREY //0xAAAAAA
 ILI9488_TFT_GREENYELLOW //0x93FC33
 ILI9488_TFT_LIGHTGREY //0xC9C9C9
 ILI9488_TFT_MAGENTA //0xCC00CC
 ILI9488_TFT_MAROON //0x7E007E
 ILI9488_TFT_NAVY //0x00003E
 ILI9488_TFT_OLIVE //0x783E00
 ILI9488_TFT_ORANGE //0xFC2900
 ILI9488_TFT_PINK //0xFC000F
 ILI9488_TFT_PURPLE //0xF01F9E
 ILI9488_TFT_YELLOW //0xFC7E00

These examples show how to drive a ILI9488 based Graphic LCD module with the built in commands of
GCBASIC.

Examples - PPS Enabled

 #chip 18F26K83, 64
 #option Explicit

301

 'Generated by PIC PPS Tool for GCBASIC
 #startup InitPPS, 85
 #DEFINE PPSToolPart 18f26k83

 Sub InitPPS
 'Module: UART pin directions
 Dir PORTC.7 Out ' Make TX1 pin an output
 'Module: UART1
 RC7PPS = 0x0013 'TX1 > RC7

 #IFDEF ILI9488_HardwareSPI
 UNLOCKPPS
 'Module: SPI1
 RB0PPS = 0x001F 'SDO1 > RB0
 RB1PPS = 0x001E 'SCK1 > RB1
 SPI1SCKPPS = 0x0009 'RB1 > SCK1 (bi-directional)
 SPI1SDIPPS = 0x000A 'RB2 > SDI1
 #ELSE
 RB0PPS = 0
 RB1PPS = 0
 #ENDIF
 End Sub
 // Template comment at the end of the config file

 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_ILI9488
 #DEFINE ILI9488_HARDWARESPI
 #DEFINE HWSPIMODE MASTERFAST
 #DEFINE GLCD_DC PORTB.3 ' Data command line
 #DEFINE GLCD_CS PORTB.5 ' Chip select line
 #DEFINE GLCD_RST PORTB.4 ' Reset line

 #DEFINE GLCD_DI PORTB.2 ' Data in | MISO
 #DEFINE GLCD_DO PORTB.0 ' Data out | MOSI
 #DEFINE GLCD_SCK PORTB.1 ' Clock Line

 '''**

 'main program start here

 // Set the background
 #DEFINE DEFAULT_GLCDBACKGROUND TFT_WHITE

 GLCDPrint 0, 0, "Test of the ILI9488 Device", TFT_BLACK
 end

302

Examples - Legacy non PPS microcontroller

 #chip 16F1939
 #option Explicit

 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_ILI9488
 #DEFINE GLCD_DC PORTB.3 ' Data command line
 #DEFINE GLCD_CS PORTB.5 ' Chip select line
 #DEFINE GLCD_RST PORTB.4 ' Reset line

 #DEFINE GLCD_DI PORTB.2 ' Data in | MISO
 #DEFINE GLCD_DO PORTB.0 ' Data out | MOSI
 #DEFINE GLCD_SCK PORTB.1 ' Clock Line

 '''**

 'main program start here

 // Set the background
 #DEFINE DEFAULT_GLCDBACKGROUND TFT_WHITE

 GLCDPrint 0, 0, "Test of the ILI9488 Device", TFT_BLACK
 end

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

303

Developer Notes

The ILI9488 library implemented uses BRG color scheme which is different from other GLCD libraries.

The ILI9488 library implemented also uses 18bits for color definition where the color scheme is
defined as shown below:

The ILI9488 library implemented there has the following differences from a typical GLCD library.

1. The colors are defined as RGB left justified 6 bits.

2. The colors are defined as Longs (not Words other GLCDs are Words).

3. The color information uses a 18bit macro for SPI communications. Color information is sent to the
GLCD in three bytes.

4. The color contraints are based on the SPI constraints specified in the ILI9488 datasheet.

304

KS0108 Controllers

This section covers GLCD devices that use the KS0108 graphics controller.

The KS0108 is an LCD is driven by on-board 5V parallel interface chipset KS0108 and KS0107. They are
extremely common and well documented

The GCBASIC constants shown below control the configuration of the KS0108 controller. The only
connectivity option is the 8-bit mode where 8 connections (for the data) are required between the
microcontroller and the GLCD to control the data bus.

The KS0108 is a monochrome device.

To use the KS0108 driver simply include the following in your user code. This will initialise the driver.

 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_KS0108

 #define GLCD_RW PORTB.1 'chip specific configuration
 #define GLCD_RESET PORTB.5 'chip specific configuration
 #define GLCD_CS1 PORTB.3 'chip specific configuration
 #define GLCD_CS2 PORTB.4 'chip specific configuration
 #define GLCD_RS PORTB.0 'chip specific configuration
 #define GLCD_ENABLE PORTB.2 'chip specific configuration
 #define GLCD_DB0 PORTC.7 'chip specific configuration
 #define GLCD_DB1 PORTC.6 'chip specific configuration
 #define GLCD_DB2 PORTC.5 'chip specific configuration
 #define GLCD_DB3 PORTC.4 'chip specific configuration
 #define GLCD_DB4 PORTC.3 'chip specific configuration
 #define GLCD_DB5 PORTC.2 'chip specific configuration
 #define GLCD_DB6 PORTC.1 'chip specific configuration
 #define GLCD_DB7 PORTC.0 'chip specific configuration

The GCBASIC constants for the interface to the controller are shown in the table below.

Consta
nts

Controls Options

GLCD_TY
PE

GLCD_TYPE_KS0108

GLCD_RS Specifies the output pin that is connected to
Register Select on the GLCD.

Required

GLCD_RW Specifies the output pin that is connected to
Read/Write on the GLCD. The R/W pin can be
disabled.

Must be defined (unless R/W is disabled)
see GLCD_NO_RW

305

Consta
nts

Controls Options

GLCD_CS
1

Specifies the output pin that is connected to
CS1 on the GLCD.

Required

GLCD_CS
2

Specifies the output pin that is connected to
CS2 on the GLCD.

Required

GLCD_EN
ABLE

Specifies the output pin that is connected to
Enable on the GLCD.

Required

GLCD_DB
0

Specifies the output pin that is connected to
DB0 on the GLCD.

Required

GLCD_DB
1

Specifies the output pin that is connected to
DB1 on the GLCD.

Required

GLCD_DB
2

Specifies the output pin that is connected to
DB2 on the GLCD.

Required

GLCD_DB
3

Specifies the output pin that is connected to
DB3 on the GLCD.

Required

GLCD_DB
4

Specifies the output pin that is connected to
DB4 on the GLCD.

Required

GLCD_DB
5

Specifies the output pin that is connected to
DB5 on the GLCD.

Required

GLCD_DB
6

Specifies the output pin that is connected to
DB6 on the GLCD.

Required

GLCD_DB
7

Specifies the output pin that is connected to
DB7 on the GLCD.

Required

GLCD_NO
_RW

Disables read/write inspection of the device
during read/write operations

Optional, but recommend NOT to set. The R/W
pin can be disabled by setting the GLCD_NO_RW
constant. If this is done, there is no need for
the R/W to be connected to the chip, and no
need for the LCD_RW constant to be set. Ensure
that the R/W line on the LCD is connected to
ground if not used.

GLCD_DA
TA_PORT

Not Available for this controller. Not applicable.

The GCBASIC constants defined for the controller type are shown in the table below.

Constants Controls Default

GLCD_WIDTH The width parameter of the
GLCD

128 This constant cannot be changed

306

Constants Controls Default

GLCD_HEIGHT The height parameter of the
GLCD

64 This constant cannot be changed

GLCDDirection Defining this will invert the Y
Axis

Not defined

KS0108ReadDelay Read delay Default is 9 Can be set to improve overall
performance.

KS0108WriteDela
y

Write delay Default is 1 Can be set to improve performance.

KS0108ClockDela
y

Clock Delay Default is 1 Can be set to improve performance.

The GCBASIC constants for control display characteristics are shown in the table below.

Variables Controls Default

GLCDFontWidth Width of the current GLCD
font.

Default is 6 pixels.

GLCDfntDefault Size of the current GLCD font. Default is 0. This equates to the standard GCB font
set.

GLCDfntDefaultsiz
e

Size of the current GLCD font. Default is 1. This equates to the 8 pixel high.

The GCBASIC commands supported for this GLCD are shown in the table below.

Comman
d

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

GLCDPrint Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

GLCDDrawC
har

Print character on GLCD using GCB font
set

GLCDDrawChar(Xposition, Yposition, CharCode)

GLCDDrawS
tring

Print characters on GLCD using GCB font
set

GLCDDrawString(Xposition, Yposition,
Stringvariable)

Box Draw a box on the GLCD to a specific size Box (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour as 0 or 1]
)

FilledBox Draw a box on the GLCD to a specific size
that is filled with the foreground colour.

FilledBox (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

307

Comman
d

Purpose Example

Line Draw a line on the GLCD to a specific
length that is filled with the specific
attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

GLCDOn Turn the KS0108 On. The GLCD is On by
default

GLCDOn

GLCDOff Turn the KS0108 Off. The GLCD is On by
default

GLCDOff

Private
methods

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour 0 or
1)

GLCDWrite
Byte

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDReadB
yte

Read a byte value from the controller, see
the datasheet for usage.

bytevariable = GLCDReadByte

For a KS0108 datasheet, please refer here.

This example shows how to drive a KS0108 based Graphic LCD module with the built in commands of
GCBASIC. See Graphic LCD for details, this is an external web site.

308

http://www.vishay.com/docs/37329/37329.pdf
http://www.greatcowbasic.com/sample-projects.html

 ;Chip Settings
 #chip 16F886,16
 '#config MCLRE = on 'enable reset switch on CHIPINO
 #include <GLCD.h>

 ;Defines (Constants)
 #define GLCD_RW PORTB.1 'D9 to pin 5 of LCD
 #define GLCD_RESET PORTB.5 'D13 to pin 17 of LCD
 #define GLCD_CS1 PORTB.3 'D12 to actually since CS1, CS2 can be reversed on some
devices
 #define GLCD_CS2 PORTB.4 'D11 to actually since CS1, CS2 can be reversed on some
devices
 #define GLCD_RS PORTB.0 'D8 to pin 4 D/I pin on LCD
 #define GLCD_ENABLE PORTB.2 'D10 to Pin 6 on LCD
 #define GLCD_DB0 PORTC.7 'D0 to pin 7 on LCD
 #define GLCD_DB1 PORTC.6 'D1 to pin 8 on LCD
 #define GLCD_DB2 PORTC.5 'D2 to pin 9 on LCD
 #define GLCD_DB3 PORTC.4 'D3 to pin 10 on LCD
 #define GLCD_DB4 PORTC.3 'D4 to pin 11 on LCD
 #define GLCD_DB5 PORTC.2 'D5 to pin 12 on LCD
 #define GLCD_DB6 PORTC.1 'D6 to pin 13 on LCD
 #define GLCD_DB7 PORTC.0 'D7 to pin 14 on LCD

 Do forever
 GLCDCLS
 GLCDPrint 0,10,"Hello" 'Print Hello
 wait 5 s
 GLCDPrint 0,10, "ASCII #:" 'Print ASCII #:
 Box 18,30,28,40 'Draw Box Around ASCII Character
 for char = 15 to 129 'Print 0 through 9
 GLCDPrint 17, 20 , Str(char)+" "
 GLCDdrawCHAR 20,30, char
 wait 125 ms
 next
 line 0,50,127,50 'Draw Line using line command
 for xvar = 0 to 80 'draw line using Pset command
 pset xvar,63,on '
 next '
 Wait 1 s
 GLCDPrint 0,10,"End " 'Print Hello
 wait 1 s
 Loop

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

309

NEXTION Controllers

This section covers GLCD devices that use the serially attached Nextion graphics displays.

Nextion includes hardware part (a series of TFT boards) and software part (the Nextion editor
(http://nextion.itead.cc/)).

The Nextion TFT board uses only one serial port to communicate. It lets you avoid the hassle of
wiring. Nextion editor has mass components such as button, text, progress bar, slider, instrument
panel etc. to enrich your interface design. And, the drag-and-drop function ensures that you spend
less time in programming

The Nextion displays are 2.4 to 7.0 inches and range from 320*240 to 800*480 pixels. The connections
are 5v, 0v, SerialIn and SerialOut. GCBASIC supports hardware and software serial connectivity.

See GITHUB for the set of GCBASIC demonstrations fro the Nextion displays. See Nextion
demonstrations on GITHUB.

To use the Nextion driver simply include the following in your user code. This will initialise the driver.

Setup for Hardware Serial

' ----- Configuration
 'Chip Settings.
 #chip 16f18855,32
 #option explicit

' ----- Set up the Nextion GLCD
 #include <glcd.h>
 #define GLCD_TYPE GLCD_TYPE_Nextion

 ;VERY IMPORTANT!!
 ;Change the width and height to match the rotation in the Nextion Editor
 #define GLCD_WIDTH 320 'could be 320 | 400 | 272 | 480 but any valid dimension
will work.
 #define GLCD_HEIGHT 240 'could be 240 | 480 | 800 but any valid dimension will work.

 ;VERY IMPORTANT!!
 ;Fonts installed in the Nextion MUST match the fonts parameters loading to the GLCD.
 ;Obtain parameters from Nextion Editor/Font dialog.

310

http://nextion.itead.cc/)
https://github.com/Anobium/Great-Cow-BASIC-Demonstration-Sources/tree/master/GLCD%20%20Solutions/GLCD%20Nextion%20Solutions
https://github.com/Anobium/Great-Cow-BASIC-Demonstration-Sources/tree/master/GLCD%20%20Solutions/GLCD%20Nextion%20Solutions

 #define NextionFont0 0, 8, 16 'Arial 8x16
 #define NextionFont1 1, 12, 24 '24point 12x24 charset
 #define NextionFont2 2, 16, 32 '32point 16x32 charset

' ----- End of set up for Nextion GLCD

' ----- Set up for Hardware Serial
 ;VERY IMPORTANT!!
 ;The Nextion MUST be setup for 9600 bps.
 #define USART_BAUD_RATE 9600
 #define USART_BLOCKING

 ;VERY IMPORTANT!!
 ;These two are optional. These constants are set in the library.
 #define GLCD_NextionSerialPrint HSerPrint
 #define GLCD_NextionSerialSend HSerSend

' ----- End of set up for Serial

 'Generated by PIC PPS Tool for GCBASIC
 'PPS Tool version: 0.0.5.11
 'PinManager data: v1.55
 '
 'Template comment at the start of the config file
 '
 #startup InitPPS, 85

 Sub InitPPS

 'Module: EUSART
 RXPPS = 0x0016 'RC6 > RX

 'Module: EUSART
 RC0PPS = 0x0010 'TX > RC0
 TXPPS = 0x0010 'RC0 > TX (bi-directional)
 RC5PPS = 0x0010 'TX > RC5
 TXPPS = 0x0015 'RC5 > TX (bi-directional)

 End Sub
 'Template comment at the end of the config file

' ----- Main program starts
....

311

Setup for Software Serial

312

' ----- Configuration
 'Chip Settings.
 #chip 16f18855,32
 #option explicit

' ----- Set up the Nextion GLCD
 #include <glcd.h>
 #define GLCD_TYPE GLCD_TYPE_Nextion

 ;VERY IMPORTANT!!
 ;Change the width and height to match the rotation in the Nextion Editor
 #define GLCD_WIDTH 320 'could be 320 | 400 | 272 | 480 but any valid dimension
will work.
 #define GLCD_HEIGHT 240 'could be 240 | 480 | 800 but any valid dimension will work.

 ;VERY IMPORTANT!!
 ;Fonts installed in the Nextion MUST match the fonts parameters loading to the GLCD.
 ;Obtain parameters from Nextion Editor/Font dialog.
 #define NextionFont0 0, 8, 16 'Arial 8x16
 #define NextionFont1 1, 12, 24 '24point 12x24 charset
 #define NextionFont2 2, 16, 32 '32point 16x32 charset

' ----- End of set up for Nextion GLCD

' ----- Set up for Software Serial - this is optional - shown to explain the method.
 ;Remove Hardware Serial before using Software serial
 ;You MUST also remove PPS setup, for hardware serial, when using Software serial
 #include <SoftSerial.h>

 ; ----- Config Serial UART for sending:
 #define SER1_BAUD 9600 ; baudrate must be defined
 #define SER1_TXPORT PORTC ; I/O port (without .bit) must be defined
 #define SER1_TXPIN 5 ; portbit must be defined

 ;VERY IMPORTANT!!
 ;These two constants are required to support the the library.
 #define GLCD_NextionSerialPrint Ser1Print
 #define GLCD_NextionSerialSend Ser1Send
'
' ----- End of set up for Serial

' ----- Main program starts

313

The GCBASIC constants shown below control the configuration of the Nextion controller. The
GCBASIC constants for control and data line connections are shown in the table below.

Constants Controls Option
s

GLCD_TYPE GLCD_TYPE_Nextion

GLCD_NextionSerialP
rint

Default is HSerPrint for hardware serial can be SernPrint when using
software serial.

Require
d

GLCD_NextionSerialS
end

Default is HSerSend for hardware serial can be SernSend when using
software serial.

Require
d

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Defaul
t

GLCD_WIDTH Mandated. The width parameter of the GLCD 320

GLCD_HEIGHT Mandated. The height parameter of the GLCD 480

The GCBASIC Nextion specific commands supported for this GLCD are shown in the table
below. Always review the appropiate library for the latest full set of supported commands.

Command Purpose Example

GLCDPrint_Nextion Print string of characters on GLCD
using Nextion font set

GLCDPrint(Xposition, Yposition,
Stringvariable [,NextionFont])

GLCDLocateString_Nextion Locate the screen coordinates at a
specific location.

GLCDLocateString_Nextion(
Xposition, Yposition)

GLCDPrintString_Nextion Print string of characters on GLCD
using Nextion font set

GLCDPrintString_Nextion(
Stringvariable)

314

Command Purpose Example

GLCDPrintStringLn_Nextion Print string of characters on GLCD
using Nextion font set adding a
newline and carriage return to
move cursort to start of next line.

GLCDPrintStringLn_Nextion(
Stringvariable)

GLCDSendOpInstruction_Nex
tion

Send the Nextion display a specific
command and a specific value

GLCDSendOpInstruction_Nextion(
Nextion_command, command_value)

GLCDUpdateObject_Nextion Update a Nextion display object
with a specific value

GLCDUpdateObject_Nextion(
Nextion_object, object_value)

myReturnedWordValue =
GLCDGetTouch_Nextion(
"nextion_command_string"
)

A function that returns a long, that
can be treated as word variable,
value of the Touch event.. As
follows:

"tch0" for current x co-ordinate
touched "tch1" for current y co-
ordinate touched "tch2" for last x co-
ordinate touched "tch3" for last y co-
ordinate touched

The function is non-blocking. 1.
Checks for three bytes of 0xFF. If
Four 0xff are received then exit =
non-block. 2. If at any time a 0x71 is
recieved then we have data for the
event. 3. If seven bytes arrive, but
the method did not receive a 0x71
then exit = non-block. 4. The method
supports software and hardware
serial. As does all the other methods.
5. The method uses a function to
receive the data not a sub-routine. 6.
The method returns 0xBEEF if there
is an invalid read, and, functional
value for GLCDGetTouch_Nextion
will also be set to 0xDEADBEEF

myReturnedWordValue =
GLCDGetTouch_Nextion("tch2") or,
myReturnedWordValue =
GLCDGetTouch_Nextion("tch3")

The GCBASIC commonn commands supported for this GLCD are shown in the table below. Always
review the appropiate library for the latest full set of supported commands.

315

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS [,Optional LineColour]

GLCDPrin
t

Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

GLCDDraw
Char

Print character on GLCD using GCB font set GLCDDrawChar(Xposition, Yposition, CharCode
[,Optional LineColour])

GLCDDraw
String

Print characters on GLCD using GCB font set GLCDDrawString(Xposition, Yposition,
Stringvariable [,Optional LineColour])

Box Draw a box on the GLCD to a specific size Box (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour]

FilledBo
x

Draw a box on the GLCD to a specific size
that is filled with the foreground colour.

FilledBox (Xposition1, Yposition1,
Xposition2, Yposition2 [,Optional
LineColour])

Line Draw a line on the GLCD to a specific length
that is filled with the specific attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour])

 TFT_BLACK 'hexidecimal value 0x0000
 TFT_RED 'hexidecimal value 0xF800
 TFT_GREEN 'hexidecimal value 0x0400
 TFT_BLUE 'hexidecimal value 0x001F
 TFT_WHITE 'hexidecimal value 0xFFFF
 TFT_PURPLE 'hexidecimal value 0xF11F
 TFT_YELLOW 'hexidecimal value 0xFFE0
 TFT_CYAN 'hexidecimal value 0x07FF
 TFT_D_GRAY 'hexidecimal value 0x528A
 TFT_L_GRAY 'hexidecimal value 0x7997
 TFT_SILVER 'hexidecimal value 0xC618
 TFT_MAROON 'hexidecimal value 0x8000
 TFT_OLIVE 'hexidecimal value 0x8400
 TFT_LIME 'hexidecimal value 0x07E0
 TFT_AQUA 'hexidecimal value 0x07FF
 TFT_TEAL 'hexidecimal value 0x0410
 TFT_NAVY 'hexidecimal value 0x0010
 TFT_FUCHSIA 'hexidecimal value 0xF81F

316

For more help, see GLCDCLS

Supported in <GLCD.H>

NT7108C Controllers

This section covers GLCD devices that use the NT7108C graphics controller.

The NT7108C is an GLCD is driven by on-board 5V parallel interface chipset NT7108C. They are
similar to the KS0108.

The GLCD controller is the Winstar WDG0151-TMI module, which is a 128×64 pixel monochromatic
display. It uses two Neotic display controller chips: NT7108C and NT7107C, which are similar with
Samsung KS0108B and KS0107B controllers. The controller uses a dot matrix LCD segment driver
with 64 channel output, and therefore, the WDG0151 module contains two sets of it to drive 128
segments.

The GCBASIC constants shown below control the configuration of the NT7108C controller. The
connectivity options are as follows, This is required between the microcontroller and the GLCD to
control the data bus.:

• A full port mode. Where a full data port therefore eight contiguous port.bits. The port is used the
data communications.

• Eight port.bits mode. This option allows for greater flexibility with the configuration but will
operate slower then the full port mode. These port.bits are used the data communications.
To use the NT7108C driver simply include the following in your user code. This will initialise the
driver.

 ;Full port mode
 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_NT7108C

 #define GLCD_DATA_PORT PORTD 'Data Port

 #define GLCD_CS1 PORTC.1 'CS1 control line
 #define GLCD_CS2 PORTC.0 'CS2 control line
 #define GLCD_RS PORTe.0 'RS control line
 #define GLCD_Enable PORTe.2 'Enable control line
 #define GLCD_RW PORTc.3 'RW control line
 #define GLCD_RESET PORTC.2 'Reset control line

or

317

 ;Eight port.bits mode
 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_NT7108C

 ;Defines (Constants)
 ;Define port as 8 port,bit(s)
 #define GLCD_DB0 PORTA.2 'Data Port.bit 0
 #define GLCD_DB1 PORTC.0 'Data Port.bit 1
 #define GLCD_DB2 PORTC.1 'Data Port.bit 2
 #define GLCD_DB3 PORTC.2 'Data Port.bit 3
 #define GLCD_DB4 PORTB.4 'Data Port.bit 4
 #define GLCD_DB5 PORTB.5 'Data Port.bit 5
 #define GLCD_DB6 PORTB.6 'Data Port.bit 6
 #define GLCD_DB7 PORTB.7 'Data Port.bit 7
 ;End of define as 8 port,bit(s)

 #define GLCD_CS1 PORTC.7 'CS1 control line
 #define GLCD_CS2 PORTC.6 'CS2 control line
 #define GLCD_RS PORTC.5 'RS control line
 #define GLCD_ENABLE PORTA.4 'Enable control line
 #define GLCD_RW PORTC.4 'RW control line
 #define GLCD_RESET PORTC.3 'Reset control line

The GCBASIC constants for the interface to the controller are shown in the table below.

Constants Controls Options

GLCD_TYPE GLCD_TYPE_NT7108C

GLCD_RS Specifies the output pin that is connected to
Register Select on the GLCD.

Required

GLCD_RW Specifies the output pin that is connected to
Read/Write on the GLCD.

Required

GLCD_CS1 Specifies the output pin that is connected to CS1 on
the GLCD.

Required

GLCD_CS2 Specifies the output pin that is connected to CS2 on
the GLCD.

Required

GLCD_ENABLE Specifies the output pin that is connected to Enable
on the GLCD.

Required

Full port mode

GLCD_DATA_PORT Specifies the port that is connected to 8
connections on the GLCD.

Required when using full
port mode

318

Constants Controls Options

Eight port.bits
mode

GLCD_DB0
GLCD_DB1
..
GLCD_DB7

Specifies the port.bit that is connected to a single
connection on the GLCD.

Required when using eight
port.bits mode

The GCBASIC constants defined for the controller type are shown in the table below. The NT7108C is
very sensitive to clock timings. You may to adjust the clock timing to ensure the display operates
correctly.

Constants Controls Default

GLCD_WIDTH The width parameter of the
GLCD

128 This constant cannot be changed

GLCD_HEIGHT The height parameter of the
GLCD

64 This constant cannot be changed

GLCDDirection Defining this will invert the Y
Axis

Not defined

NT7108CReadDelay Read delay Default is 7 Can be set to improve overall
performance.

NT7108CWriteDela
y

Write delay Default is 7 Can be set to improve performance.

NT7108CClockDela
y

Clock Delay Default is 7 Can be set to improve performance.

The GCBASIC constants for control display characteristics are shown in the table below.

Variables Controls Default

GLCDFontWidth Width of the current GLCD
font.

Default is 6 pixels.

GLCDfntDefault Size of the current GLCD font. Default is 0. This equates to the standard GCB font
set.

GLCDfntDefaultsiz
e

Size of the current GLCD font. Default is 1. This equates to the 8 pixel high.

The GCBASIC commands supported for this GLCD are shown in the table below.

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

319

Comma
nd

Purpose Example

GLCDPrin
t

Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

GLCDDraw
Char

Print character on GLCD using GCB font
set

GLCDDrawChar(Xposition, Yposition, CharCode)

GLCDDraw
String

Print characters on GLCD using GCB font
set

GLCDDrawString(Xposition, Yposition,
Stringvariable)

Box Draw a box on the GLCD to a specific size Box (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour as 0 or 1]
)

FilledBo
x

Draw a box on the GLCD to a specific size
that is filled with the foreground colour.

FilledBox (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

Line Draw a line on the GLCD to a specific
length that is filled with the specific
attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour 0 or
1)

GLCDWrit
eByte

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDRead
Byte

Read a byte value from the controller, see
the datasheet for usage.

bytevariable = GLCDReadByte

For a NT7108C datasheet, please refer here.

This example shows how to drive a NT7108C based Graphic LCD module with the built in commands of
GCBASIC. See Graphic LCD for details, this is an external web site.

320

http://www.farnell.com/datasheets/1878006.pdf
https://github.com/Anobium/Great-Cow-BASIC-Demonstration-Sources/

 ;Chip Settings
 #chip 16F1939,32
 #option explicit
 #config MCLRE_On

 #include <glcd.h>
 #define GLCD_TYPE GLCD_TYPE_NT7108C ' Specify the GLCD type
 #define GLCDDirection 0 ' Flip the GLCD 0 do not flip, 1
flip

 'Setup the device
 #define GLCD_CS1 PORTC.1 'D12 to actually since CS1, CS2 can be reversed on some
devices
 #define GLCD_CS2 PORTC.0
 #define GLCD_DATA_PORT PORTD
 #define GLCD_RS PORTe.0
 #define GLCD_Enable PORTe.2
 #define GLCD_RW PORTc.3
 #define GLCD_RESET PORTC.2

 GLCDPrint (4, 1, "GCBASIC 2021") ; Print some text

 Box 0, 0, 127, 10
 Line 63, 10, 63, 63
 Line 0, 37, 127, 37
 Circle 63, 37, 15

 End

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

PCD8544 Controllers

This section covers GLCD devices that use the PCD844 graphics controller.

The PCD8544 is a low power CMOS LCD controller/driver, designed to drive a graphic display of 48
rows and 84 columns. All necessary functions for the display are provided in a single chip, including
on-chip generation of LCD supply and bias voltages, resulting in a minimum of external components
and low power consumption. The PCD8544 interfaces to microcontrollers through a serial bus
interface.

The GCBASIC constants shown below control the configuration of the PCD844 controller. GCBASIC
supports SPI software connectivity only - this is shown in the tables below.

321

The PCD8544 is a monochrome device.

The PCD844can operate in two modes. Full GLCD mode and Text/JPG mode the full GLCD mode
requires a minimum of 512 bytes. For microcontrollers with limited memory the text only can be
selected by setting the correct constant.

To use the PCD844 driver simply include the following in your user code. This will initialise the driver.

 #include <glcd.h>
 #define GLCD_TYPE GLCD_TYPE_PCD8544

 ' Pin mappings for software SPI for Nokia 3310 Device
 #define GLCD_DO portc.5 'example port setting
 #define GLCD_SCK portc.3 'example port setting
 #define GLCD_DC portc.2 'example port setting
 #define GLCD_CS portc.1 'example port setting
 #define GLCD_RESET portc.0 'example port setting

The GCBASIC constants for the interface to the controller are shown in the table below.

Constants Controls Options

GLCD_TYPE GLCD_TYPE_PCD8544

GLCD_DC Specifies the output pin that is connected to Data/Command IO pin on the GLCD. Required

GLCD_CS Specifies the output pin that is connected to Chip Select (CS) on the GLCD. Required

GLCD_Reset Specifies the output pin that is connected to Reset pin on the GLCD. Required

GLCD_D0 Specifies the output pin that is connected to Data Out (GLCD in) pin on the
GLCD.

Required

GLCD_SCK Specifies the output pin that is connected to Clock (CLK) pin on the GLCD. Required

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Default

GLCD_TYPE_PCD8544_CHA
RACTER_MODE_ONLY

Specifies that the display controller will operate in text
mode and BMP draw mode only.
For microcontrollers with less then 1kb of RAM this will
be set be default.

Optional

PCD8544ClockDelay Specifies the clock delay, if required for slower
microcontroller,

Optional. Set to 0 as
the default value

PCD8544WriteDelay Specifies the write delay, if required for slower
microcontroller,

Optional. Set to 0 as
the default value

322

Constants Controls Default

GLCD_WIDTH The width parameter of the GLCD 160
This cannot be

changed

GLCD_HEIGHT The height parameter of the GLCD 128
This cannot be

changed

GLCDFontWidth Specifies the font width of the GCBASIC font set. 6

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the
appropiate library for the latest full set of supported commands.

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

GLCDPrin
t

Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

GLCDDraw
Char

Print character on GLCD using GCB font
set

GLCDDrawChar(Xposition, Yposition, CharCode)

GLCDDraw
String

Print characters on GLCD using GCB font
set

GLCDDrawString(Xposition, Yposition,
Stringvariable)

Box Draw a box on the GLCD to a specific size Box (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour as 0 or 1]
)

FilledBo
x

Draw a box on the GLCD to a specific size
that is filled with the foreground colour.

FilledBox (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

Line Draw a line on the GLCD to a specific
length that is filled with the specific
attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour 0 or
1)

GLCDWrit
eByte

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDRead
Byte

Read a byte value from the controller, see
the datasheet for usage.

bytevariable = GLCDReadByte

*For a PCD8544 datasheet, please refer here

This example shows how to drive a PCD8544 based Graphic LCD module with the built in commands of

323

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCMQFjAA&url=https%3A%2F%2Fwww.sparkfun.com%2Fdatasheets%2FLCD%2FMonochrome%2FNokia5110.pdf&ei=bmjDVKePM83datDIgYgH&usg=AFQjCNFa7N9WMhSg849oXejlfP3FRvQqpA&sig2=ZFpG-ubTxvrBRAV4dRvhVw

GCBASIC.

Example:

 #chip 16lf1939,32
 #option Explicit
 #config MCLRE_ON

 #include <glcd.h>

 #DEFINE GLCD_TYPE GLCD_TYPE_PCD8544

 ' Pin mappings for software SPI for Nokia 3310 Device
 #define GLCD_DO portc.5
 #define GLCD_SCK portc.3
 #define GLCD_DC portc.2
 #define GLCD_CS portc.1
 #define GLCD_RESET portc.0

 Dim outString as string
 Dim ccount, byteNumber as Byte
 Dim longNumber as Long
 Dim wordNumber as Word
 GLCDCLS

 DO forever
 for CCount = 31 to 127
 GLCDPrint (0, 0, "PrintStr")
 GLCDDrawString (0, 9, "DrawStr")
 GLCDPrint (44 , 21, " ")
 GLCDPrint (44 , 29, " ") ' word value
 GLCDPrint (44 , 37, " ") ' Byte value

 outstring = hex(longNumber_U)
 GLCDPrint (44 , 21,outstring)
 outstring = hex(longNumber_H)
 GLCDPrint (55 , 21, outstring)
 outstring = hex(longNumber)
 GLCDPrint (67 , 21, outstring)
 GLCDPrint (44 , 29, mid(str(wordNumber),1, 6))
 GLCDPrint (44 , 37, byteNumber)

 box 46,9,57,19
 GLCDDrawChar(48, 9, CCount)
 outString = str(CCount)
 ' draw a box to overwrite existing strings
 FilledBox(58,9,GLCD_WIDTH-1,17,GLCDBackground)

324

 GLCDDrawString(58, 9, outString)

 box 0,0,GLCD_WIDTH-1, GLCD_HEIGHT-1
 box GLCD_WIDTH-5, GLCD_HEIGHT-5,GLCD_WIDTH- 1, GLCD_HEIGHT-1
 filledbox 2,30,6,38, wordNumber
 Circle(25,30,8,1) ;center
 FilledCircle(25,30,4,longNumber xor 1) ;center

 line 0, GLCD_HEIGHT-1 , GLCD_WIDTH/2, (GLCD_HEIGHT /2) +1
 line GLCD_WIDTH/2, (GLCD_HEIGHT /2) +1 ,0, (GLCD_HEIGHT /2) +1

 longNumber = longNumber + 7
 wordNumber = wordNumber + 3
 byteNumber++
 NEXT
 LOOP

 end

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H> and <glcd_PCD8544.h>

SDD1289 Controllers

This section covers GLCD devices that use the SDD1289 graphics controller. The SDD1289 is a 240 x 320
single chip controller driver IC for 262k color (RGB) amorphous TFT LCD.

The GCBASIC constants shown below control the configuration of the SDD1289 controller. GCBASIC
supports SPI hardware and software connectivity - this is shown in the tables below.

GCBASIC supports 65K-color mode operations.

To use the SDD1289 driver simply include the following in your user code. This will initialise the
driver.

 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_SDD1289
 'Pin mappings for SDD1289
 #define GLCD_DC porta.0 'example port setting
 #define GLCD_CS porta.1 'example port setting
 #define GLCD_RESET porta.2 'example port setting
 #define GLCD_DI porta.3 'example port setting
 #define GLCD_DO porta.4 'example port setting
 #define GLCD_SCK porta.5 'example port setting

325

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Default

GLCD_TYPE GLCD_TYPE_SDD1289

GLCD_DC Specifies the output pin that is connected to Data/Command IO pin on the GLCD. Required

GLCD_CS Specifies the output pin that is connected to Chip Select (CS) on the GLCD. Required

GLCD_Reset Specifies the output pin that is connected to Reset pin on the GLCD. Required

GLCD_DI Specifies the output pin that is connected to Data In (GLCD out) pin on the
GLCD.

Required

GLCD_DO Specifies the output pin that is connected to Data Out (GLCD in) pin on the
GLCD.

Required

GLCD_SCK Specifies the output pin that is connected to Clock (CLK) pin on the GLCD. Required

The GCBASIC constants for control display characteristics are shown in the table below.

Constant Purpose Default

GLCD_WIDTH The width parameter of the GLCD Set automatically

GLCD_HEIGHT The height parameter of the GLCD Set automatically

GLCDFontWidth Specifies the font width of the GCBASIC font set. 6

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the
appropiate library for the latest full set of supported commands.

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

GLCDPrin
t

Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition, Stringvariable
)

GLCDDraw
Char

Print character on GLCD using GCB font
set

GLCDDrawChar(Xposition, Yposition, CharCode)

GLCDDraw
String

Print characters on GLCD using GCB font
set

GLCDDrawString(Xposition, Yposition,
Stringvariable)

Box Draw a box on the GLCD to a specific
size

Box (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour as 0 or 1]

FilledBo
x

Draw a box on the GLCD to a specific
size that is filled with the foreground
colour.

FilledBox (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

326

Comma
nd

Purpose Example

Line Draw a line on the GLCD to a specific
length that is filled with the specific
attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour 0 or 1)

GLCDWrit
eByte

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDRead
Byte

Read a byte value from the controller,
see the datasheet for usage.

bytevariable = GLCDReadByte

SDD1289_
[color]

Specify color as a parameter for many
GLCD commands

Color constants for this device are shown in the
list below.
Any color can be defined using a valid
hexidecimal word value between 0x0000 to
0xFFFF.

 SSD1289_BLACK 'hexidecimal value 0x0000
 SSD1289_RED 'hexidecimal value 0xF800
 SSD1289_GREEN 'hexidecimal value 0x07E0
 SSD1289_BLUE 'hexidecimal value 0x001F
 SSD1289_WHITE 'hexidecimal value 0xFFFF
 SSD1289_PURPLE 'hexidecimal value 0xF11F
 SSD1289_YELLOW 'hexidecimal value 0xFFE0
 SSD1289_CYAN 'hexidecimal value 0x07FF
 SSD1289_D_GRAY 'hexidecimal value 0x528A
 SSD1289_L_GRAY 'hexidecimal value 0x7997
 SSD1289_SILVER 'hexidecimal value 0xC618
 SSD1289_MAROON 'hexidecimal value 0x8000
 SSD1289_OLIVE 'hexidecimal value 0x8400
 SSD1289_LIME 'hexidecimal value 0x07E0
 SSD1289_AQUA 'hexidecimal value 0x07FF
 SSD1289_TEAL 'hexidecimal value 0x0410
 SSD1289_NAVY 'hexidecimal value 0x0010
 SSD1289_FUCHSIA 'hexidecimal value 0xF81F

For a SDD1289 datasheet, please refer here.

This example shows how to drive a SDD1289 based Graphic LCD module with the built in commands of
GCBASIC.

Example:

327

http://gcbasic.sourceforge.net/library/DISPLAY/SDD1289.pdf

 ;Chip Settings
 #chip 16F1937,32
 #config MCLRE_ON

 #include <glcd.h>

 'Defines for SDD1289
 #define GLCD_TYPE GLCD_TYPE_SDD1289
 'Pin mappings for SDD1289
 #define GLCD_DC porta.0
 #define GLCD_CS porta.1
 #define GLCD_RESET porta.2
 #define GLCD_DI porta.3
 #define GLCD_DO porta.4
 #define GLCD_SCK porta.5

 GLCDPrint(0, 0, "Test of the SDD1289 Device")
 end

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte OR Pset

Supported in <GLCD.H>

SH1106 Controllers

This section covers GLCD devices that use the SH1106 graphics controller. THe SH1106 is a single-chip
CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic
display system. SH1106 consists of 132 segments, 64 commons that can support a maximum display
resolution of 132 X 64. It is designed for Common Cathode type OLED panel.

The GCBASIC constants shown below control the configuration of the SH1106 controller. GCBASIC
supports i2C hardware and software connectivity - this is shown in the tables below.

The SH1106 is a monochrome device.

To use the SH1106 driver simply include the following in your user code. This will initialise the driver.
You can select Full Mode GLCD, Low Memory Mode GLCD or Text mode these require 1024, 128 or 0
byte GLCD buffer respectively - you microcontroller requires sufficient RAM to support the selected
mode of GLCD operation.

Specific to the Rajguru Electronics 13002-Series display you can can specify a GLCD_SubType 13002 to
enable support.

328

 #include <glcd.h>

 ; ----- Define GLCD Hardware settings
 #define GLCD_TYPE GLCD_TYPE_SH1106
 #define GLCD_I2C_Address 0x78
 '#define GLCD_TYPE_SH1106_LOWMEMORY_GLCD_MODE 'select Low Memory mode of
operation
 '#define GLCD_TYPE_SH1106_CHARACTER_MODE_ONLY 'select Text mode of operation

 '#define GLCD_SubType 13002 'add to support Rajguru
Electronics 13002-Series display

 ; ----- Define Hardware settings
 ' Define I2C settings
 #define HI2C_BAUD_RATE 400
 #define HI2C_DATA
 HI2CMode Master

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Options

GLCD_TYPE GLCD_TYPE_SH1106 Required

GLCD_I2C_Address I2C address of the GLCD. Required

HI2C_BAUD_RATE HI2C_BAUD_RATE 400 or 100

HI2C_DATA HI2C_DATA Mandated, plus
HI2CMode Master is required.

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Defau
lt

GLCD_WIDTH The width parameter of the GLCD 128

GLCD_HEIGHT The height parameter of the GLCD 64

GLCDFontWidth Specifies the font width of the GCBASIC font set. 6

GLCD_TYPE_SH1106_CHARACT
ER_MODE_ONLY

Specifies that the display controller will operate in text mode and
BMP draw mode only.
For microcontrollers with low RAM this will be set be default.
When selected ONLY text related commands are suppored. For
grapical commands you must have sufficient memory to use Full
GLCD mode or use GLCD_TYPE_SH1106_LOWMEMORY_GLCD_MODE

Optio
nal

329

Constants Controls Defau
lt

GLCD_TYPE_SH1106_LOWMEMO
RY_GLCD_MODE

Specifies that the display controller will operate in Low Memory
mode.

Optio
nal

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the
appropiate library for the latest full set of supported commands.

Command Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

GLCDPrint Print string of characters on GLCD using GCB
font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

GLCDDrawChar Print character on GLCD using GCB font set GLCDDrawChar(Xposition, Yposition,
CharCode)

GLCDDrawStri
ng

Print characters on GLCD using GCB font set GLCDDrawString(Xposition, Yposition,
Stringvariable)

Box Draw a box on the GLCD to a specific size Box (Xposition1, Yposition1,
Xposition2, Yposition2, [Optional In
LineColour as 0 or 1])

FilledBox Draw a box on the GLCD to a specific size
that is filled with the foreground colour.

FilledBox (Xposition1, Yposition1,
Xposition2, Yposition2, [Optional In
LineColour 0 or 1])

Line Draw a line on the GLCD to a specific length
that is filled with the specific attribute.

Line (Xposition1, Yposition1,
Xposition2, Yposition2, [Optional In
LineColour 0 or 1])

PSet Set a pixel on the GLCD at a specific position
that is set with the specific attribute.

PSet(Xposition, Yposition, Pixel Colour
0 or 1)

GLCDWriteByt
e

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDReadByte Read a byte value from the controller, see
the datasheet for usage.

bytevariable = GLCDReadByte

GLCD_Open_Pa
geTransactio
n

Commence a series of GLCD commands
when in low memory mode. Must be
followed a GLCD_Close_PageTransaction
command.

GLCD_Close_PageTransaction 0, 7 where 0
and 7 are the range of pages to be
updated

GLCD_Close_P
ageTransacti
on

Commence a series of GLCD commands
when in low memory mode. Must follow a
GLCD_Open_PageTransaction command.

The additional GCBASIC commands for this GLCD are shown in the table below.

330

Command Purpose

GLCDSetDisplayInvertMo
de

Inverts the display

GLCDSetDisplayNormalMo
de

Set the display to normal mode

GLCDSetContrast (
dim_state)

Sets the constrast between 0 and 255. The contrast increases as the value
increases.
Parameter is dim value

For a SH1106 datasheet, please refer here.

This example shows how to drive a SH1106 based Graphic LCD module with the built in commands of
GCBASIC.

; ----- Configuration
 #chip mega328p,16
 #include <glcd.h>

 ; ----- Define Hardware settings
 ' Define I2C settings
 #define HI2C_BAUD_RATE 400
 #define HI2C_DATA
 HI2CMode Master

 ; ----- Define GLCD Hardware settings
 #define GLCD_TYPE GLCD_TYPE_SH1106
 #define GLCD_I2C_Address 0x78

 GLCDCLS
 GLCDPrint 0, 0, "GCBASIC"
 GLCDPrint (0, 16, "Anobium 2021")

 wait 3 s
 GLCDCLS

 ' Prepare the static components of the screen
 GLCDPrint (0, 0, "PrintStr") ; Print some text
 GLCDPrint (64, 0, "@")
 ; Print some more text
 GLCDPrint (72, 0, ChipMhz) ; Print chip speed
 GLCDPrint (86, 0, "Mhz") ; Print some text
 GLCDDrawString(0,8,"DrawStr") ; Draw some text
 box 0,0,GLCD_WIDTH-1, GLCD_HEIGHT-1 ; Draw a box
 box GLCD_WIDTH-5, GLCD_HEIGHT-5,GLCD_WIDTH-1, GLCD_HEIGHT-1 ; Draw a box
 Circle(44,41,15) ; Draw a circle
 line 64,31,0,31 ; Draw a line

331

http://gcbasic.sourceforge.net/library/DISPLAY/SH1106.pdf

 DO forever
 for CCount = 31 to 127
 GLCDPrint (64 , 36, hex(longNumber_E)) ; Print a HEX string
 GLCDPrint (76 , 36, hex(longNumber_U)) ; Print a HEX string
 GLCDPrint (88 , 36, hex(longNumber_H)) ; Print a HEX string
 GLCDPrint (100 , 36, hex(longNumber)) ; Print a HEX string
 GLCDPrint (112 , 36, "h") ; Print a HEX string

 GLCDPrint (64 , 44, pad(str(wordNumber), 5)) ; Print a padded string
 GLCDPrint (64 , 52, pad(str(byteNumber), 3)) ; Print a padded string

 box (46,9,56,19) ; Draw a Box
 GLCDDrawChar(48, 9, CCount) ; Draw a character
 outString = str(CCount) ; Prepare a string
 GLCDDrawString(64, 9, pad(outString,3)) ; Draw a string

 filledbox 3,43,11,51, wordNumber ; Draw a filled box

 FilledCircle(44,41,9, longNumber xor 1) ; Draw a filled box
 line 0,63,64,31 ; Draw a line

 ; Do some simple maths
 longNumber = longNumber + 7 : wordNumber = wordNumber + 3 : byteNumber++
 NEXT
 LOOP
 end

This example shows how to drive a SH1106 based Graphic I2C LCD module with the built in commands
of GCBASIC using Low Memory Mode GLCD.

Note the use of GLCD_Open_PageTransaction and GLCD_Close_PageTransaction to support the Low Memory
Mode of operation and the contraining of all GLCD commands with the transaction commands. The
use Low Memory Mode GLCD the two defines GLCD_TYPE_SH1106_LOWMEMORY_GLCD_MODE and
GLCD_TYPE_SH1106_CHARACTER_MODE_ONLY are included in the user program.

 #chip mega328p,16
 #include <glcd.h>

 ; ----- Define Hardware settings
 ' Define I2C settings
 #define HI2C_BAUD_RATE 400
 #define HI2C_DATA
 HI2CMode Master

 ; ----- Define GLCD Hardware settings

332

 #define GLCD_TYPE GLCD_TYPE_SH1106 'for 128 * 64 pixels support
 #define GLCD_I2C_Address 0x78
 #define GLCD_TYPE_SH1106_LOWMEMORY_GLCD_MODE
 #define GLCD_TYPE_SH1106_CHARACTER_MODE_ONLY

 dim outString as string * 21

 GLCDCLS
 GLCD_Open_PageTransaction 0,7
 GLCDPrint 0, 0, "GCBASIC"
 GLCDPrint (0, 16, "Anobium 2021")
 GLCD_Close_PageTransaction
 wait 3 s
 GLCDCLS

 DO forever

 for CCount = 31 to 127

 outString = str(CCount) ; Prepare a string

 GLCD_Open_PageTransaction 0,7

 ' Prepare the static components of the screen
 GLCDPrint (0, 0, "PrintStr") ; Print some text
 GLCDPrint (64, 0, "@")
 ; Print some more text
 GLCDPrint (72, 0, ChipMhz) ; Print chip speed
 GLCDPrint (86, 0, "Mhz") ; Print some text
 GLCDDrawString(0,8,"DrawStr") ; Draw some text
 box 0,0,GLCD_WIDTH-1, GLCD_HEIGHT-1 ; Draw a box
 box GLCD_WIDTH-5, GLCD_HEIGHT-5,GLCD_WIDTH-1, GLCD_HEIGHT-1 ; Draw a box
 Circle(44,41,15) ; Draw a circle
 line 64,31,0,31 ; Draw a line

 GLCDPrint (64 , 36, hex(longNumber_E)) ; Print a HEX string
 GLCDPrint (76 , 36, hex(longNumber_U)) ; Print a HEX string
 GLCDPrint (88 , 36, hex(longNumber_H)) ; Print a HEX string
 GLCDPrint (100 , 36, hex(longNumber)) ; Print a HEX string
 GLCDPrint (112 , 36, "h") ; Print a HEX string

 GLCDPrint (64 , 44, pad(str(wordNumber), 5)) ; Print a padded string
 GLCDPrint (64 , 52, pad(str(byteNumber), 3)) ; Print a padded string

 box (46,8,56,19) ; Draw a Box
 GLCDDrawChar(48, 9, CCount) ; Draw a character

 GLCDDrawString(64, 9, pad(outString,3)) ; Draw a string

333

 filledbox 3,43,11,51, wordNumber ; Draw a filled box

 FilledCircle(44,41,9, longNumber xor 1) ; Draw a filled box
 line 0,63,64,31 ; Draw a line

 GLCD_Close_PageTransaction

 ; Do some simple maths
 longNumber = longNumber + 7 : wordNumber = wordNumber + 3 : byteNumber++
 NEXT
 LOOP
 end

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

SSD1306 Controllers

This section covers GLCD devices that use the SSD1306 graphics controller.

The SSD1306 is a single-chip CMOS OLED/PLED driver with controller for organic / polymer light
emitting diode dot-matrix graphic display system. It consists of 128 segments and 64 commons. This IC
is designed for Common Cathode type OLED panel.

The SSD1306 embeds with contrast control, display RAM and oscillator, which reduces the number of
external components and power consumption. It has 256-step brightness control. Data/Commands are
sent from general MCU through the hardware selectable 6800/8000 series compatible Parallel
Interface, I2C interface or Serial Peripheral Interface. It is suitable for many compact portable
applications, such as mobile phone sub-display, MP3 player and calculator, etc.

The GCBASIC constants shown below control the configuration of the SSD1306 controller. GCBASIC
supports SPI and I2C hardware & software connectivity - this is shown in the tables below.

To use the SSD1306 driver simply include the following in your user code. This will initialise the
driver.

The SSD1306 library supports 128 * 64 pixels or 128 * 32 pixels. The default is 128 * 64 pixels.

The SSD1306 is a monochrome device.

The SSD1306 can operate in three modes. Full GLCD mode, Low Memory GLCD mode or Text/JPG mode
the full GLCD mode requires a minimum of 1k bytes or 512 bytes for the 128x64 and the 128x32
devices respectively in Full GLCD mode. For microcontrollers with limited memory the third mode of
operation - Text mode. These can be selected by setting the correct constant.

To use the SSD1306 drivers simply include one of the following configuration. You can select Full Mode

334

GLCD, Low Memory Mode GLCD or Text mode these require 1024, 128 or 0 byte GLCD buffer
respectively - you microcontroller requires sufficient RAM to support the selected mode of GLCD
operation.

Performance of the SSD1306 has been validated at 16Mhz and 400Hz I2C baud. Using other
frequencies should be fully tested.

 'An I2C configuration
 #include <glcd.h>

 ; ----- Define GLCD Hardware settings
 #define GLCD_TYPE GLCD_TYPE_SSD1306
 #define GLCD_I2C_Address 0x78
 '#define GLCD_TYPE_SH1306_LOWMEMORY_GLCD_MODE 'select Low Memory mode of
operation
 '#define GLCD_TYPE_SH1306_CHARACTER_MODE_ONLY 'select Text mode of operation

 ; ----- Define Hardware settings
 ' Define I2C settings
 #define HI2C_BAUD_RATE 400
 #define HI2C_DATA
 HI2CMode Master

or,

 'An SPI configuration'
 #include <glcd.h>

 ; ----- Define GLCD Hardware settings
 #define GLCD_TYPE GLCD_TYPE_SSD1306

 ; ----- Define Hardware settings
 #define S4Wire_DATA

 #define MOSI_SSD1306 PortB.1
 #define SCK_SSD1306 PortB.2
 #define DC_SSD1306 PortB.3
 #define CS_SSD1306 PortB.4
 #define RES_SSD1306 PortB.5

The GCBASIC constants for control display characteristics are shown in the table below.

335

Constants Controls Options

GLCD_TYPE GLCD_TYPE_SSD1306 Required

GLCD_I2C_Address I2C address of the GLCD. Required

The GCBASIC constants for SPI/S4Wire control display characteristics are shown in the table below.

Constan
ts

Controls Options

GLCD_TYP
E

GLCD_TYPE_SSD1306 Required to support 128 * 64 pixels. Mutualy
exclusive to GLCD_TYPE_SSD1306_32

GLCD_TYP
E

GLCD_TYPE_SSD1306_32 Required to support 128 * 32 pixels. Mutualy
exclusive to GLCD_TYPE_SSD1306

S4Wire_D
ata

4 wire SPI Mode Required

MOSI_SSD
1306

Specifies output pin connected to
serial data in D1 pin

Must be defined

SCK_SSD1
306

Specifies output pin connected to
serial clock D0 pin

Must be defined

DC_SSD13
06

Specifies output pin connected to
data control DC pin

Must be defined

CS_SSD13
06

Specifies output pin connected to
chip select CS pin

Must be defined

RES_SSD1
306

Specifies output pin connected to
reset RES pin

Must be defined

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Default

GLCD_WIDTH The width parameter of the GLCD 128

GLCD_HEIGHT The height parameter of the GLCD 64 or 32

GLCD_PROTECTOVERRUN Define this constant to restrict pixel operations with the pixel
limits

Not
defined

Rotate GCLD Constants

GLCDYFLIP Define this constant to rotate the GLCD display Not
defined

GLCDXFLIP Define this constant to rotate the GLCD display Not
defined

336

Constants Controls Default

GLCDXYFLIP Define this constant to rotate the GLCD display Not
defined

Memory Management
Constants

GLCD_TYPE_SSD1306_CHARAC
TER_MODE_ONLY

Specifies that the display controller will operate in text mode and
BMP draw mode only.
For microcontrollers with low RAM this will be set be default.
When selected ONLY text related commands are suppored. For
grapical commands you must have sufficient memory to use Full
GLCD mode or use GLCD_TYPE_SSD1306_LOWMEMORY_GLCD_MODE

Optiona
l

GLCD_TYPE_SSD1306_LOWMEM
ORY_GLCD_MODE

Specifies that the display controller will operate in Low Memory
mode.

Optiona
l

The GCBASIC variables for control display characteristics are shown in the table below. These variables
control the user definable parameters of a specific GLCD.

Variable Purpose Type

GLCD_OLED
_FONT

Specifies the use of the optional OLED font set. The
GLCDFNTDEFAULTSIZE can be set to 1 or 2 only.
GLCDFNTDEFAULTSIZE= 1. A small 8 height pixel font
with variable width. GLCDFNTDEFAULTSIZE= 2. A
larger 10 width * 16 height pixel font.

Optional

GLCDBACKG
ROUND

GLCD background state. A monochrome value.
For mono GLCDs the default is White
or 0x0001.

GLCDFOREG
ROUND

Color of GLCD foreground. A monochrome value.
For mono GLCDs the default is non-
white or 0x0000.

GLCDFONTW
IDTH

Width of the current GLCD font. Default is 6 pixels.

GLCDFNTDE
FAULT

Size of the current GLCD font. Default is 0. This equates to the
standard GCB font set.

GLCDFNTDE
FAULTSIZE

Size of the current GLCD font. Default is 1. This equates to the 8
pixel high.

The GCBASIC commands supported for this GLCD are shown in the table below.

Command Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

337

Command Purpose Example

GLCDPrint Print string of characters on GLCD using GCB
font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

GLCDDrawChar Print character on GLCD using GCB font set GLCDDrawChar(Xposition, Yposition,
CharCode)

GLCDDrawStri
ng

Print characters on GLCD using GCB font set GLCDDrawString(Xposition, Yposition,
Stringvariable)

Box Draw a box on the GLCD to a specific size Box (Xposition1, Yposition1,
Xposition2, Yposition2, [Optional In
LineColour as 0 or 1])

FilledBox Draw a box on the GLCD to a specific size
that is filled with the foreground colour.

FilledBox (Xposition1, Yposition1,
Xposition2, Yposition2, [Optional In
LineColour 0 or 1])

Line Draw a line on the GLCD to a specific length
that is filled with the specific attribute.

Line (Xposition1, Yposition1,
Xposition2, Yposition2, [Optional In
LineColour 0 or 1])

PSet Set a pixel on the GLCD at a specific position
that is set with the specific attribute.

PSet(Xposition, Yposition, Pixel Colour
0 or 1)

GLCDWriteByt
e

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDReadByte Read a byte value from the controller, see
the datasheet for usage.

bytevariable = GLCDReadByte

GLCD_Open_Pa
geTransactio
n

Commence a series of GLCD commands
when in low memory mode. Must be
followed a GLCD_Close_PageTransaction
command.

GLCD_Close_PageTransaction 0, 7 where 0
and 7 are the range of pages to be
updated

GLCD_Close_P
ageTransacti
on

Commence a series of GLCD commands
when in low memory mode. Must follow a
GLCD_Open_PageTransaction command.

The GCBASIC specific commands for this GLCD are shown in the table below.

Command Purpose

Stopscroll_SSD1306 Stops all scrolling

Startscrollright_SSD1306 (start ,
stop [,scrollspeed])

Activate a right handed scroll for rows start through stop Hint,
the display is 16 rows tall. To scroll the whole display, execute:
startscrollright_SSD1306(0x00, 0x0F)
Parameters are Start row, End row, optionally Scrollspeed

Startscrollleft_SSD1306 (start ,
stop [,scrollspeed])

Activate a left handed scroll for rows start through stop Hint,
the display is 16 rows tall. To scroll the whole display, execute:
startscrollleft_SSD1306(0x00, 0x0F)
Parameters are Start row, End row, optionally Scrollspeed

338

Command Purpose

Startscrolldiagright_SSD1306 (start
, stop [,scrollspeed])

Activate a diagright handed scroll for rows start through stop
Hint, the display is 16 rows tall. To scroll the whole display,
execute:
startscrolldiagright_SSD1306(0x00, 0x0F)
Parameters are Start row, End row, optionally Scrollspeed

Startscrolldiagleft_SSD1306 (start
, stop [,scrollspeed])

Activate a diagleft handed scroll for rows start through stop
Hint, the display is 16 rows tall. To scroll the whole display,
execute:
startscrolldiagleft_SSD1306(0x00, 0x0F)
Parameters are Start row,End row, optionally Scrollspeed

GLCDSetContrast (dim_state) Sets the constrast between 0 and 255. The contrast increases
as the value increases.
Parameter is dim value

For a SSD1306 datasheet, please refer here.

This example shows how to drive a SSD1306 based Graphic I2C LCD module with the built in
commands of GCBASIC using Full Mode GLCD

 #chip mega328p,16
 #include <glcd.h>

 ; ----- Define Hardware settings
 ' Define I2C settings
 #define HI2C_BAUD_RATE 400
 #define HI2C_DATA
 HI2CMode Master

 ; ----- Define GLCD Hardware settings
 #define GLCD_TYPE GLCD_TYPE_SSD1306 'for 128 * 64 pixels support
 #define GLCD_I2C_Address 0x78

 dim outString as string * 21

 GLCDCLS
 GLCDPrint 0, 0, "GCBASIC"
 GLCDPrint (0, 16, "Anobium 2021")

 wait 3 s
 GLCDCLS

 ' Prepare the static components of the screen
 GLCDPrint (0, 0, "PrintStr") ; Print some text
 GLCDPrint (64, 0, "@")

339

http://gcbasic.sourceforge.net/library/DISPLAY/SSD1306.pdf

 ; Print some more text
 GLCDPrint (72, 0, ChipMhz) ; Print chip speed
 GLCDPrint (86, 0, "Mhz") ; Print some text
 GLCDDrawString(0,8,"DrawStr") ; Draw some text
 box 0,0,GLCD_WIDTH-1, GLCD_HEIGHT-1 ; Draw a box
 box GLCD_WIDTH-5, GLCD_HEIGHT-5,GLCD_WIDTH-1, GLCD_HEIGHT-1 ; Draw a box
 Circle(44,41,15) ; Draw a circle
 line 64,31,0,31 ; Draw a line

 DO forever
 for CCount = 31 to 127
 GLCDPrint (64 , 36, hex(longNumber_E)) ; Print a HEX string
 GLCDPrint (76 , 36, hex(longNumber_U)) ; Print a HEX string
 GLCDPrint (88 , 36, hex(longNumber_H)) ; Print a HEX string
 GLCDPrint (100 , 36, hex(longNumber)) ; Print a HEX string
 GLCDPrint (112 , 36, "h") ; Print a HEX string

 GLCDPrint (64 , 44, pad(str(wordNumber), 5)) ; Print a padded string
 GLCDPrint (64 , 52, pad(str(byteNumber), 3)) ; Print a padded string

 box (46,9,56,19) ; Draw a Box
 GLCDDrawChar(48, 9, CCount) ; Draw a character
 outString = str(CCount) ; Prepare a string
 GLCDDrawString(64, 9, pad(outString,3)) ; Draw a string

 filledbox 3,43,11,51, wordNumber ; Draw a filled box

 FilledCircle(44,41,9, longNumber xor 1) ; Draw a filled box
 line 0,63,64,31 ; Draw a line

 ; Do some simple maths
 longNumber = longNumber + 7 : wordNumber = wordNumber + 3 : byteNumber++
 NEXT
 LOOP
 end

This example shows how to drive a SSD1306 based Graphic I2C LCD module with the built in
commands of GCBASIC using Low Memory Mode GLCD.
Note the use of GLCD_Open_PageTransaction and GLCD_Close_PageTransaction to support the Low Memory
Mode of operation and the contraining of all GLCD commands with the transaction commands. The
use Low Memory Mode GLCD the two defines GLCD_TYPE_SSD1306_LOWMEMORY_GLCD_MODE and
GLCD_TYPE_SSD1306_CHARACTER_MODE_ONLY are included in the user program.

 #chip mega328p,16

340

 #include <glcd.h>

 ; ----- Define Hardware settings
 ' Define I2C settings
 #define HI2C_BAUD_RATE 400
 #define HI2C_DATA
 HI2CMode Master

 ; ----- Define GLCD Hardware settings
 #define GLCD_TYPE GLCD_TYPE_SSD1306 'for 128 * 64 pixels support
 #define GLCD_I2C_Address 0x78
 #define GLCD_TYPE_SSD1306_LOWMEMORY_GLCD_MODE
 #define GLCD_TYPE_SSD1306_CHARACTER_MODE_ONLY

 dim outString as string * 21

 GLCDCLS

 'To clarify - page udpates
 '0,7 correspond with the Text Lines from 0 to 7 on a 64 Pixel Display
 'In this example Code would be GLCD_Open_PageTransaction 0,1 been enough
 'But it is allowed to use GLCD_Open_PageTransaction 0,7 to show the full screen
update
 GLCD_Open_PageTransaction 0,7
 GLCDPrint 0, 0, "GCBASIC"
 GLCDPrint (0, 16, "Anobium 2021")
 GLCD_Close_PageTransaction
 wait 3 s
 DO forever

 for CCount = 31 to 127

 outString = str(CCount) ; Prepare a string

 GLCD_Open_PageTransaction 0,7

 ' Prepare the static components of the screen
 GLCDPrint (0, 0, "PrintStr") ; Print some text
 GLCDPrint (64, 0, "@")
 ; Print some more text
 GLCDPrint (72, 0, ChipMhz) ; Print chip speed
 GLCDPrint (86, 0, "Mhz") ; Print some text
 GLCDDrawString(0,8,"DrawStr") ; Draw some text
 box 0,0,GLCD_WIDTH-1, GLCD_HEIGHT-1 ; Draw a box
 box GLCD_WIDTH-5, GLCD_HEIGHT-5,GLCD_WIDTH-1, GLCD_HEIGHT-1 ; Draw a box
 Circle(44,41,15) ; Draw a circle
 line 64,31,0,31 ; Draw a line

341

 GLCDPrint (64 , 36, hex(longNumber_E)) ; Print a HEX string
 GLCDPrint (76 , 36, hex(longNumber_U)) ; Print a HEX string
 GLCDPrint (88 , 36, hex(longNumber_H)) ; Print a HEX string
 GLCDPrint (100 , 36, hex(longNumber)) ; Print a HEX string
 GLCDPrint (112 , 36, "h") ; Print a HEX string

 GLCDPrint (64 , 44, pad(str(wordNumber), 5)) ; Print a padded string
 GLCDPrint (64 , 52, pad(str(byteNumber), 3)) ; Print a padded string

 box (46,8,56,19) ; Draw a Box
 GLCDDrawChar(48, 9, CCount) ; Draw a character

 GLCDDrawString(64, 9, pad(outString,3)) ; Draw a string

 filledbox 3,43,11,51, wordNumber ; Draw a filled box

 FilledCircle(44,41,9, longNumber xor 1) ; Draw a filled box
 line 0,63,64,31 ; Draw a line

 GLCD_Close_PageTransaction

 ; Do some simple maths
 longNumber = longNumber + 7 : wordNumber = wordNumber + 3 : byteNumber++
 NEXT
 LOOP
 end

This example shows how to drive a SSD1306 based Graphic SPI LCD module with the built in
commands of GCBASIC.

342

 'Chip model
 #chip mega328p, 16
 #include <glcd.h>

 'Defines for a 7 pin SPI module
 'RES pin is pulsed low in glcd_SSD1306.h for proper startup
 #define MOSI_SSD1306 PortB.1
 #define SCK_SSD1306 PortB.2
 #define DC_SSD1306 PortB.3
 #define CS_SSD1306 PortB.4
 #define RES_SSD1306 PortB.5
 ; ----- Define GLCD Hardware settings
 #define GLCD_TYPE GLCD_TYPE_SSD1306 'for 128 * 64 pixels support
 #define S4Wire_DATA

 dim longnumber as Long
 longnumber = 123456
 dim wordnumber as word
 wordnumber = 62535
 dim bytenumber as Byte
 bytenumber =255

 #define led PortB.0
 dir led out

 Do
 SET led ON
 wait 1 s
 SET led OFF

 GLCDCLS
 GLCDPrint (30, 0, "Hello World!")
 Circle (18,24,10)
 FilledCircle (48,24,10)
 Box (70,14,90,34)
 FilledBox (106,14,126,34)
 GLCDDrawString (32,35,"Draw String")
 GLCDPrint (0,46,longnumber)
 GLCDPrint (94,46,wordnumber)
 GLCDPrint (52,55,bytenumber)
 Line (0,40,127,63)
 Line (0,63,127,40)
 wait 3 s

 Loop

343

This example shows how to drive a SSD1306 based Graphic I2C LCD module with 128 * 32 pixel
support.

 #chip mega328p,16
 #include <glcd.h>

 ; ----- Define Hardware settings
 ' Define I2C settings
 #define HI2C_BAUD_RATE 400
 #define HI2C_DATA
 HI2CMode Master

 ; ----- Define GLCD Hardware settings
 #define GLCD_TYPE GLCD_TYPE_SSD1306_32 'for 128 * 32 pixels support
 #define GLCD_I2C_Address 0x78

 GLCDCLS
 GLCDPrint 0, 0, "GCBASIC"
 GLCDPrint (0, 16, "Anobium 2021")

This example shows how to drive a SSD1306 with the OLED fonts. Note the use of the
GLCDfntDefaultSize to select the size of the OLED font in use.

 #define GLCD_OLED_FONT

 GLCDfntDefaultSize = 2
 GLCDFontWidth = 5
 GLCDPrint (40, 0, "OLED")
 GLCDPrint (0, 18, "Typ: SSD1306")
 GLCDPrint (0, 34, "Size: 128x64")

 GLCDfntDefaultSize = 1
 GLCDPrint(20, 56,"https://goo.gl/gjrxkp")

This example shows how to set the SSD1306 OLED the lowest constrast level by using a OLED chip
specific command.

344

 'Use the GCB command to set the lowest constrast
 GLCDSetContrast (0)
 'Then, use the Write command to set the output between 0 and 255
 Write_Command_SSD1306(SSD1306_SETVCOMDETECT)
 Write_Command_SSD1306(15) ' 0x40 default, to lower the contrast, put 0 for
lowest and 255 for highest.

 GLCDfntDefaultSize = 2
 GLCDFontWidth = 5
 GLCDPrint (40, 0, "OLED")
 GLCDPrint (0, 18, "Typ: SSD1306")
 GLCDPrint (0, 34, "Size: 128x64")

 GLCDfntDefaultSize = 1
 GLCDPrint(20, 56,"https://goo.gl/gjrxkp")

This example shows how to disable the large OLED Fontset. This disables the font to reduce memory
usage.

When the large OLED fontset is disabled every character will be shown as a block character.

 #define GLCD_OLED_FONT 'The constant is required to support OLED fonts
 #define GLCD_Disable_OLED_FONT2 'The constant to disable the large fontset.

 GLCDfntDefaultSize = 2
 GLCDFontWidth = 5
 GLCDPrint (40, 0, "OLED")
 GLCDPrint (0, 18, "Typ: SSD1306")
 GLCDPrint (0, 34, "Size: 128x64")

 GLCDfntDefaultSize = 1
 GLCDPrint(20, 56,"https://goo.gl/gjrxkp")

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

SSD1331 Controllers

This section covers GLCD devices that use the SSD1331 graphics controller. The SSD1331 is a single-
chip controller/driver for 262K-color, graphic type OLED-LCD.

345

The GCBASIC constants shown below control the configuration of the SSD1331 controller. GCBASIC
supports SPI, hardware and software SPI, connectivity. This is shown in the tables below.

GCBASIC supports 65K-color mode operations.

To use the SSD1331 driver simply include the following in your user code. This will initialise the
driver.

 #include <glcd.h>
 #include <UNO_mega328p.h >

 #define GLCD_TYPE GLCD_TYPE_SSD1331

 'Pin mappings for SPI - this GLCD driver supports Hardware SPI and Software SPI
 #define GLCD_DC portb.0 ' Data command line
 #define GLCD_CS portb.2 ' Chip select line
 #define GLCD_RESET portb.1 ' Reset line
 #define GLCD_DO portb.3 ' Data out | MOSI
 #define GLCD_SCK portb.5 ' Clock Line

 #define SSD1331_HardwareSPI ' remove/comment out if you want to use software
SPI.

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Options

GLCD_TYPE GLCD_TYPE_SSD1331

GLCD_DC Specifies the output pin that is
connected to Data/Command IO pin on
the GLCD.

Required

GLCD_CS Specifies the output pin that is
connected to Chip Select (CS) on the
GLCD.

Required

GLCD_Reset Specifies the output pin that is
connected to Reset pin on the GLCD.

Required

GLCD_DO Specifies the output pin that is
connected to Data Out (GLCD in) pin on
the GLCD.

Required

GLCD_SCK Specifies the output pin that is
connected to Clock (CLK) pin on the
GLCD.

Required

346

Constants Controls Options

SSD1331_Ha
rdwareSPI

Specifies that hardware SPI will be
used

SPI ports MUST be defined that match the SPI
module for each specific microcontroller
#define SSD1331_HardwareSPI

HWSPIMo
de

Specifies the speed of the SPI
communications for Hardware SPI
only.

Optional defaults to MASTERFAST. Options are
MASTERSLOW,
MASTER,
MASTERFAST, or
MASTERULTRAFAST for specific AVRs only.

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Default

GLCD_WIDTH The width parameter of the GLCD 96
This cannot be changed

GLCD_HEIGHT The height parameter of the GLCD 48
This cannot be changed

GLCDFontWidth Specifies the font width of the GCBASIC font set. 6 or 5 for the OLED font set.

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the
appropiate library for the latest full set of supported commands.

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

GLCDPri
nt

Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition, Stringvariable
)

GLCDDra
wChar

Print character on GLCD using GCB font
set

GLCDDrawChar(Xposition, Yposition, CharCode)

GLCDDra
wString

Print characters on GLCD using GCB font
set

GLCDDrawString(Xposition, Yposition,
Stringvariable)

Box Draw a box on the GLCD to a specific
size

Box (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour as 0 or 1])

FilledB
ox

Draw a box on the GLCD to a specific
size that is filled with the foreground
colour.

FilledBox (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

Line Draw a line on the GLCD to a specific
length that is filled with the specific
attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

347

Comma
nd

Purpose Example

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour 0 or 1)
Any color can be defined using a valid
hexidecimal word value between 0x0000 to
0xFFFF.

 Colour RGB
 TFT_BLACK 0x0000
 TFT_NAVY 0x000F
 TFT_DARKGREEN 0x03E0
 TFT_DARKCYAN 0x03EF
 TFT_MAROON 0x7800
 TFT_PURPLE 0x780F
 TFT_OLIVE 0x7BE0
 TFT_LIGHTGREY 0xC618
 TFT_DARKGREY 0x7BEF
 TFT_BLUE 0x001F
 TFT_GREEN 0x07E0
 TFT_CYAN 0x77FF
 TFT_RED 0xF800
 TFT_MAGENTA 0xF81F
 TFT_YELLOW 0xFFE0
 TFT_WHITE 0xFFFF
 TFT_ORANGE 0xFD20
 TFT_GREENYELLOW 0xAFE5
 TFT_PINK 0xF81F

Example:

348

 #chip mega328p, 16
 #option explicit

 #include <glcd.h>
 #include <UNO_mega328p.h >

 #define GLCD_TYPE GLCD_TYPE_SSD1331

 'Pin mappings for SPI - this GLCD driver supports Hardware SPI and Software SPI
 #define GLCD_DC portb.0 ' Data command line
 #define GLCD_CS portb.2 ' Chip select line
 #define GLCD_RESET portb.1 ' Reset line
 #define GLCD_DO portb.3 ' Data out | MOSI
 #define GLCD_SCK portb.5 ' Clock Line

 #define SSD1331_HardwareSPI ' remove/comment out if you want to use software SPI.

 'GLCD selected OLED font set.
 #define GLCD_OLED_FONT
 GLCDfntDefaultsize = 1

 GLCDCLS
 GLCDPrintStringLN ("GCBASIC")
 GLCDPrintStringLN ("")
 GLCDPrintStringLN ("Test of the SSD1331")
 GLCDPrintStringLN ("")
 GLCDPrintStringLN ("Anobium 2021")
 end

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

SSD1351 Controllers

This section covers GLCD devices that use the SSD1351 graphics controller. The SSD1351 is a single-
chip controller/driver for 262K-color, graphic type OLED-LCD.

The GCBASIC constants shown below control the configuration of the SSD1351 controller. GCBASIC
supports SPI, hardware and software SPI, connectivity. This is shown in the tables below.

GCBASIC supports 65K-color mode operations.

To use the SSD1351 driver simply include the following in your user code. This will initialise the
driver.

349

 #include <glcd.h>
 #define GLCD_TYPE GLCD_TYPE_SSD1351

 'Pin mappings for SPI - this GLCD driver supports Hardware SPI and Software SPI
 #define GLCD_DC portb.0 ' Data command line
 #define GLCD_CS portb.2 ' Chip select line
 #define GLCD_RESET portb.1 ' Reset line
 #define GLCD_DO portb.3 ' Data out | MOSI
 #define GLCD_SCK portb.5 ' Clock Line

 #define SSD1351_HardwareSPI ' remove/comment out if you want to use software
SPI. If you are using PPS to setup the SPI - ensure that PPS SPI is disabled to use
software SPI.

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Options

GLCD_TYPE GLCD_TYPE_SSD1351

GLCD_DC Specifies the output pin that is
connected to Data/Command IO pin on
the GLCD.

Required

GLCD_CS Specifies the output pin that is
connected to Chip Select (CS) on the
GLCD.

Required

GLCD_Reset Specifies the output pin that is
connected to Reset pin on the GLCD.

Required

GLCD_DO Specifies the output pin that is
connected to Data Out (GLCD in) pin on
the GLCD.

Required

GLCD_SCK Specifies the output pin that is
connected to Clock (CLK) pin on the
GLCD.

Required

SSD1351_Ha
rdwareSPI

Specifies that hardware SPI will be
used

SPI ports MUST be defined that match the SPI
module for each specific microcontroller
#define SSD1351_HardwareSPI

HWSPIMo
de

Specifies the speed of the SPI
communications for Hardware SPI
only.

Optional defaults to MASTERFAST. Options are
MASTERSLOW,
MASTER,
MASTERFAST, or
MASTERULTRAFAST for specific AVRs only.

The GCBASIC constants for control display characteristics are shown in the table below.

350

Constants Controls Default

GLCD_WIDTH The width parameter of the GLCD 128
This cannot be changed

GLCD_HEIGHT The height parameter of the GLCD 128
This cannot be changed

GLCDFontWidth Specifies the font width of the GCBASIC font set. 6 or 5 for the OLED font set.

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the
appropiate library for the latest full set of supported commands.

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

GLCDPri
nt

Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition, Stringvariable
)

GLCDDra
wChar

Print character on GLCD using GCB font
set

GLCDDrawChar(Xposition, Yposition, CharCode)

GLCDDra
wString

Print characters on GLCD using GCB font
set

GLCDDrawString(Xposition, Yposition,
Stringvariable)

Box Draw a box on the GLCD to a specific
size

Box (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour as 0 or 1])

FilledB
ox

Draw a box on the GLCD to a specific
size that is filled with the foreground
colour.

FilledBox (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

Line Draw a line on the GLCD to a specific
length that is filled with the specific
attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour 0 or 1)
Any color can be defined using a valid
hexidecimal word value between 0x0000 to
0xFFFF.

351

 SSD1351_BLACK 'hexidecimal value 0x0000
 SSD1351_BLUE 'hexidecimal value 0xF800
 SSD1351_RED 'hexidecimal value 0x001F
 SSD1351_GREEN 'hexidecimal value 0x07E0
 SSD1351_CYAN 'hexidecimal value 0xFFE0
 SSD1351_MAGENTA 'hexidecimal value 0xF81F
 SSD1351_YELLOW 'hexidecimal value 0x07FF
 SSD1351_WHITE 'hexidecimal value 0xFFFF

Example:

 #chip mega328p, 16
 #option explicit

 #include <glcd.h>
 #define GLCD_TYPE GLCD_TYPE_SSD1351

 'Pin mappings for SPI - this GLCD driver supports Hardware SPI and Software SPI
 #define GLCD_DC portb.0 ' Data command line
 #define GLCD_CS portb.2 ' Chip select line
 #define GLCD_RESET portb.1 ' Reset line
 #define GLCD_DO portb.3 ' Data out | MOSI
 #define GLCD_SCK portb.5 ' Clock Line

 #define SSD1351_HardwareSPI ' remove/comment out if you want to use software SPI.

 'GLCD selected OLED font set.
 #define GLCD_OLED_FONT
 GLCDfntDefaultsize = 1

 GLCDCLS
 GLCDPrintStringLN ("GCBASIC")
 GLCDPrintStringLN ("")
 GLCDPrintStringLN ("Test of the SSD1351")
 GLCDPrintStringLN ("")
 GLCDPrintStringLN ("October 2021")
 end

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

ST7567 Controllers

This section covers GLCD devices that use the ST7567 graphics controller.

352

The ST7567 is a single-chip CMOS LCD driver with controller for organic / polymer light emitting diode
dot-matrix graphic display system. It consists of 128 segments and 64 commons. This IC is designed for
Common Cathode type LCD panel.

ST7567 is a single-chip dot matrix LCD driver which incorporates LCD controller and common/segment
drivers. A ST7567 can be connected directly to a microprocessor with I2C or 4-line serial interface (SPI-
4). Display data sent from microprocessor is stored in the internal Display Data RAM (DDRAM) of
65x132 bits. The display data bits which are stored in DDRAM are directly related to the pixels of LCD
panel. The ST7567 contains 132 segment-outputs, 64 common-outputs and 1 icon-common-output,
however the address pixels are 128 * 64. The ST7567 has built-in oscillation circuit and low power
consumption power circuit, ST7567 generates LCD driving signal without external clock or power, so
that it is possible to make a display system with the fewest components and minimal power
consumption.

There are different types of ST75xx GLCDs. The table below shows the different types and the
GCBASIC support.

Inde
x

GLCD
MPU

Interfaces Datasheet Ref Support

1 ST7565 Parallel 8080&6080 Ver 1.0a;Page 12 Not supported

2 ST7565S Parallel 8080&6080 Ver 0.6b;Page 23 Not supported

3 ST7567 4 Pin SPI;Parallel 8080&6080 Ver1.4b;Page 12 3&4 Pin SPI

4 ST7567S 3&4 Pin SPI;I2C;Parallel 8080&6080 Ver1.4;Page 17 3&4 Pin SPI & I2C

5 ST7576 3&4 Pin SPI;I2C;Parallel 8080&6080 Ver1;Page 18 3&4 Pin SPI & I2C

The ST7567 embeds with contrast control, display RAM and it is suitable for many compact portable
applications, such as mobile phone sub-display, MP3 player and calculator, etc.

The GCBASIC constants shown below control the configuration of the ST7567 controller. GCBASIC
supports SPI and I2C software connectivity - this is shown in the tables below.

The ST7567 library supports 128 * 64 pixels.

The ST7567 is a monochrome device. The library supports difference bias settings for the different
types of LCD. See the constant ST7567_BIAS for the options.

The ST7567 can operate in three modes. Full GLCD mode, Low Memory GLCD mode or Text/JPG mode
the full GLCD mode requires a minimum of 1k bytes or 512 bytes for the 128x64 respectively in Full
GLCD mode. For microcontrollers with limited memory the third mode of operation - Text mode.
These can be selected by setting the correct constant.

To use the ST7567 drivers simply include one of the following configuration. You can select Full Mode
GLCD, Low Memory Mode GLCD or Text mode these require 1024, 128 or 0 bytes GLCD buffer
respectively - you microcontroller requires sufficient RAM to support the selected mode of GLCD

353

operation.

To use the ST7567 driver simply include the following in your user code. This will initialise the driver.

 'An I2C configuration
 #include <glcd.h>

 ; ----- Define GLCD Hardware settings
 #define GLCD_TYPE GLCD_TYPE_ST7567
 #define GLCD_I2C_Address 0x7E
 #define ST7567_BIAS ST7567_SET_BIAS_7 ' ST7567_SET_BIAS_7 or ST7567_SET_BIAS_9

 ; ----- Define software IC2 settings
 #DEFINE I2C_MODE MASTER
 #DEFINE I2C_DATA PORTB.4
 #DEFINE I2C_CLOCK PORTB.6
 #DEFINE I2C_DISABLE_INTERRUPTS ON

or,

 'An SPI configuration'
 #include <glcd.h>

 ; ----- Define GLCD Hardware settings
 #define GLCD_TYPE GLCD_TYPE_ST7567

 ; ----- Define Hardware settings
 #define S4Wire_DATA

 #define MOSI_ST7567 PortB.1
 #define SCK_ST7567 PortB.2
 #define DC_ST7567 PortB.3
 #define CS_ST7567 PortB.4
 #define RES_ST7567 PortB.5

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Options

GLCD_TYPE GLCD_TYPE_ST7567 Required

GLCD_I2C_Address I2C address of the GLCD. Required defaults to 0x7E

The GCBASIC constants for SPI/S4Wire control display characteristics are shown in the table below.

354

Const
ants

Controls Options

GLCD_T
YPE

GLCD_TYPE_ST7567 Required to support 128 * 64 pixels.
Mutualy exclusive to
GLCD_TYPE_ST7567_32

ST7567
_BIAS

Bias ratio of the voltage required to driving the
LCD at a fixes duty of 1/65 (see the datasheet)

Defaults to ST7567_SET_BIAS_7. Can be either
ST7567_SET_BIAS_7 or ST7567_SET_BIAS_9

S4Wire
_Data

4 wire SPI Mode Required

MOSI_S
T7567

Specifies output pin connected to serial data in
D1 pin

Must be defined

SCK_ST
7567

Specifies output pin connected to serial clock D0
pin

Must be defined

DC_ST7
567

Specifies output pin connected to data control
DC pin

Must be defined

CS_ST7
567

Specifies output pin connected to chip select CS
pin

Must be defined

RES_ST
7567

Specifies output pin connected to reset RES pin Must be defined

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Default

GLCD_WIDTH The width parameter of the GLCD 128

GLCD_HEIGHT The height parameter of the GLCD 64

GLCD_PROTECTOVERRUN Define this constant to restrict pixel operations with the pixel
limits

Not
defined

GLCD_TYPE_ST7567_CHARAC
TER_MODE_ONLY

Specifies that the display controller will operate in text mode and
BMP draw mode only.
For microcontrollers with low RAM this will be set be default.
When selected ONLY text related commands are suppored. For
grapical commands you must have sufficient memory to use Full
GLCD mode or use GLCD_TYPE_ST7567_LOWMEMORY_GLCD_MODE

Optiona
l

GLCD_TYPE_ST7567_LOWMEM
ORY_GLCD_MODE

Specifies that the display controller will operate in Low Memory
mode.

Optiona
l

GLCD_OLED_FONT Specifies the use of the optional OLED font set. The
GLCDfntDefaultsize can be set to 1 or 2 only. GLCDfntDefaultsize=
1. A small 8 height pixel font with variable width.
GLCDfntDefaultsize= 2. A larger 10 width * 16 height pixel font.

Optiona
l

355

The GCBASIC variables for control display characteristics are shown in the table below. These variables
control the user definable parameters of a specific GLCD.

Variable Purpose Type

GLCDBackground GLCD background state. A monochrome value.
For mono GLCDs the default is White or 0x0001.

GLCDForeground Color of GLCD
foreground.

A monochrome value.
For mono GLCDs the default is non-white or 0x0000.

GLCDFontWidth Width of the current
GLCD font.

Default is 6 pixels.

GLCDfntDefault Size of the current GLCD
font.

Default is 0. This equates to the standard GCB font set.

GLCDfntDefault
size

Size of the current GLCD
font.

Default is 1. This equates to the 8 pixel high.

The GCBASIC commands supported for this GLCD are shown in the table below.

Command Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

GLCDPrint Print string of characters on GLCD using GCB
font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

GLCDDrawChar Print character on GLCD using GCB font set GLCDDrawChar(Xposition, Yposition,
CharCode)

GLCDDrawStri
ng

Print characters on GLCD using GCB font set GLCDDrawString(Xposition, Yposition,
Stringvariable)

Box Draw a box on the GLCD to a specific size Box (Xposition1, Yposition1,
Xposition2, Yposition2, [Optional In
LineColour as 0 or 1])

FilledBox Draw a box on the GLCD to a specific size
that is filled with the foreground colour.

FilledBox (Xposition1, Yposition1,
Xposition2, Yposition2, [Optional In
LineColour 0 or 1])

Line Draw a line on the GLCD to a specific length
that is filled with the specific attribute.

Line (Xposition1, Yposition1,
Xposition2, Yposition2, [Optional In
LineColour 0 or 1])

PSet Set a pixel on the GLCD at a specific position
that is set with the specific attribute.

PSet(Xposition, Yposition, Pixel Colour
0 or 1)

GLCDWriteByt
e

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDReadByte Read a byte value from the controller, see
the datasheet for usage.

bytevariable = GLCDReadByte

356

Command Purpose Example

GLCD_Open_Pa
geTransactio
n

Commence a series of GLCD commands
when in low memory mode. Must be
followed a GLCD_Close_PageTransaction
command.

GLCD_Close_PageTransaction 0, 7 where 0
and 7 are the range of pages to be
updated

GLCD_Close_P
ageTransacti
on

Commence a series of GLCD commands
when in low memory mode. Must follow a
GLCD_Open_PageTransaction command.

The GCBASIC specific commands for this GLCD are shown in the table below.

Command Purpose

GLCDSetContrast (
dim_state)

Sets the constrast between 0 and 255. The contrast increases as the value
increases.
Parameter is dim value

This example shows how to drive a ST7567 based Graphic I2C LCD module with the built in commands
of GCBASIC using Full Mode GLCD

 #CHIP 18F26Q71
 #OPTION Explicit

 #startup InitPPS, 85
 #define PPSToolPart 18F26Q71

 Sub InitPPS
 // Ensure PPS is NOT set for Software I2C
 UNLOCKPPS
 RB6PPS = 0
 RB4PPS = 0
 End Sub
 'Template comment at the end of the config file

 '' -------------------PORTA----------------
 '' Bit#: -7---6---5---4---3---2---1---0---
 '' IO: ----------------------------------
 ''---
 ''

 '' -------------------PORTB----------------
 '' Bit#: -7---6---5---4---3---2---1---0---
 '' IO: ----SCL-----SDA------------------
 ''---
 ''

357

 '' ------------------PORTC-----------------
 '' Bit#: -7---6---5---4---3---2---1---0---
 '' IO: ---------------------------------
 ''---

 ' Define Software I2C settings
 #DEFINE I2C_MODE MASTER
 #DEFINE I2C_DATA PORTB.4
 #DEFINE I2C_CLOCK PORTB.6
 #DEFINE I2C_DISABLE_INTERRUPTS ON

'**

 'Main program commences here.. everything before this is setup for the chip.

 Dim DeviceID As Byte
 Dim DISPLAYNEWLINE As Byte

 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_ST7567
 #DEFINE GLCDDIRECTION INVERTED

 ; ----- Define variables
 Dim BYTENUMBER, CCOUNT as Byte

 CCount = 0
 dim longNumber as long
 longNumber = 123456 ' max value = 4294967290
 dim wordNumber as Word
 dim outstring as string
 wordNumber = 0
 byteNumber = 0

 ; ----- Main program

 GLCDPrint 0, 0, "GCBASIC"
 GLCDPrint (0, 16, "Anobium 2024")
 GLCDPrint (0, 32, "Portability Demo")
 GLCDPrint (0, 48, ChipNameStr)

 wait 3 s
 GLCDCLS

 ' Prepare the static components of the screen
 GLCDPrint (2, 2, "PrintStr") ; Print some
text

358

 GLCDPrint (64, 2, "@") ; Print some
more text
 GLCDPrint (72, 2, ChipMhz) ; Print chip
speed
 GLCDPrint (86, 2, "Mhz") ; Print some
text
 GLCDDrawString(2,10,"DrawStr") ; Draw some
text
 box 0,0,GLCD_WIDTH-1, GLCD_HEIGHT-1 ; Draw a box
 box GLCD_WIDTH-5, GLCD_HEIGHT-5,GLCD_WIDTH-1, GLCD_HEIGHT-1 ; Draw a box
 Circle(44,41,15) ; Draw a circle
 line 64,31,0,31 ; Draw a line

 DO forever

 for CCount = 32 to 127

 GLCDPrint (64 , 36, hex(longNumber_E)) ; Print a HEX
string
 GLCDPrint (76 , 36, hex(longNumber_U)) ; Print a HEX
string
 GLCDPrint (88 , 36, hex(longNumber_H)) ; Print a HEX
string
 GLCDPrint (100 , 36, hex(longNumber)) ; Print a HEX
string
 GLCDPrint (112 , 36, "h") ; Print a HEX
string

 GLCDPrint (64 , 44, pad(str(wordNumber), 5)) ; Print a
padded string
 GLCDPrint (64 , 52, pad(str(byteNumber), 3)) ; Print a
padded string

 box (46,9,56,19) ; Draw a Box
 GLCDDrawChar(48, 10, CCount) ; Draw a
character
 outString = str(CCount) ; Prepare a
string
 GLCDDrawString(64, 10, pad(outString,3)) ; Draw a
string

 filledbox 3,43,11,51, wordNumber ; Draw a
filled box

 FilledCircle(44,41,9, longNumber xor 1) ; Draw a
filled box

359

 line 0,63,64,31 ; Draw a line

 ; Do some
simple maths
 longNumber = longNumber + 7 : wordNumber = wordNumber + 3 : byteNumber++
 NEXT
 LOOP
 end

This example shows how to drive a ST7567 based Graphic I2C LCD module with the built in commands
of GCBASIC using Low Memory Mode GLCD.
Note the use of GLCD_Open_PageTransaction and GLCD_Close_PageTransaction to support the Low Memory
Mode of operation and the contraining of all GLCD commands with the transaction commands. The
use Low Memory Mode GLCD the two defines GLCD_TYPE_ST7567_LOWMEMORY_GLCD_MODE and
GLCD_TYPE_ST7567_CHARACTER_MODE_ONLY are included in the user program.

 #chip {any valid chip}
 #include <glcd.h>

 ; ----- Define Hardware settings
 ' Define I2C settings
 #DEFINE I2C_MODE MASTER
 #DEFINE I2C_DATA PORTB.4
 #DEFINE I2C_CLOCK PORTB.6
 #DEFINE I2C_DISABLE_INTERRUPTS ON

 ; ----- Define GLCD Hardware settings
 #define GLCD_TYPE GLCD_TYPE_ST7567 'for 128 * 64 pixels support
 #define GLCD_I2C_Address 0x7E
 #define GLCD_TYPE_ST7567_LOWMEMORY_GLCD_MODE
 #define GLCD_TYPE_ST7567_CHARACTER_MODE_ONLY

 dim outString as string * 21

 GLCDCLS

 'To clarify - page udpates
 '0,7 correspond with the Text Lines from 0 to 7 on a 64 Pixel Display
 'In this example Code would be GLCD_Open_PageTransaction 0,1 been enough
 'But it is allowed to use GLCD_Open_PageTransaction 0,7 to show the full screen
update
 GLCD_Open_PageTransaction 0,7
 GLCDPrint 0, 0, "GCBASIC"
 GLCDPrint (0, 16, "Anobium 2024")

360

 GLCD_Close_PageTransaction
 wait 3 s
 DO forever

 for CCount = 31 to 127

 outString = str(CCount) ; Prepare a string

 GLCD_Open_PageTransaction 0,7

 ' Prepare the static components of the screen
 GLCDPrint (0, 0, "PrintStr") ; Print some text
 GLCDPrint (64, 0, "@")
 ; Print some more text
 GLCDPrint (72, 0, ChipMhz) ; Print chip speed
 GLCDPrint (86, 0, "Mhz") ; Print some text
 GLCDDrawString(0,8,"DrawStr") ; Draw some text
 box 0,0,GLCD_WIDTH-1, GLCD_HEIGHT-1 ; Draw a box
 box GLCD_WIDTH-5, GLCD_HEIGHT-5,GLCD_WIDTH-1, GLCD_HEIGHT-1 ; Draw a box
 Circle(44,41,15) ; Draw a circle
 line 64,31,0,31 ; Draw a line

 GLCDPrint (64 , 36, hex(longNumber_E)) ; Print a HEX string
 GLCDPrint (76 , 36, hex(longNumber_U)) ; Print a HEX string
 GLCDPrint (88 , 36, hex(longNumber_H)) ; Print a HEX string
 GLCDPrint (100 , 36, hex(longNumber)) ; Print a HEX string
 GLCDPrint (112 , 36, "h") ; Print a HEX string

 GLCDPrint (64 , 44, pad(str(wordNumber), 5)) ; Print a padded string
 GLCDPrint (64 , 52, pad(str(byteNumber), 3)) ; Print a padded string

 box (46,8,56,19) ; Draw a Box
 GLCDDrawChar(48, 9, CCount) ; Draw a character

 GLCDDrawString(64, 9, pad(outString,3)) ; Draw a string

 filledbox 3,43,11,51, wordNumber ; Draw a filled box

 FilledCircle(44,41,9, longNumber xor 1) ; Draw a filled box
 line 0,63,64,31 ; Draw a line

 GLCD_Close_PageTransaction

 ; Do some simple maths
 longNumber = longNumber + 7 : wordNumber = wordNumber + 3 : byteNumber++
 NEXT
 LOOP
 end

361

This example shows how to drive a ST7567 based Graphic SPI LCD module with the built in commands
of GCBASIC.

362

 #chip {any valid chip}
 #include <glcd.h>

 'Defines for a 7 pin SPI module
 'RES pin is pulsed low in glcd_ST7567.h for proper startup
 #define MOSI_ST7567 PortB.1
 #define SCK_ST7567 PortB.2
 #define DC_ST7567 PortB.3
 #define CS_ST7567 PortB.4
 #define RES_ST7567 PortB.5
 ; ----- Define GLCD Hardware settings
 #define GLCD_TYPE GLCD_TYPE_ST7567 'for 128 * 64 pixels support
 #define S4Wire_DATA

 dim longnumber as Long
 longnumber = 123456
 dim wordnumber as word
 wordnumber = 62535
 dim bytenumber as Byte
 bytenumber =255

 #define led PortB.0
 dir led out

 Do
 SET led ON
 wait 1 s
 SET led OFF

 GLCDCLS
 GLCDPrint (30, 0, "Hello World!")
 Circle (18,24,10)
 FilledCircle (48,24,10)
 Box (70,14,90,34)
 FilledBox (106,14,126,34)
 GLCDDrawString (32,35,"Draw String")
 GLCDPrint (0,46,longnumber)
 GLCDPrint (94,46,wordnumber)
 GLCDPrint (52,55,bytenumber)
 Line (0,40,127,63)
 Line (0,63,127,40)
 wait 3 s

 Loop

363

This example shows how to drive a ST7567 with the OLED fonts. Note the use of the GLCDfntDefaultSize
to select the size of the OLED font in use.

 #define GLCD_OLED_FONT

 GLCDfntDefaultSize = 2
 GLCDFontWidth = 5
 GLCDPrint (40, 0, "OLED")
 GLCDPrint (0, 18, "Typ: ST7567")
 GLCDPrint (0, 34, "Size: 128x64")

 GLCDfntDefaultSize = 1
 GLCDPrint(20, 56,"https://goo.gl/gjrxkp")

This example shows how to set the ST7567 OLED the lowest constrast level by using a OLED chip
specific command.

 'Use the GCB command to set the lowest constrast
 GLCDSetContrast (0)

 GLCDfntDefaultSize = 2
 GLCDFontWidth = 5
 GLCDPrint (40, 0, "OLED")
 GLCDPrint (0, 18, "Typ: ST7567")
 GLCDPrint (0, 34, "Size: 128x64")

 GLCDfntDefaultSize = 1
 GLCDPrint(20, 56,"https://goo.gl/gjrxkp")

This example shows how to disable the large OLED Fontset. This disables the font to reduce memory
usage.

When the large OLED fontset is disabled every character will be shown as a block character.

364

 #define GLCD_OLED_FONT 'The constant is required to support OLED fonts
 #define GLCD_Disable_OLED_FONT2 'The constant to disable the large fontset.

 GLCDfntDefaultSize = 2
 GLCDFontWidth = 5
 GLCDPrint (40, 0, "OLED")
 GLCDPrint (0, 18, "Typ: ST7567")
 GLCDPrint (0, 34, "Size: 128x64")

 GLCDfntDefaultSize = 1
 GLCDPrint(20, 56,"https://goo.gl/gjrxkp")

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

ST7735 Controllers

This section covers GLCD devices that use the ST7735 graphics controller. The ST7735 or ST7735R is a
single-chip controller/driver for 262K-color, graphic type TFT-LCD.

GCBASIC supports 65K-color mode operations.

The GCBASIC constants shown below control the configuration of the ST7735 or ST7735R controller.
 GCBASIC supports an 8 bit bus connectivity. The 8 bit must be a single port of consective bits - this is
shown in the tables below.

To use the ST7735 driver simply include the following in your user code. This will initialise the driver.

 #include <glcd.h>
 #define GLCD_TYPE GLCD_TYPE_ST7735R
 #define ST7735TABCOLOR ST7735_BLACKTAB ; can also be ST7735_GREENTAB or
ST7735_REDTAB or GLCD_TYPE_ST7735R_160_80

 'Pin mappings for ST7735
 #define GLCD_DC porta.0 'example port setting
 #define GLCD_CS porta.1 'example port setting
 #define GLCD_RESET porta.2 'example port setting
 #define GLCD_DI porta.3 'example port setting
 #define GLCD_DO porta.4 'example port setting
 #define GLCD_SCK porta.5 'example port setting

The GCBASIC constants for control display characteristics are shown in the table below.

365

Constan
ts

Controls Options

GLCD_TYP
E

GLCD_TYPE_ST7735 or GLCD_TYPE_ST7735R or
GLCD_TYPE_ST7735R_160_80

ST7735TA
BCOLOR

Specifies the type of ST7735 chipset. The
default is ST7735_BLACKTAB

Options are ST7735_BLACKTAB, ST7735_GREENTAB
or ST7735_REDTAB. Each tab is a different
ST7735 configuration. If you do not know
your type try each constant and test.

GLCD_DAT
A_PORT

Not Available for this controller. Not applicable.

GLCD_DC Specifies the output pin that is connected to
Data/Command IO pin on the GLCD.

Required

GLCD_CS Specifies the output pin that is connected to
Chip Select (CS) on the GLCD.

Required

GLCD_Res
et

Specifies the output pin that is connected to
Reset pin on the GLCD.

Required

GLCD_DI Specifies the output pin that is connected to
Data In (GLCD out) pin on the GLCD.

Required

GLCD_D0 Specifies the output pin that is connected to
Data Out (GLCD in) pin on the GLCD.

Required

GLCD_SLK Specifies the output pin that is connected to
Clock (CLK) pin on the GLCD.

Required

ST7735_H
ardwareS
PI

Specifies that hardware SPI will be used SPI ports MUST be defined that match the SPI
module for each specific microcontroller
#define ST7735_HardwareSPI

HWSPIM
ode

Specifies the speed of the SPI
communications for Hardware SPI only.

Optional defaults to MASTERFAST. Options
are MASTERSLOW,
MASTER,
MASTERFAST, or
MASTERULTRAFAST for specific AVRs only.

ST7735_X
START

Specifies the adjustment made to the X axis
when writing to the GLCD. This is used to
correct any geometry correction required for
specific GLCDs.

Optional. Defaults are set for each specific
GLCD.

ST7735_Y
START

Specifies the adjustment made to the Y axis
when writing to the GLCD. This is used to
correct any geometry correction required for
specific GLCDs.

Optional. Defaults are set for each specific
GLCD.

The GCBASIC constants for control display characteristics are shown in the table below.

366

Constants Controls Default

GLCD_WIDTH The width parameter of the GLCD 160
This cannot be changed

GLCD_HEIGHT The height parameter of the GLCD 128
This cannot be changed

GLCDFontWidth Specifies the font width of the GCBASIC font set. 6

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the
appropiate library for the latest full set of supported commands.

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

GLCDPri
nt

Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition, Stringvariable
)

GLCDDra
wChar

Print character on GLCD using GCB font
set

GLCDDrawChar(Xposition, Yposition, CharCode)

GLCDDra
wString

Print characters on GLCD using GCB font
set

GLCDDrawString(Xposition, Yposition,
Stringvariable)

Box Draw a box on the GLCD to a specific
size

Box (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour as 0 or 1])

FilledB
ox

Draw a box on the GLCD to a specific
size that is filled with the foreground
colour.

FilledBox (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

Line Draw a line on the GLCD to a specific
length that is filled with the specific
attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour 0 or 1)

GLCDWri
teByte

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDRea
dByte

Read a byte value from the controller,
see the datasheet for usage.

bytevariable = GLCDReadByte

ST7735_
[color]

Specify color as a parameter for many
GLCD commands

Any color can be defined using a valid
hexidecimal word value between 0x0000 to
0xFFFF., see http://www.barth-
dev.de/online/rgb565-color-picker/ for a wider
range of color parameters.

367

http://www.barth-dev.de/online/rgb565-color-picker/
http://www.barth-dev.de/online/rgb565-color-picker/

For a ST7735 datasheet, please refer here.

For a ST7735R datasheet, please refer here.

Example:

 ;Chip Settings
 #chip 16F1937,32
 #config MCLRE_ON

 #include <glcd.h>

 'Defines for ST7735
GLCD_TYPE GLCD_TYPE_ST7735R
 'Pin mappings for ST7735
GLCD_DC porta.0
GLCD_CS porta.1
GLCD_RESET porta.2
GLCD_DI porta.3
GLCD_DO porta.4
GLCD_SCK porta.5

 GLCDPrint(0, 0, "Test of the ST7735 Device")
 end

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

ST7789 Controllers

This section covers GLCD devices that use the ST7789 graphics controller. The ST7789 is a TFT LCD
Single Chip Driver with 240x240 or 320x240 Resolution and 65K colors.

GCBASIC supports 65K-color mode operations.

The GCBASIC constants shown below control the configuration of the ST7789 controller. GCBASIC
supports SPI hardware and software connectivity - this is shown in the tables below.

To use the ST7789 driver simply include the following in your user code. This will initialise the driver.

368

http://www.crystalfontz.com/controllers/ST7735_V2.1_20100505.pdf
https://cdn-shop.adafruit.com/datasheets/ST7735R_V0.2.pdf

 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_ST7789_240_240
 // #DEFINE GLCD_TYPE GLCD_TYPE_ST7789_320_240

 'Pin mappings for ST7789 - these MUST be specified
 #define GLCD_DC porta.0 'example port setting
 #define GLCD_RESET porta.2 'example port setting
 #define GLCD_DO porta.4 'example port setting
 #define GLCD_SCK porta.5 'example port setting

 'Optional to use the following - please check the datasheet for the specific GLCD.
 #define GLCD_CS porta.1 'example port setting
 #define GLCD_DI porta.3 'example port setting

The GCBASIC constants for the interface to the controller are shown in the table below.

Const
ants

Controls Options

GLCD_T
YPE

GLCD_TYPE_ST7789_240_240 or
GLCD_TYPE_ST7789_320_240

Select one option to set geometry

GLCD_D
C

Specifies the output pin that is connected
to Data/Command IO pin on the GLCD.

Required

GLCD_R
eset

Specifies the output pin that is connected
to Reset pin on the GLCD.

Required

GLCD_D
O

Specifies the output pin that is connected
to Data Out (GLCD in) pin on the GLCD.

Required

GLCD_S
CK

Specifies the output pin that is connected
to Clock (CLK) pin on the GLCD.

Required

GLCD_D
I

Specifies the output pin that is connected
to Data In (GLCD out) pin on the GLCD.

Optional

GLCD_C
S

Specifies the output pin that is connected
to Chip Select (CS) on the GLCD.

Optional

HWSPIM
ode

Specifies the speed of the SPI
communications for Hardware SPI only.

Optional defaults to MASTERFAST. Options are
MASTERSLOW,
MASTER,
MASTERFAST, or
MASTERULTRAFAST for specific AVRs only.

The GCBASIC constants for control display characteristics are shown in the table below.

369

Constant
s

Controls Default

GLCD_WIDT
H

The width parameter of the GLCD 320 or 240

GLCD_HEIG
HT

The height parameter of the GLCD 240

GLCDFontW
idth

Specifies the font width of the GCBASIC font set. 6 for GCB fonts, and 5
for OLED fonts.

GLCD_OLED
_FONT

Specifies the use of the optional OLED font set. The
GLCDfntDefaultsize can be set to 1 or 2 only. GLCDfntDefaultsize=
1. A small 8 height pixel font with variable width.
GLCDfntDefaultsize= 2. A larger 10 width * 16 height pixel font.

Optional

The GCBASIC commands supported for this GLCD are shown in the table below. Always review the
appropiate library for the latest full set of supported commands.

Comm
and

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS [,Optional LineColour]

GLCDPri
nt

Print string of characters on GLCD using GCB
font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

GLCDDra
wChar

Print character on GLCD using GCB font set GLCDDrawChar(Xposition, Yposition,
CharCode [,Optional LineColour])

GLCDDra
wString

Print characters on GLCD using GCB font set GLCDDrawString(Xposition, Yposition,
Stringvariable [,Optional LineColour])

Box Draw a box on the GLCD to a specific size Box (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour]

FilledB
ox

Draw a box on the GLCD to a specific size that
is filled with the foreground colour.

FilledBox (Xposition1, Yposition1,
Xposition2, Yposition2 [,Optional
LineColour])

Line Draw a line on the GLCD to a specific length
that is filled with the specific attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2 [,Optional LineColour])

PSet Set a pixel on the GLCD at a specific position
that is set with the specific attribute.

PSet(Xposition, Yposition, Pixel Colour)

GLCDWri
teByte

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDRea
dByte

Read a byte value from the controller, see the
datasheet for usage.

bytevariable = GLCDReadByte

GLCDRot
ate

Rotate the display LANDSCAPE, PORTRAIT_REV, LANDSCAPE_REV and
PORTRAIT are supported

370

Comm
and

Purpose Example

ST7789_
[color]

Specify color as a parameter for many GLCD
commands

Color constants for this device are shown in
the list below.

ReadPix
el

Read the pixel color at the specified XY
coordination. Returns long variable with Red,
Green and Blue encoded in the lower 24 bits.

ReadPixel(Xosition , Yposition) or
ReadPixel_ST7789(Xosition , Yposition) Any
color can be defined using a valid
hexidecimal word value between 0x0000 to
0xFFFF.

 TFT_BLACK 0x0000
 TFT_NAVY 0x000F
 TFT_DARKGREEN 0x03E0
 TFT_DARKCYAN 0x03EF
 TFT_MAROON 0x7800
 TFT_PURPLE 0x780F
 TFT_OLIVE 0x7BE0
 TFT_LIGHTGREY 0xC618
 TFT_DARKGREY 0x7BEF
 TFT_BLUE 0x001F
 TFT_GREEN 0x07E0
 TFT_CYAN 0x07FF
 TFT_RED 0xF800
 TFT_MAGENTA 0xF81F
 TFT_YELLOW 0xFFE0
 TFT_WHITE 0xFFFF
 TFT_ORANGE 0xFD20
 TFT_GREENYELLOW 0xAFE5
 TFT_PINK 0xF81F

This example shows how to drive a ST7789 based Graphic LCD module with the built in commands of
GCBASIC.

The library support PIC, AVR and LGT - change to suit your configuration.

Example #1

371

 #chip LGT8F328P
 #include <LGT8F328P.h>
 #option explicit

 #include <glcd.h>
 #include <glcd_st7789.h>
 #define ST7789_HardwareSPI
 #define HWSPIMode MASTERULTRAFAST

 // Can be either pixels geometry
 #define GLCD_TYPE GLCD_TYPE_ST7789_240_240
 //#define GLCD_TYPE GLCD_TYPE_ST7789_320_240

 //Pin mappings for SPI - this GLCD driver supports Hardware SPI and Software SPI
 #define GLCD_DC DIGITAL_8 ' Data command line
 #define GLCD_CS DIGITAL_10 ' Chip select line
 #define GLCD_RESET DIGITAL_9 ' Reset line
 #define GLCD_DI DIGITAL_12 ' Data in | MISO - Not used therefore
not really required
 #define GLCD_DO DIGITAL_11 ' Data out | MOSI
 #define GLCD_SCK DIGITAL_13 ' Clock Line

 #define GLCD_EXTENDEDFONTSET1
 GLCDBackground = TFT_BLACK
 GLCDCLS TFT_BLACK

 GLCDfntDefaultsize = 2

 GLCDRotate Portrait_Rev
 GLCDPrint (0,0,"Hello World",TFT_GREEN)

 GLCDRotate Portrait
 GLCDPrint (0,0,"Hello World",TFT_GREEN)

 GLCDROTATE Landscape
 GLCDPrint (0,0,"Hello World",TFT_GREEN)

 GLCDROTATE Landscape_Rev
 GLCDPrint (0,0,"Hello World",TFT_GREEN)

Example #2

This example shows how to drive a ST7789 using a PIC with PPS.

372

 #chip 16F15376
 #option Explicit

 #startup InitPPS, 85

 Sub InitPPS
 #ifdef ST7789_HardwareSPI

 'This #ifdef is added to enable easy change from hardware SPI (using PPS)
to software PPS that just uses the port assignments shown below.

 SSP1CLKPPS = 0x1 //RC3->MSSP1:SCK1
 RC3PPS = 0x15 //RC3->MSSP1:SCK1
 RC5PPS = 0x16 //RC5->MSSP1:SDO1
 SSP1DATPPS = 0x14 //RC4->MSSP1:SDI1

 #endif
 End Sub

 ' ********************** Setup the GLCD
**

 #INCLUDE <glcd.h>
 #define GLCD_TYPE GLCD__TYPE_ST7789_240_240
 // #define GLCD_TYPE GLCD__TYPE_ST7789_320_240

 'This is a PPS chip, so, need to make the DO/SDO & SCK match the PPS assignments
 #DEFINE GLCD_DO portC.5
 #DEFINE GLCD_SCK portC.3

 'Additinal pin assignments for GLCD
 #DEFINE GLCD_DC portA.4
 #DEFINE GLCD_RESET portA.1
 'It is optional on the ST7789 to set the GLCD_CS... therefore, here but commented
out
 '#DEFINE GLCD_CS porte.0

 'Uncomment out the next line... enable or disable the PPS!!!
 #DEFINE ST7789_HardwareSPI ' remove/comment out if you want to use software
SPI.0

 ' ********************** DEMO REALLY STARTS HERE
**
 GLCDPrint(0, 0, "Test of the ST7789 Device")
 end

373

Example #3

This example shows how to drive a ILI3941 with the OLED fonts. Note the use of the
GLCDfntDefaultSize to select the size of the OLED font in use.

 #define GLCD_OLED_FONT 'The constant is required to support OLED fonts

 GLCDfntDefaultSize = 2
 GLCDFontWidth = 5
 GLCDPrint (40, 0, "OLED")
 GLCDPrint (0, 18, "Typ: ST7789")
 GLCDPrint (0, 34, "Size: "+ Str(GLCD_WIDTH) +" x 240")

 GLCDfntDefaultSize = 1
 GLCDPrint(20, 56,"https://goo.gl/gjrxkp")

Example #4

This example shows how to disable the large OLED Fontset. This disables the font to reduce memory
usage.

When the extended OLED fontset is disabled every character will be shown as a block character.

 #define GLCD_OLED_FONT 'The constant is required to support OLED fonts
 #define GLCD_Disable_OLED_FONT2 'The constant to disable the extended OLED
fontset.

 GLCDfntDefaultSize = 2
 GLCDFontWidth = 5
 GLCDPrint (40, 0, "OLED")
 GLCDPrint (0, 18, "Typ: ST7789")
 GLCDPrint (0, 34, "Size: "+ Str(GLCD_WIDTH) +" x 240")

 GLCDfntDefaultSize = 1
 GLCDPrint(20, 56,"https://goo.gl/gjrxkp")

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

374

ST7920 Controllers

This section covers GLCD devices that use the ST7920 graphics controller.

The GCBASIC constants for control of the connectivity are shown in the table below. The only
connectivity option the 8-bit mode where 8 pins are connected between the microcontroller and the
GLCD to control the data bus.

The ST7920 GLCD is graphics and character mixed mode display.

ST7920 LCD controller/driver IC can display alphabets, numbers, Chinese fonts and self-defined
characters. It supports 3 kinds of bus interface, namely 8-bit, 4-bit and serial. GCBASIC is currently
supports 8-bit only. For LCD only operations (text characters only) you can use the GCBASIC LCD
routines.

All functions, including display RAM, Character Generation ROM, LCD display drivers and control
circuits are all in a one-chip solution. With a minimum system configuration, a Chinese character
display system can be easily achieved.

The ST7920 includes character ROM with 8192 16x16 dots Chinese fonts and 126 16x8 dots half-width
alphanumerical fonts. It supports 64x256 dots graphic display area for graphic display
(GDRAM). Mix-mode display with both character and graphic data is possible. ST7920 has built-in
CGRAM and provide 4 sets software programmable 16x16 fonts.

To use the ST7920 driver simply include the following in your user code. This will initialise the driver.

 #include <glcd.h>
 #DEFINE GLCD_TYPE GLCD_TYPE_ST7920

 #define GLCD_Enable PORTA.1 'example port setting
 #define GLCD_RS PORTa.0 'example port setting
 #define GLCD_RW PORTA.2 'example port setting
 #define GLCD_RESET PORTA.3 'example port setting
 #define GLCD_DATA_PORT PORTD 'example port setting

The GCBASIC constants for the interface to the controller are shown in the table below.

Constan
ts

Controls Options

GLCD_TYP
E

GLCD_TYPE_ST7920 Required

GLCD_DAT
A_PORT

Specifies the output port that is connected
between the microcontroller and the GLCD.

Required

GLCD_RS Specifies the output pin that is connected to
Register Select on the GLCD.

Required

375

Constan
ts

Controls Options

GLCD_RW Specifies the output pin that is connected to
Read/Write on the GLCD. The R/W pin can be
disabled*.

Must be defined unless R/W is disabled), see
GLCD_NO_RW

GLCD_RES
ET

Specifies the output pin that is connected to
Reset on the GLCD.

Required

GLCD_ENA
BLE

Specifies the output pin that is connected to
Enable on the GLCD.

Required

GLCD_NO_
RW

Disables read/write inspection of the device
during read/write operations

Optional, but recommend NOT to set. The R/W
pin can be disabled by setting the GLCD_NO_RW
constant. If this is done, there is no need for
the R/W to be connected to the chip, and no
need for the LCD_RW constant to be set. Ensure
that the R/W line on the LCD is connected to
ground if not used.

Constants that control the timing of the library

ST7920RE
ADDELAY

Set the time delay between read data
transmissions.

Optional, set to 20 us as the default value.

ST7920WR
ITEDELAY

Set the time delay between write data
transmissions.

Optional, set to 2 us as the default value. '
read delay of 25 is required at 32mhz, this can
be reduced to 0 for slower clock speeds
#DEFINE ST7920READDELAY 25 ' write
delay of 2 is required at 32mhz. this can be
reduced to 1 for slower clock speeds
#DEFINE ST7920WRITEDELAY 2

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Default

GLCD_WIDTH The width parameter of the GLCD 128 cannot be changed.

GLCD_HEIGHT The height parameter of the GLCD 64 cannot be changed.

The GCBASIC commands supported for this GLCD are shown in the table below. For device specific see
the commands with the prefix of ST7920*.

Comma
nd

Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

GLCDPrin
t

Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

376

Comma
nd

Purpose Example

GLCDDraw
Char

Print character on GLCD using GCB font
set

GLCDDrawChar(Xposition, Yposition, CharCode)

GLCDDraw
String

Print characters on GLCD using GCB font
set

GLCDDrawString(Xposition, Yposition,
Stringvariable)

Box Draw a box on the GLCD to a specific size Box (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour as 0 or 1]
)

FilledBo
x

Draw a box on the GLCD to a specific size
that is filled with the foreground colour.

FilledBox (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

Line Draw a line on the GLCD to a specific
length that is filled with the specific
attribute.

Line (Xposition1, Yposition1, Xposition2,
Yposition2, [Optional In LineColour 0 or 1])

PSet Set a pixel on the GLCD at a specific
position that is set with the specific
attribute.

PSet(Xposition, Yposition, Pixel Colour 0 or
1)

The following methods (calls) are available for expert use.

GLCDWrit
eByte

Set a byte value to the controller, see the
datasheet for usage.

GLCDWriteByte (LCDByte)

GLCDRead
Byte

Read a byte value from the controller, see
the datasheet for usage.

bytevariable = GLCDReadByte

For a TS7920 datasheet, please refer here.

This example shows how to drive a ST7920 based Graphic LCD module with the built in commands of
GCBASIC. See Graphic LCD for details, this is an external web site.

Example 1:

 ;Chip Settings
 #CHIP 16F1937,32
 #CONFIG MCLRE_ON

 #INCLUDE <GLCD.H>
 #DEFINE GLCD_TYPE GLCD_TYPE_ST7920
 #DEFINE GLCD_IO 8
 #DEFINE GLCD_WIDTH 128
 #DEFINE GLCD_HEIGHT 160
 ' read delay of 25 is required at 32mhz, this can be reduced to 0 for slower clock
speeds
 #DEFINE ST7920READDELAY 25

377

http://www.crystalfontz.com/controllers/ST7920.pdf
http://www.greatcowbasic.com/sample-projects.html

 ' write delay of 2 is required at 32mhz. this can be reduced to 1 for slower clock
speeds
 #DEFINE ST7920WRITEDELAY 2

 #DEFINE GLCD_RS PORTA.0
 #DEFINE GLCD_ENABLE PORTA.1
 #DEFINE GLCD_RW PORTA.2
 #DEFINE GLCD_RESET PORTA.3
 #DEFINE GLCD_DATA_PORT PORTD

 ST7920GLCDEnableGraphics
 GLCDClearGraphics_ST7920
 GLCDPrint 0, 1, "GCBASIC "
 wait 1 s

 GLCDCLS
 GLCDClearGraphics_ST7920

 rrun = 0
 dim msg1 as string * 16

 dim xradius, yordinate , radiusErr, incrementalxradius, orginalxradius,
orginalyordinate as Integer

 Do forever
 GLCDCLS
 GLCDClearGraphics_ST7920 ;clear screen
 GLCDDrawString 30,0,"ChipMhz@" ;print string
 GLCDDrawString 78,0, str(ChipMhz) ;print string
 Circle(10,10,10,0) ;upper left
 Circle(117,10,10,0) ;upper right
 Circle(63,31,10,0) ;center
 Circle(63,31,20,0) ;center
 Circle(10,53,10,0) ;lower left
 Circle(117,53,10,0) ;lower right
 GLCDDrawString 30,54,"PIC16F1937" ;print string
 wait 1 s ;wait
 FilledBox(0,0,128,63) ;create box
 for ypos = 0 to 63 ;draw row by row
 Line 0,ypos,128, 0 ;draw line
 next
 wait 1 s ;wait
 GLCDClearGraphics_ST7920 ;clear
 loop

Example 2:

378

 ;Chip Settings
 #CHIP 16F1937,32
 #CONFIG MCLRE_ON

 #INCLUDE <GLCD.H>
 #DEFINE GLCD_TYPE GLCD_TYPE_ST7920
 #DEFINE GLCD_IO 8
 #DEFINE GLCD_WIDTH 128
 #DEFINE GLCD_HEIGHT 160

 ' read delay of 25 is required at 32mhz, this can be reduced to 0 for slower clock
speeds
 #DEFINE ST7920READDELAY 25
 ' write delay of 2 is required at 32mhz. this can be reduced to 1 for slower clock
speeds
 #DEFINE ST7920WRITEDELAY 2

 #DEFINE GLCD_RS PORTA.0
 #DEFINE GLCD_ENABLE PORTA.1
 #DEFINE GLCD_RW PORTA.2
 #DEFINE GLCD_RESET PORTA.3
 #DEFINE GLCD_DATA_PORT PORTD

 WAIT 1 S
 GLCDEnableGraphics_ST7920
 GLCDClearGraphics_ST7920
 Tile_ST7920 "A"
 GLCDPrint 0, 1, "GCBASIC "

 GLCDCLS

 rrun = 0
 dim msg1 as string * 16

 do forever

 GLCDEnableGraphics_ST7920
 GLCDClearGraphics_ST7920
 GTile_ST7920 0x55, 0x55
 wait 1 s

 GLCDClearGraphics_ST7920
 Lineh_ST7920(0, 0, GLCD_WIDTH)
 Lineh_ST7920(0, GLCD_HEIGHT - 1, GLCD_WIDTH)
 Linev_ST7920(0, 0, GLCD_HEIGHT)
 Linev_ST7920(GLCD_WIDTH - 1, 0, GLCD_HEIGHT)

379

 Box 18,30,28,40

 WAIT 2 S

 FilledBox 18,30,28,40

 GLCDClearGraphics_ST7920

 Start:

 GLCDDrawString 0,10,"Hello" 'Print Hello
 wait 1 s
 GLCDDrawString 0,10, "ASCII #:" 'Print ASCII #:
 Box 18,30,28,40 'Draw Box Around ASCII Character
 for char = 0x30 to 0x39 'Print 0 through 9
 GLCDDrawString 16, 20 , Str(char)+" "
 GLCDdrawCHAR 20, 30, char
 wait 250 ms
 next
 line 0,50,127,50 'Draw Line using line command
 for xvar = 0 to 80 'draw line using Pset command
 pset xvar,63,on '
 next
 FilledBox 18,30,28,40 'Draw Box Around ASCII Character
 Wait 1 s
 GLCDClearGraphics_ST7920
 GLCDDrawString 0,10,"End "
 wait 1 s
 GLCDClearGraphics_ST7920

 workingGLCDDrawChar:
 GLCDEnableGraphics_ST7920
 dim gtext as string
 gtext = "ST7920 @QC12864B"

 for xchar = 1 to gtext(0) 'Print 0 through 9
 xxpos = (1+(xchar*6)-6)
 GLCDDrawChar xxpos , 0 , gtext(xchar)
 next

 GLCDDrawString 1, 9, "GCBASIC"
 GLCDDrawString 1, 18,"GLCD 128*64"
 GLCDDrawString 1, 27,"Using GLCD.H from GCB"
 GLCDDrawString 1, 37,"Using GLCD.H GCB"
 GLCDDrawString 1, 45,"GLCDDrawChar method"
 GLCDDrawString 1, 54,"Test Routines"
 wait 1 s

380

 GLCDClearGraphics_ST7920
 ST7920GLCDDisableGraphics
 GLCDCLS

 msg1 = "Run = " +str(rrun)
 rrun++
 GLCDPrint 0, 0, "ST7920 @QC12864B"
 GLCDPrint 0, 1, "GCBASIC "
 GLCDPrint 0, 2, "GLCD 128*64"
 GLCDPrint 0, 3, msg1
 wait 5 s
 GLCDCLS

 ' show all chars... takes some time!
 ST7920CallBuiltinChar

 wait 1 s
 GLCDCLS

 ' See http://www.khngai.com/chinese/charmap/tblbig.php?page=0
 ' and see https://sourceforge.net/projects/vietunicode/files/hannom/hannom%20v2005/
for the FONTS!!

 dim BIG5code as word

 'ST7920 can display half-width HCGROM fonts, user- defined CGRAM fonts and full 16x16
CGROM fonts. The
 'character codes in 0000H~0006H will use user- defined fonts in CGRAM. The character
codes in 02H~7FH will use
 'half-width alpha numeric fonts. The character code larger than A1H will be treated
as 16x16 fonts and will be
 'combined with the next byte automatically. The 16x16 BIG5 fonts are stored in
A140H~D75FH while the 16x16 GB
 'fonts are stored in A1A0H~F7FFH. In short:
 '1. To display HCGROM fonts:
 'Write 2 bytes of data into DDRAM to display two 8x16 fonts. Each byte represents 1
character.
 'The data is among 02H~7FH.
 '2. To display CGRAM fonts:
 'Write 2 bytes of data into DDRAM to display one 16x16 font.
 'Only 0000H, 0002H, 0004H and 0006H are acceptable.
 '3. To display CGROM fonts:
 'Write 2 bytes of data into DDRAM to display one 16x16 font.
 'A140H~D75FH are BIG5 code, A1A0H~F7FFH are GB code.

 'To display HCGROM fonts
 ' Write 2 bytes of data into DDRAM to display two 8x16 fonts. Each byte represents 1
character.

381

 ' The data is among 02H~7FH.
 ' The english characters set...

 linetest1:

 GLCDEnableGraphics_ST7920

 wait 1 s
 GLCDClearGraphics_ST7920

 'lineh test
 LineH_ST7920(0, 0, GLCD_WIDTH)
 LineH_ST7920(0, GLCD_HEIGHT - 1, GLCD_WIDTH)
 LineV_ST7920(0, 0, GLCD_HEIGHT)
 LineV_ST7920(GLCD_WIDTH - 1, 0, GLCD_HEIGHT)

 ' box test
 LineH_ST7920(10 ,0 , 118)
 LineH_ST7920(0 ,8 , 128)
 LineH_ST7920(16 ,16 , 96)
 LineH_ST7920(10 ,32 , 108)
 LineH_ST7920(0, 16, GLCD_WIDTH)
 LineH_ST7920(0, 24, GLCD_WIDTH)
 LineH_ST7920(0, 32, GLCD_WIDTH)
 LineH_ST7920(0, 40, GLCD_WIDTH)
 LineH_ST7920(0, 48, GLCD_WIDTH)
 LineH_ST7920(0, 56, GLCD_WIDTH)
 LineH_ST7920(0, 63, GLCD_WIDTH)
 LineV_ST7920(16, 0, GLCD_HEIGHT)
 LineV_ST7920(17, 0, GLCD_HEIGHT)
 LineV_ST7920(15, 0, GLCD_HEIGHT)

 LineV_ST7920(46, 0, GLCD_HEIGHT)
 LineV_ST7920(47, 0, GLCD_HEIGHT)
 LineV_ST7920(48, 0, GLCD_HEIGHT)

 LineV_ST7920(46, 0, GLCD_HEIGHT)
 LineV_ST7920(47, 0, GLCD_HEIGHT)
 LineV_ST7920(48, 0, GLCD_HEIGHT)

 LineV_ST7920(96, 0, GLCD_HEIGHT)
 LineV_ST7920(97, 0, GLCD_HEIGHT)
 LineV_ST7920(98, 0, GLCD_HEIGHT)

 for HCGROM = 0 to GLCD_WIDTH step 8
 LineV_ST7920(HCGROM, 0, GLCD_HEIGHT)
 next

382

 GraphicTestPlace:

 GLCDClearGraphics_ST7920
 GraphicTest_ST7920
 GLCDClearGraphics_ST7920

 ' Test draw a line
 for yrowpos = 0 to 63 step 4
 LineH_ST7920(0, yrowpos, GLCD_WIDTH)
 next

 GLCDClearGraphics_ST7920
 ST7920GLCDDisableGraphics
 GLCDCLS

 SetIcon_ST7920(1, 0x55)

 loop

 sub ST7920CallBuiltinChar
 ' 0xA140 ~ 0xA15F
 for ii = 0 to 31

 WriteData_ST7920(0xA1)
 WriteData_ST7920(0x40 + ii)

 next

 wait 1 s

 GLCDCLS

 ' 0xA140 ~ 0xA15F
 for ii = 0 to 31

 WriteData_ST7920(0xA1)
 WriteData_ST7920(0xb0 + ii)

 next
 wait 1 s
 GLCDCLS

 ' 0xA140 ~ 0xA15F
 for ii = 0 to 31

 WriteData_ST7920(0xA4)
 WriteData_ST7920(0x40 + ii)

383

 next
 wait 1 s
 GLCDCLS
 end sub

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

ST7920GLCDClearGraphics

Syntax:

 ST7920GLCDClearGraphics

Explanation:

This command clears the GCLD display.

Example usage:

 ST7920GLCDClearGraphics 'clear the screen

ST7920GLCDDisableGraphics

Syntax:

 ST7920GLCDDisableGraphics

Explanation:

This command sets the GCLD display controller to text mode.

Example usage:

 ST7920GLCDDisableGraphics 'Set to text mode

ST7920GLCDEnableGraphics

Syntax:

 ST7920GLCDEnableGraphics

384

Explanation:

This command sets the GCLD display controller to text mode.

Example usage:

 ST7920GLCDEnableGraphics 'Set to text mode

ST7920GraphicTest

Syntax:

 ST7920GraphicTest

Explanation:

This command tests the graphics functionality of the GLCD display.

Example usage:

 ST7920GraphicTest ‘Test the display

ST7920LineHs

Syntax:

 ST7920LineHs (Xpos, Ypos, XLength, Style)

Explanation:

This command draws a line with a specific style. The style is based on the bits value of the byte passed
to the routine.

Example usage:

 ST7920LineHs (0, 31,128 , 0x55) ‘will draw a dashed line

ST7920Locate

Syntax:

 ST7920Locate (Xpos, Ypos)

385

Explanation:

This command locates the pixel at the specific X and Y location of the text screen. Subsequent printing
to the GLCD will place a character to the GLCD controller on the specified row and column. Due to the
design of the ST7920 controller (to accomodate Mandarin and Cyrillic), you must place the text on the
column according to the numbers above the diagram below. The addressing is handle by the
command.

|--0--|--1--|--2--|... ...|--7--|

+--+--+--+--+--+---------------------+

|H |e |l |l |o | ... | <- row 0 (address 0x80)

+--+--+--+--+--+---------------------+

|T |h |i |s | |i ... | <- row 1 (address 0x90)

+--+--+--+--+--+---------------------+

|' |' |' |' |' |' ... | <- row 2 (address 0x88)

+--+--+--+--+--+---------------------+

|- |- |- |- |- |- ... | <- row 3 (address 0x98)

+--+--+--+--+--+---------------------+

Writing 'a' onto the 1st column, and 1st row:

386

|--0--|--1--|--2--|... ...|--7--|

+--+--+--+--+--+---------------------+

| | | | | | ... | <- row 0 (address 0x80)

+--+--+--+--+--+---------------------+

| | |a | | | ... | <- row 1 (address 0x90)

+--+--+--+--+--+---------------------+

| | | | | | ... | <- row 2 (address 0x88)

+--+--+--+--+--+---------------------+

| | | | | | ... | <- row 3 (address 0x98)

+--+--+--+--+--+---------------------+

Example usage:

 ST7920Locate (64, 31) ‘the pixel at the mid screen point

ST7920Tile

Syntax:

 ST7920Tile (word variable)

Explanation:

This command tiles the screen with the word value provided.

Example usage:

 Dim tileValue as word
 tileValue = (0x55 * 256) + 0x55
 ST7920Tile (tileValue) ‘tile the screen with a nice cross hatch

ST7920cTile

Syntax:

387

 ST7920cTile (word variable)

Explanation:

Tiles screen with a Chinese Symbol.

This required 2 bytes of data into DDRAM to display one 16x16 font from memory location
A140H~D75FH are BIG5 code, A1A0H~F7FFH are GB code.

Example usage:

 Dim CTileValue as word
 cTileValue = (0xA140H * 256) + 0xA140H
 ST7920Tile (CTileValue) ‘tile the screen with a nice cross hatch

ST7920gLocate

Syntax:

 ST7920gLocate (Xpos, Ypos)

Explanation:

This command locates the pixel at the specific X and Y location of the graphical screen.

Example usage:

 ST7920gLocate (64, 31) ‘the pixel at the mid screen point

ST7920gTile

Syntax:

 ST7920gTile (byte variable , byte variable)

Explanation:

Tile LCD screen with two bytes in Graphic Mode.

Example usage:

388

 ST7920gTile (0x55, 0x85) ‘tile the screen with an odd cross hatch

ST7920lineh

Syntax:

 ST7920lineh (Xpos, Ypos, xUnitsStyle,)

Explanation:

This command draws a horizontal line with the specific style. The style can be ON or OFF. Default is
ON.

This is called by the GLCD common routines.

Example usage:

 ST7920lineh (0, 31,128 , ON) ‘will draw a line

ST7920linev

Syntax:

 ST7920lineh (Xpos, Ypos, xUnitsStyle,)

Explanation:

This command draws a vertical line with the specific style. The style can be ON or OFF. Default is ON

This is called by the GLCD common routines.

Example usage:

 ST7920lineh (0, 31,128 , ON) ‘will draw a line

ST7920GLCDReadByte

Syntax:

 byte_variable = ST7920GLCDReadByte

Explanation:

389

This function return the word value (16 bits) of the GLCD display for the current XY position.

This is called by the GLCD common routines.

See the data sheet for more information.

Example usage:

 SET GLCD_RS OFF

 ST7920WriteByte(SysCalcPositionY)
 ST7920WriteByte(SysCalcPositionX)
 ' read data
 GLCDDataTempWord = ST7920GLCDReadByte
 GLCDDataTempWord = ST7920GLCDReadByte
 GLCDDataTempWord = (GLCDDataTempWord*256) + ST7920GLCDReadByte

ST7920WriteByte

Syntax:

 ST7920GLCDWriteByte

Explanation:

This command write to the appropriate location as specified by the current XY position.

This is called by the GLCD common routines.

See the data sheet for more information.

Example usage:

 ...

 SET GLCD_RS OFF

 ST7920WriteByte(SysCalcPositionY)
 ST7920WriteByte(SysCalcPositionX)
 ' read data
 GLCDDataTempWord = ST7920GLCDReadByte
 GLCDDataTempWord = ST7920GLCDReadByte
 GLCDDataTempWord = (GLCDDataTempWord*256) + ST7920GLCDReadByte
 ...

390

ST7920WriteCommand

Syntax:

 ST7920GWriteCommand (byte_variable)

Explanation:

This command writes a command to the controller.

See the data sheet for more information.

Example usage:

 ...
 ST7920WriteCommand(0x36) ' set the graphics mode on
 GLCD_TYPE_ST7920_GRAPHICS_MODE = true
 ...

ST7920WriteData

Syntax:

 ST7920GWriteData (byte_variable)

Explanation:

This command writes data to the controller.

See the data sheet for more information.

Example usage:

 ...
 for yy = 0 to (GLCD_HEIGHT - 1)
 ST7920gLocate(0, yy)
 for xx = 0 to (GLCD_COLS -1)
 ST7920WriteData(0x55)
 T7920WriteData(0x55)
 next
 next
 ...

391

ST7920gReaddata

Syntax:

 byte_variable = ST7920gReaddata

Explanation:

This function return the word value (16 bits) of the GLCD display for the current XY position.

See the data sheet for more information.

Example usage:

 ...
 ' Read a word from the display device.
 word_variable = ST7920GLCDReadData

T6963 Controllers

This section covers Graphical Liquid Crystal Display (GLCD) devices that use the Toshiba T6963
graphics controller. The T6963 is a monochrome device that typically is blue or white. The GLCD can
be provided in a number of pixels sizes - 240 * 64 or 240 * 128.

The Toshiba T6963 is a very popular LCD controller for use in small graphics modules. It is capable of
controlling displays with a resolution up to 240x128. Because of its low power and small outline it is
most suitable for mobile applications such as PDAs, MP3 players or mobile measurement equipment.

A number of GLCD modules have this controller built-in these include the SP12N002 & SP14N001.
Although this controller is small, it has the capability of displaying and merging text and graphics and
it manages all the interfacing signals to the displays Row and Column drivers. The GCBASIC library
supports the complex capabilities of the T6963.

The T6963 is an LCD is driven by on-board 5V parallel interface chipset T6963. For the specific
operating voltage always verify the operating voltages in the device specific datasheet.

The GCBASIC connectivity option is the 8-bit mode - where 8 connections (for the data) are required
between the microcontroller and the GLCD to control the data bus.

To use the T6963 driver simply include the following in your user code. This will initialise the driver.

 #chip 16f1939,32
 #option explicit

392

'**

 'Specify this GLCD - a 240 x 64 pixels display
 #include <glcd.h>
 #define GLCD_TYPE GLCD_TYPE_T6963_64

'**

 'define the connectivity - the 8bit port
 #define GLCD_DATA_PORT PORTD 'Library support contigous 8-bit port

 ' or
 ' #define GLCD_DB0 PORTD.0 'chip specific configuration where the
ibrary supports 8-bit port defined via 8 constants
 ' #define GLCD_DB1 PORTD.1 'chip specific configuration
 ' #define GLCD_DB2 PORTD.2 'chip specific configuration
 ' #define GLCD_DB3 PORTD.3 'chip specific configuration
 ' #define GLCD_DB4 PORTD.4 'chip specific configuration
 ' #define GLCD_DB5 PORTD.5 'chip specific configuration
 ' #define GLCD_DB6 PORTD.6 'chip specific configuration
 ' #define GLCD_DB7 PORTD.7 'chip specific configuration

 #define GLCD_CS PORTa.7 'Chip Enable (Active Low)
 #define GLCD_CD PORTa.0 'Command or Data conrol line port
 #define GLCD_RD PORTA.1 'Read control line port
 #define GLCD_WR PORTA.2 'Write control line port
 #define GLCD_RESET PORTA.3 'Reset port
 #define GLCD_FS PORTA.5 'FS port
 #define GLCD_FS_SELECT 1 'FS1 Font Select port. 6x8 font: FS1=“High
”=1 8x8 font FS1=“Low”=0 for GLCD_FS_SELECT

'**

 '*
 '* Note : The T6963 controller's RAM address space from $0000 - $7FFF, total
32kbyte RAM, or it could be 64kbyte RAM best check!!
 '*

'**

 #define TEXT_HOME_ADDR 0x0000
'This is specific to the GLCD display
 #define GRH_HOME_ADDR 0x3FFF
'This is specific to the GLCD display

393

 #define CG_HOME_ADDR 0x77FF
'This is specific to the GLCD display
 #define COLUMN 40 'Set column number to be 40 , 32, 30 etc.
This is specific to the GLCD display
 #define MAX_ROW_PIXEL 64 'MAX_ROW_PIXEL the physical matrix length (y
direction) This is specific to the GLCD display
 #define MAX_COL_PIXEL 240 'MAX_COL_PIXEL the physical matrix width (x
direction) This is specific to the GLCD display

'**

 '* End of configuration

'**

The GCBASIC constants for the interface to the controller are shown in the table below.

Constant
s

Controls Options

GLCD_TYPE GLCD_TYPE_TYPE_T6963_64 or GLCD_TYPE_T6963_128 Required

GLCD_DATA
_PORT

A full 8-bit port. 8 contigous input/outputs. or use
GLCD_DB0..GLCD_DB7

GLCD_DB0.
.7

A 8-bit port using 8 input/outputs. or use GLCD_DATA_PORT

GLCD_CS Specifies the output pin that is connected to Chip Select on the
GLCD.

Required

GLCD_CD Specifies the output pin that is connected to Command/Data on
the GLCD.

Required

GLCD_RD Specifies the output pin that is connected to Read on the GLCD. Required

GLCD_WR Specifies the output pin that is connected to Write on the
GLCD.

Required

GLCD_RESE
T

Specifies the output pin that is connected to Reset on the
GLCD.

Required

GLCD_FS Specifies the output pin that is connected to FS on the GLCD.
The FS specifies the font size. Please set to 6 setting
GLCD_FS_SELECT = 1

Required

394

Constant
s

Controls Options

GLCD_FS_S
ELECT

Specifies the output pin that is connected to FS on the GLCD.
The FS specifies the font size. Please set to 6 setting
GLCD_FS_SELECT = 1

Required. Can be 1 or 0.
Default setting is 1.

The T6963 differs from most other GLCD controllers in its use of the display RAM. Where a fixed area
of memory is normally allocated for text, graphics and the external character generator, but with the
T6963 the size for each area MUST be set by software commands. This means that the area for text,
graphics and external character generator can be freely allocated within the external memory, up to 64
kByte. Check the specific device for the amount of memory available. This can range from 4 kbyte to
64 kbyte.

For more information on memory management refer the device specific datasheet.

The GCBASIC constants control the memory configuration of the T6963 controller.

Constants Value Comments

TEXT_HOME_AD
DR

0x000
0

This is specific to the GLCD display

GRH_HOME_ADD
R

0x3FF
F

This is specific to the GLCD display

CG_HOME_ADDR 0x77F
F

This is specific to the GLCD display

COLUMN 40 Set column number to be 40 , 32, 30 etc. This is specific to the GLCD display

MAX_ROW_PIXE
L

64 MAX_ROW_PIXEL the physical matrix length (y direction) This is specific to the
GLCD display

MAX_COL_PIXE
L

240 MAX_COL_PIXEL the physical matrix width (x direction) This is specific to the
GLCD display

The GCBASIC library supports the following capabilities. Please refer to the relevant Help section and
the device specific demonstrations.

Commands Supported for the LCD and GLCD

395

The GLCD command set covers the standard GLCDCLS, Line, Circle and all the GLCD methods and the
LCD command set: CLS, Locate, Print, LCDHEX etc. The demonstrations show how to load BMP loading
via external data sources and GLCD and LCD page swapping.

The table below shows the specific implementations of the command set for this device. Refer to the
GLCD and LCD in the Help for the generic GLCD and LCD commands.

Commands Usage

CLS Clear the screen of the current LCD page

LOCATE Locate the cursor at a specific screen position

PRINT Print numbers or strings

PUT Put a specific ASCII code at a specific screen position

LCDHOME Set output position of 0, 0

LCDcmd Send specific command to the device to control the device.

LCDdata Send specific data to the device to control the device.

LCDHex Print Hex value of a number to the LCD screen

LCDSpace Print a number of space to the LCD screen

LCDCursor Send specific commands to the device to control the cursor

GLCDCLS Clear the screen of the current GLCD page

GLCDRotate Rotate the GLCD screen. Only Landscape rotation is supported.

SelectGLCDPage_T6963 Select a specific GLCD page.

SelectLCDPage_T6963 Select a specific LCD page.

GLCD and LCD page swapping

To support GLCD and LCD page swapping - this can be used to support fixed pages of information,
BMPs or scrolling the following constants have are available to the user.

For GLCD memory addressing

396

 GLCDPage0_T6963
 GLCDPage1_T6963
 GLCDPage2_T6963
 ... etc
 GLCDPage10_T6963

Ten pages are automatically created but the number of pages available is constrained by the memory
configuration.

For LCD memory addressing

 LCDPage0_T6963
 LCDPage1_T6963
 LCDPage2_T6963
 ...etc
 LCDPage10_T6963

Ten pages are automatically created but the number of pages available is constrained by the memory
configuration.
To use add the following to you user program. See the demonstration programs for more detailed
usage. After calling the SelectGLCDPage or SelectLCDPage methods all GLCD or LCD commands will be
applied to the current GLCD or LCD page.

 'Select the GLCD page 1 memory
 SelectGLCDPage (GLCDPage1_T6963)

 'Select the LCD page 2 memory
 SelectLCDPage (LCDPage2_T6963)

The SelectLCDPage and SelectLCDPage and "Set Text Home Address" methods change the screen being
viewed on the device.

The key is to establish what you want your memory map to look like. Below is a map for one of my
240 x 64 pixel device. The default is for 10 screen pages (some newer LCD’s may have more RAM
for more screens). If you write the appropriate value (0x1000, or 0x11b0, or 0x1360, etc) to the text
home address, the display will instantly change to that screen - using SelectLCDPage and SelectLCDPage
method with the appropiate constant as parameter.

You can write your screens "ahead of time", in my case during the "splash screen" delay interval, and

397

instantly change to them later as desired. You can do this by setting current_grh_home_addr to the
appropiate page. And, then execute the GLCD commands you would normal use.

The graphic and text screens are independant but can be overlaid for a variety of useful effects.

Although, not tested, the LCD text screens can be scrolled 1 full text line at a time, while the GLCD
screens can be scrolled 1 pixel row at a time, provided you’ve set up your memory map accordingly
with adequate RAM for the graphic area.

Default Memory Map

398

 '
 '***
 '
 ' LCD MEMORY MAP
 '
 '***
 '
 '
 '
 ' --------------------
 ' | | 0x0000
 ' | |
 ' | TEXT RAM AREA | Each page has the numnbers of bytes + extra
 ' | (10 SCREENs) | few bytes need to attributes. This is
 ' | | mentioned in the datasheet but imperical
 ' | | testing shows... you need the extra bytes
 ' --------------------
 ' | |
 ' | xx bytes unused |
 ' | |
 ' --------------------
 ' | | 0x3fff
 ' | |
 ' | |
 ' | GCLD RAM AREA |
 ' | (10 SCREENS) |
 ' | |
 ' | |
 ' | |
 ' --------------------
 ' | | 0x77ff
 ' | CG RAM AREA | (Sacrosanct)
 ' | |
 ' -------------------- 0x7ffff
 '

Other methods and constants
There are many other methods and constants that support this device. Reviewing the library will
assist in understanding how these private methods and constants support the overal solution for this
library.

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint or Pset

Supported in <GLCD.H>

399

UC1601 Controllers

This section covers GLCD devices that use the UC1601 graphics controller.

The UC1601 is an advanced high-voltage mixed signal CMOS IC, especially designed for the display
needs of ultra-low power hand-held devices.

The UC1601 embeds with contrast control, display RAM and oscillator, which reduces the number of
external components and power consumption. It has 256-step brightness control. Data/Commands are
sent from general MCU through the hardware selectable 6800/8000 series compatible Parallel
Interface, I2C interface or Serial Peripheral Interface. It is suitable for many compact portable
applications, such as mobile phone sub-display, MP3 player and calculator, etc.

The UC1601 library supports 132 * 22 pixels. The UC1601 library supports monochrome devices.

[graphic]

The UC1601 can operate in three modes. Full GLCD mode, Low Memory GLCD mode or Text/JPG mode
the full GLCD mode requires a minimum of 396 bytes or 128 bytes for the respective modes. For
microcontrollers with limited memory the third mode of operation - Text mode. These can be selected
by setting the correct constant.

To use the UC1601 driver simply include the following in your user code. This will initialise the driver.

The GCBASIC constants shown below control the configuration of the UC1601 controller. GCBASIC
supports hardware I2C & software I2C connectivity - this is shown in the tables below.

To use the UC1601 drivers simply include one of the following configuration.

 'An I2C configuration
 #include <glcd.h>

 #define GLCD_TYPE GLCD_TYPE_UC1601
 #define GLCD_I2C_Address 0x70 'I2C address
 #define GLCD_RESET portc.0 'Hard Reset pin connection
 #define GLCD_PROTECTOVERRUN
 #define GLCD_OLED_FONT

 ; ----- Define Hardware settings for I2C
 ' Define I2C settings - CHANGE PORTS
 #define I2C_MODE Master
 #define I2C_DATA PORTb.5
 #define I2C_CLOCK PORTb.7
 #define I2C_DISABLE_INTERRUPTS ON

400

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Options

GLCD_TYPE GLCD_TYPE_UC1601 Required

GLCD_I2C_Address I2C address of the GLCD. Fixed at 0x70.

The GCBASIC constants for control display characteristics are shown in the table below.

Constants Controls Default

GLCD_WIDTH The width parameter of the GLCD 132

GLCD_HEIGHT The height parameter of the GLCD 22

GLCD_PROTECTOVERRUN Define this constant to restrict pixel operations with the pixel
limits

Recomme
nded

GLCD_TYPE_UC1601_CHARAC
TER_MODE_ONLY

Specifies that the display controller will operate in text mode and
BMP draw mode only.
For microcontrollers with low RAM this will be set be default.
When selected ONLY text related commands are suppored. For
grapical commands you must have sufficient memory to use Full
GLCD mode or use GLCD_TYPE_UC1601_LOWMEMORY_GLCD_MODE

Optional

GLCD_TYPE_UC1601_LOWMEM
ORY_GLCD_MODE

Specifies that the display controller will operate in Low Memory
mode.

Optional

GLCD_OLED_FONT Specifies the use of the optional OLED font set. The
GLCDfntDefaultsize can be set to 1 or 2 only. GLCDfntDefaultsize=
1. A small 8 height pixel font with variable width.
GLCDfntDefaultsize= 2. A larger 10 width * 16 height pixel font.

Optional

The GCBASIC variables for control display characteristics are shown in the table below. These variables
control the user definable parameters of a specific GLCD.

Variable Purpose Type

GLCDBackground GLCD background state. A monochrome value.
For mono GLCDs the default is White or 0x0001.

GLCDForeground Color of GLCD
foreground.

A monochrome value.
For mono GLCDs the default is non-white or 0x0000.

GLCDFontWidth Width of the current
GLCD font.

Default is 6 pixels.

GLCDfntDefault Size of the current GLCD
font.

Default is 0. This equates to the standard GCB font set.

401

Variable Purpose Type

GLCDfntDefault
size

Size of the current GLCD
font.

Default is 1. This equates to the 8 pixel high.

The GCBASIC commands supported for this GLCD are shown in the table below.

Command Purpose Example

GLCDCLS Clear screen of GLCD GLCDCLS

GLCDPrint Print string of characters on GLCD using
GCB font set

GLCDPrint(Xposition, Yposition,
Stringvariable)

GLCDDrawChar Print character on GLCD using GCB font set GLCDDrawChar(Xposition, Yposition,
CharCode)

GLCDDrawStrin
g

Print characters on GLCD using GCB font set GLCDDrawString(Xposition, Yposition,
Stringvariable)

Box Draw a box on the GLCD to a specific size Box (Xposition1, Yposition1,
Xposition2, Yposition2, [Optional In
LineColour as 0 or 1])

FilledBox Draw a box on the GLCD to a specific size
that is filled with the foreground colour.

FilledBox (Xposition1, Yposition1,
Xposition2, Yposition2, [Optional In
LineColour 0 or 1])

Line Draw a line on the GLCD to a specific length
that is filled with the specific attribute.

Line (Xposition1, Yposition1,
Xposition2, Yposition2, [Optional In
LineColour 0 or 1])

PSet Set a pixel on the GLCD at a specific position
that is set with the specific attribute.

PSet(Xposition, Yposition, Pixel Colour
0 or 1)

GLCD_Open_Pag
eTransaction

Commence a series of GLCD commands
when in low memory mode. Must be
followed a GLCD_Close_PageTransaction
command.

GLCD_Close_PageTransaction 0, 3 where 0
and 3 are the range of pages to be
updated

GLCD_Close_Pa
geTransaction

Commence a series of GLCD commands
when in low memory mode. Must follow a
GLCD_Open_PageTransaction command.

Open_Transact
ion_UC1601

Send command instruction to GLCD.
Handles I2C and SPI protocols.

Transaction must be closed by using
Close_Transaction_UC1601

Open_Transact
ion_Data_UC16
01

Send data instruction to GLCD. Handles I2C
and SPI protocols.

Transaction must be closed by using
Close_Transaction_UC1601

Write_Transac
tion_Data_UC1
601

Send transactional, a stream of, data to
GLCD.

Transaction must be opened and closed
by using transaction commands.

Close_Transac
tion_UC1601

Close the communications to the GLCD. Transaction must be opened by using
Open_Transaction_UC1601 or
Open_Transaction_Data_UC1601

402

The GCBASIC specific commands for this GLCD are shown in the table below.

Command Purpose

Stopscroll_UC1601 Stops all scrolling

Startscroll_UC1601 (
start)

Activates a vertical scroll for rows start.

GLCDSetContrast (
contrast_state)

Sets the constrast between 0 and 255. The contrast increases as the value
increases.
Parameter is contrast value

For a UC1601 datasheet, please refer here.

This example shows how to drive a UC1601 based Graphic I2C LCD module with the built in commands
of GCBASIC using Full Mode GLCD

403

http://gcbasic.sourceforge.net/library/DISPLAY/UC1601.pdf

 ; ----- Configuration
 #chip 16f18446, 32
 #option explicit

 ; ----- Define GLCD Hardware settings
 #include <glcd.h>

 #define GLCD_TYPE GLCD_TYPE_UC1601
 #define GLCD_I2C_Address 0x70 'I2C address
 #define GLCD_RESET portc.0 'Hard Reset pin connection
 #define GLCD_PROTECTOVERRUN
 #define GLCD_OLED_FONT

 ; ----- Define Hardware settings

 ' Define I2C settings - CHANGE PORTS
 #define I2C_MODE Master
 #define I2C_DATA PORTb.5
 #define I2C_CLOCK PORTb.7
 #define I2C_DISABLE_INTERRUPTS ON

 ; ----- Define variables

 ; ----- Main program

 'You can treat the GLCD like an LCD....
 GLCDPrintStringLN "User the GLCD like an LCD...."
 GLCDPrintStringLN "The GLCDPrintString commands...."
 GLCDPrintString "Enjoy....."
 wait 4 s

 end

This example shows how to drive a UC1601 based Graphic I2C LCD module with the built in commands
of GCBASIC using Low Memory Mode GLCD.
Note the use of GLCD_Open_PageTransaction and GLCD_Close_PageTransaction to support the Low Memory
Mode of operation and the contraining of all GLCD commands with the transaction commands. The
use Low Memory Mode GLCD the two defines GLCD_TYPE_UC1601_LOWMEMORY_GLCD_MODE and
GLCD_TYPE_UC1601_CHARACTER_MODE_ONLY are included in the user program.

404

 #chip mega328p,16
 #include <glcd.h>

 ; ----- Define Hardware settings
 ' Define I2C settings
 #define HI2C_BAUD_RATE 400
 #define HI2C_DATA
 HI2CMode Master

 ; ----- Define GLCD Hardware settings
 #define GLCD_TYPE GLCD_TYPE_UC1601
 #define GLCD_TYPE_UC1601_LOWMEMORY_GLCD_MODE
 #define GLCD_TYPE_UC1601_CHARACTER_MODE_ONLY

 dim outString as string * 21

 GLCDCLS

 'To clarify - page udpates
 '0,7 correspond with the Text Lines from 0 to 3 on a 22 Pixel Display
 'In this example Code would be GLCD_Open_PageTransaction 0,1 been enough
 'But it is allowed to use GLCD_Open_PageTransaction 0,3 to show the full screen
update
 GLCD_Open_PageTransaction 0,3
 GLCDPrint 0, 0, "GCBASIC"
 GLCDPrint (0, 16, "Anobium 2021")
 GLCD_Close_PageTransaction

 end

For more help, see GLCDCLS, GLCDDrawChar, GLCDPrint, GLCDReadByte, GLCDWriteByte or Pset

Supported in <GLCD.H>

Box

Syntax:

 Box(LineX1,LineY1, LineX2, LineY2 [, LineColour])

Explanation:

Draws a box on a graphic LCD from the upper corner of pixel position X1, Y1 location to pixel position

405

X2,Y2 location.

LineColour can be specified. Typical the value is 0 or 1 for GLCDForeGround and GLCDBackGround
respectively.

See also FilledBox

Circle

Circle:

 Circle(XPixelPosition, YPixelPosition, Radius [[,Optional LineColour] [,Optional
Rounding]])

Explanation:

Draws a circle on a GLCD at XPixelPosition, YPixelPosition with a specific Radius.

The constant GLCD_PROTECTOVERRUN can be added to prevent circles from re-drawing at the screen edges.
Ensure the GLCD_Width and GLCD_HEIGHT constants are set correctly when using this additional constant.

Example:

 #include <glcd.h>

 circle(10,10,10) ;upper left
 circle(117,10,10) ;upper right
 circle(63,31,10) ;center
 circle(63,31,20) ;center
 circle(10,53,10) ;lower left
 circle(117,53,10) ;lower right

Ellipse

Ellipse:

406

 Ellipse(XPixelPosition, YPixelPosition, XRadius, YRadius [,Optional LineColour])

Explanation:

Draws a Ellipse on a GLCD at XPixelPosition, YPixelPosition with a specific vertex of XRadius and
YRadius.

The constant GLCD_PROTECTOVERRUN can be added to prevent Ellipses from re-drawing at the screen
edges. Ensure the GLCD_Width and GLCD_HEIGHT constants are set correctly when using this additional
constant.

Example:

 #include <glcd.h>

 Ellipse(63, 31, 20, 10)

FilledBox

Syntax:

 FilledBox(LineX1,LineY1, LineX2, LineY2, Optional LineColour = 1)

Explanation:

Draws a filled box on a graphic LCD from the upper corner of pixel X1, Y1 location to pixel X2,Y2
location.

See also Box

FilledCircle

Circle:

 FilledCircle(XPixelPosition, YPixelPosition, Radius [,Optional LineColour])

Explanation:

Draws a circle on a GLCD at XPixelPosition, YPixelPosition with a specific Radius.

Example:

407

 #include <glcd.h>

 filledcircle(10,10,10) ;upper left
 filledcircle(117,10,10) ;upper right
 filledcircle(63,31,10) ;center
 filledcircle(63,31,20) ;center
 filledcircle(10,53,10) ;lower left
 filledcircle(117,53,10) ;lower right

FilledEllipse

FilledEllipse:

 FilledEllipse(XPixelPosition, YPixelPosition, XRadius, YRadius [,Optional LineColour]
)

Explanation:

Draws a FilledEllipse on a GLCD at XPixelPosition, YPixelPosition with a specific vertex of XRadius and
YRadius.

The constant GLCD_PROTECTOVERRUN can be added to prevent FilledEllipses from re-drawing at the screen
edges. Ensure the GLCD_Width and GLCD_HEIGHT constants are set correctly when using this additional
constant.

Example:

 #include <glcd.h>

 FilledEllipse(63, 31, 20, 10)

408

FilledTriangle

FilledTriangle:

 FilledTriangle(XPixelPosition1, YPixelPosition1, XPixelPosition2, YPixelPosition2,
XPixelPosition3, YPixelPosition3 [,Optional LineColour])

Explanation:

Draws a FilledTriangle on a GLCD at XPixelPositionN, YPixelPositionN.

The constant GLCD_PROTECTOVERRUN can be added to prevent FilledTriangles from re-drawing at the
screen edges. Ensure the GLCD_Width and GLCD_HEIGHT constants are set correctly when using this
additional constant.

Example:

 #include <glcd.h>

 FilledTriangle(0, 0, 31, 63, 127, 0)

GLCDCLS

Syntax:

 GLCDCLS [GLCDBackground]

Explanation:

Clears the screen of a Graphic LCD. This command is supported by all GLCD displays.

For colour GLCD displays only. The optional parameter can be used to clear the screen to a specific
colour. Using this additional parameter will also change the GLCDBackground colour to this same
colour.

Specific to the ST7920 GLCD devices. This command supports the clearing the GLCD to either text mode
or graphics mode.

GLCDDisplay

Syntax:

 GLCDDisplay Off | On

409

Explanation:

Places the GLCD in sleep mode or enables the GLCD for normal operations.

The options are:

 OFF
 ON

GLCDDrawChar

Syntax:

 GLCDDrawChar(CharLocX, CharLocY, CharCode [, Optional Colour])

CharLocX is the X coordinate location for the character
CharLocY is the Y coordinate location for the character
CharCode is the ASCII number of the character to display. Can be decimal hex or binary.

Colour can be ON or OFF. For the ST7735 devices this an be any word value that represents the color
palette.

Explanation:

Displays an ASCII character at a specified X and Y location. On a 128x64 Graphic LCD:

X = 1 to 128
Y = 1 to 64

GLCDDrawString

Syntax:

 GLCDDrawString(CharLocX, CharLocY, String [, Optional Colour])

CharLocX is the X corrdinate location for the character
CharLocY is the Y coordinate location for the character
String is the string of characters to display
Colour can be ON or OFF. For the ST7735 devices this an be any word value that represents the color
palette

Explanation:

Displays an ASCII character at a specified X and Y location.

410

On a 128x64 Graphic LCD :
X = 1 to 128
Y = 1 to 64

GLCDPrint

Syntax:

 GLCDPrint(PrintLocX, PrintLocY, PrintData_Byte [, Optional Colour]) ',or
 GLCDPrint(PrintLocX, PrintLocY, PrintData_Word [, Optional Colour]) ',or
 GLCDPrint(PrintLocX, PrintLocY, PrintData_Long [, Optional Colour]) ',or

 GLCDPrint(PrintLocX, PrintLocY, PrintData_String [, Optional Colour])

PrintLocX is the X corrdinate location for the data
PrintLocY is the Y coordinate location for the data
PrintData_[type] is a variable or constant to be displayed

Explanation:

Prints data values (byte, word, long or string) at a specified location on the GLCD screen.

To display an integer use:

 GLCDPrint(PrintLocX, PrintLocY, strinteger(integer_value))

GLCDPrintLargeFont

Syntax:

 GLCDPrintLargeFont(PrintLocX, PrintLocY, PrintData_String [, Optional Colour])

GLCD supports for a larger fixed font of 13 pixels. GLCDPrintLargeFont supports strings only.

PrintLocX is the X corrdinate location for the data

411

PrintLocY is the Y coordinate location for the data
PrintData_[type] is a variable or constant to be displayed

Explanation:

Prints data values (byte, word, long or string) at a specified location on the GLCD screen.

As an exmaple, to display an string use:

 GLCDPrintLargeFont(0, 0, "13 Pixels Fixed Font")

GLCDPrintWithSize

Syntax:

 GLCDPrintWithSize(PrintLocX, PrintLocY, PrintData_Byte , FontSize [, Color])
',or
 GLCDPrintWithSize(PrintLocX, PrintLocY, PrintData_Word , FontSize [, Color])
',or
 GLCDPrintWithSize(PrintLocX, PrintLocY, PrintData_Long , FontSize [, Color])
',or

 GLCDPrintWithSize(PrintLocX, PrintLocY, PrintData_String , FontSize [, Color])

PrintLocX is the X corrdinate location for the data
PrintLocY is the Y coordinate location for the data
PrintData_[type] is a variable or constant to be displayed
FontSize is the GLCD fontsize. Typical values are 1, 2 or 3
Color is an optional parameter to change the color the GLCD printed text.

Explanation:

Prints data values (byte, word, long or string) at a specified location on the GLCD screen with a specific
font size.

To display a string using font size two use:

412

 GLCDPrintWithSize(PrintLocX, PrintLocY, "Using font size #2", 2)

GLCDLocateString

Syntax:

 GLCDLocateString(PrintLocX, PrintLocY)

Explanation:

Moves the GLCD string pointer to the specified location on the GLCD screen.

PrintLocX is the X corrdinate location for the data
PrintLocY is the Y coordinate location for the data

For the purpose of this command. The screen addressing is the first line equates to the parameter 1, the
second line equates to the paramter 2 etc.

An example:

 GLCDLocateString(0, 1) 'The first line of the display
 GLCDLocateString(0, 6) 'The sixth line of the display

Example:

 GLCDPrintStringLn ("1.First Ln")
 GLCDPrintStringLn ("2.Second Ln")
 GLCDPrintStringLn ("")
 GLCDPrintStringLn ("4.Forth Ln")
 GLCDLocateString(0, 5)
 GLCDPrintString ("5.")
 GLCDPrintStringLn ("Fifth Ln")

 GLCDPrintStringLn ("6.Sixth Ln")
 GLCDLocateString(0, 3)
 dim val3 as Byte
 val3 = 3
 GLCDPrintStringLn (str(val3) + ".Third Ln")

413

GLCDPrintString

Syntax:

 GLCDPrintString(String)

Explanation:

Prints string character(s) at a current XY location on the GLCD screen.

Where String is a String or String variable of the data to display

This command will NOT move the to start of the next line after the string has been displayed

Example:

 GLCDPrintStringLn ("1.First Ln")
 GLCDPrintStringLn ("2.Second Ln")
 GLCDPrintStringLn ("")
 GLCDPrintStringLn ("4.Forth Ln")
 GLCDLocateString(0, 5)
 GLCDPrintString ("5.")
 GLCDPrintStringLn ("Fifth Ln")

 GLCDPrintStringLn ("6.Sixth Ln")
 GLCDLocateString(0, 3)
 dim val3 as Byte
 val3 = 3
 GLCDPrintStringLn (str(val3) + ".Third Ln")

GLCDPrintStringLn

Syntax:

 GLCDPrintStringLn(String)

Explanation:

Prints string character(s) at a current XY location on the GLCD screen.

Where String is a String or String variable of the data to display

This command will move to the start of the next line after the string has been displayed

Example:

414

 GLCDPrintStringLn ("1.First Ln")
 GLCDPrintStringLn ("2.Second Ln")
 GLCDPrintStringLn ("")
 GLCDPrintStringLn ("4.Forth Ln")
 GLCDLocateString(0, 5)
 GLCDPrintString ("5.")
 GLCDPrintStringLn ("Fifth Ln")

 GLCDPrintStringLn ("6.Sixth Ln")
 GLCDLocateString(0, 3)
 dim val3 as Byte
 val3 = 3
 GLCDPrintStringLn (str(val3) + ".Third Ln")

GLCDRotate

Syntax:

 GLCDROTATE LANDSCOPE | PORTRAIT_REV | LANDSCAPE_REV | PORTRAIT

Explanation:

Rotate the GLCD display to a relative position.

GLCD rotation needs to be supported by the GLCD chipset. NOT all GLCD chipset support these
commands.

The options are:

 LANDSCAPE
 PORTRAIT_REV
 LANDSCAPE_REV
 PORTRAIT

The command will rotate the screen and set the following variables using the global variables shown
below.

 GLCD_WIDTH
 GLCD_HEIGHT

The command is supported by the following global constants.

415

 #define LANDSCAPE 1
 #define PORTRAIT_REV 2
 #define LANDSCAPE_REV 3
 #define PORTRAIT 4

GLCDReadByte

Syntax:

 byte_variable = GLCDReadByte

Explanation:

Reads a byte of data from the Graphic LCD memory

GLCDTimeDelay

Syntax:

 GLCDTime

Explanation:

This will call the delay routine that delays data transmissions. By default this is set to 20, which equate
to 20 us. GLCDTimeDelay default of 20us is for 32Mhz support. The can be reduced for slower chip speeds
by change the constant ST7920WriteDelay.

Example usage:

 GLCDTime 'call the delay routine
 #define ST7920WriteDelay 1 'set the delay to 1 us

GLCDTransaction

Syntax:

 GLCD_Open_PageTransaction

 additional number of other GLCD methods

 GLCD_Close_PageTransaction

416

Explanation:

To make the operation of GLCD seamless - specific library supports GLCDTransaction.
GLCDTransaction automatically manages the methods to update the GLCD display via a RAM memory
buffer, where this buffer can be small relative to the size of the total number of GLCD pixels.

The process of GLCDtransaction sends GLCD commands to the GLCD display on a page and page basis.
Each page is the size of the buffer and for a large GLCD display the number of pages may be equivilent
to the numbers of pixels high (height).

GLCDTransaction simplies the operation by ensure the buffer is setup correctly, handles the GLCD
appropiately, handles the sending of the buffer and then close out the update to the display.

To use GLCDTransaction use the followng methods.

 GLCD_Open_PageTransaction

 additional number of other GLCD methods

 GLCD_Close_PageTransaction

It recommended to use GLCDTransactions at all times when using the e-Paper libraries. Other GLCD
libraries support GLCDTransaction to reduce the memory requirement.

Thes GLCDTransactions methods remove the complexity of the GLCD display update process when
RAM within the microcontroller is limited.

When using GLCDTransaction you must commence with GLCD_Open_PageTransaction then a series of
GLCD commands and then terminate with GLCD_Close_PageTransaction.

GLCDTransaction Insight: When using GLCDtransactions the number of buffer pages is probably be
greater then 1 (unless using the SRAM option), so the process of incrementing variables and calls to
non-GLCD methods must be considered carefully. The transaction process will increment variables
and call non-GLCD methods the same number of times as the number of pages. Therefore, design
GLCDTransaction operations with this is mind.

SRAM as the display buffer

To improve memory usage the e-paper the e-Paper libraries support the use of SRAM. SRAM can be
used as an alternative to the microcontrollers RAM. Using SRAM does have a small performance
impact but does free up the critical resource of the microcontroller RAM. The use of SRAM within the
e-paper library is transparent to the user. To use SRAM as the e-paper buffer you will need to set-up
the SRAM library. See the SRAM library for more details on SRAM usage.

When using SRAM for the e-paper buffer it is still remcommend to use GLCDTransaction as this ensure
the SRAM buffer is correctly initialised.

417

Optional GLCD_Open_Transaction parameters

Syntax:

 GLCD_Open_PageTransaction (low_page, high_page)

Explanation:

You can optionally pass GLCD_Open_PageTransaction two parmeters. The parameters will constrain the
GLCD display update process to the specific pages.

This can be used when only updating a potion of the screen to improve performance.

GLCDWriteByte

Syntax:

 GLCDWriteByte (LCDByte)

Explanation:

Writes a byte of data to the Graphic LCD memory

Line

Syntax:

 Line(LineX1,LineY1, LineX2, LineY2, Optional LineColour = 1)

Explanation:

Draws a line on a GLCD from pixel X1, Y1 location to pixel X2,Y2 location.

Example:

 #include <glcd.h>

 line 0,0,127,63
 line 0,63,127,0
 line 40,0,87,63
 line 40,63,87,0

418

Hyperbole

Syntax:

 Hyperbole (x, y, a_axis, b_axis, type, ModeStop, optional
LineColour=GLCDForeground)

Explanation:

Draws on a GLCD an hyperbole with equation (x/(a)2-(y/(b)2=1, centered at pixel positions (x, y) with axis
a and b.

The hyperbole can be aligned either along the x axis or along the y axis.

Both cases a_axis>=b:axis and a_axis<b_axis are accepted.

The hyperbole is an unbounded curve made by four branches

Drawing hyperbole on the screen can be stopped by following two different criteria: - a branch has
reached a border of the display - all branches have reached the display border

For an hyperbole centered on the display these criteria are equivalent.

Input parameters:

Paramete
r

Controls

x X coordinates of hyperbole center (in pixel positions)

y Y coordinates of hyperbole center (in pixel positions) The x or y coordinates are Word
value.

a_axis The a axis of the hyperbole

b_axis The b axis of the hyperbole

419

Paramete
r

Controls

type type=1 the hyperbole is aligned along x axis
type=2 the hyperbole is aligned along y axis

modestop modestop=1 drawing stops when a display border is encountered by a hyperbole branch.
modestop=2 drawing stops when all the reachable display borders are encountered by all
the hyperbole branches

LineColou
r

Color of the hyperbole

Example:

 'Example for a 240x320 pixels GLCD

 #include <glcd.h>

 Hyperbole(120, 160, 40,20, 1, 2, GLCDForeground) ; centered, a=40, b=20, x_axis
alined, stops when all branches have reached a a border
 Hyperbole(120, 160, 40,20, 1, 1, GLCDForeground) ; centered, a=40, b=20, x_axis
alined, stops when a border is reached
 Hyperbole(120, 160, 40,20, 2, 1, GLCDForeground) ; centered, a=40, b=20, y_axis
alined, stops when a border is reached,

 Hyperbole(180, 80, 40,20, 1, 1, GLCDForeground) ; upper right, a=40, b=20, x_axis
alined, stops when a border is reached,
 Hyperbole(60, 240, 40,20, 1, 2, GLCDForeground) ; lower left, a=40, b=20, x_axis
alined, stops when all branches have reached a border

 Hyperbole(180, 80, 40,20, 2, 1, GLCDForeground) ; upper right, a=40, b=20, y_axis
alined, stops when a border is reached,
 Hyperbole(60, 240, 40,20, 2, 2, GLCDForeground) ; lower left, a=40, b=20, y_axis
alined, stops when all branches have reached a border

Parabola

Syntax:

 Parabola (x, y, p_factor, type, modestop, optional LineColour=GLCDForeground)

Explanation:

Draws on a GLCD a parabola with equation y^2=2*p_factor*x, centered at pixel positions (x, y) .

The parabola is an unbounded curve.

420

The parabola can be alined either along the x axis or along the y axis.

Drawing parabola on the screen can be constrained by following two different criteria: - a branch has
reached a border of the display. - both branches have reached the display border.

For a parabola centered on the display these criteria are equivalent.

Input parameters:

Paramete
r

Controls

x, y X, Y coordinates of the parabola vertex. X is the minimum x value of the parabola when
alined along X. Y is the minimum y value of the parabola when alined along y in
pixel positions The x or y coordinates are Word value, p_factor is word value, type and
ModeStop are byte values .

p_factor The factor such that y^2=2*p_factor*x is the equation of the parabola

type type=1 the parabola is aligned along x axis
type=2 the parabola is aligned along y axis

modestop modestop=1 drawing stops when a display border is encountered by a parabola branch.
modestop=2 drawing stops when all the parabolla branches encountered a border

LineColou
r

Color of the parabola

Example:

421

 'Example for a 240x320 pixels GLCD

 #include <glcd.h>

 Parabola(120, 160, 20, 1, 2, GLCDForeground) ; centered, p_factor=20, x_axis
alined, stops when all branches have reached a a border
 Parabola(120, 160 ,20, 1, 1, GLCDForeground) ; centered, p_factor=20, x_axis
alined, stops when a border is reached
 Parabola(120, 160, 20, 2, 1, GLCDForeground) ; centered, p_factor=20, y_axis
alined, stops when a border is reached,

 Parabola(180, 80, 20, 1, 1, GLCDForeground) ; upper right, p_factor=20, x_axis
alined, stops when a border is touched,
 Parabola(60, 240, 20, 1, 2, GLCDForeground) ; lower left, p_factor=20, x_axis
alined, stops when all branches have reached a border

 Parabola(180, 80, 20, 2, 1, GLCDForeground) ; upper right, p_factor=20, y_axis
alined, stops when a border is touched,
 Parabola(60, 240, 20, 2, 2, GLCDForeground) ; lower left, p_factor=20, y_axis
alined, stops when all branches have reached a border

Pset

Syntax:

 PSet(XPosition, YPosition, GLCDState)

Explanation:

Sets or Clears a Pixel at the specified XPosition, YPosition. Use GLCDState set to 1 to set the pixel and a
0 clears the pixel.

Triangle

Triangle:

 Triangle(XPixelPosition1, YPixelPosition1, XPixelPosition2, YPixelPosition2,
XPixelPosition3, YPixelPosition3 [,Optional LineColour])

Explanation:

Draws a Triangle on a GLCD at XPixelPositionN, YPixelPositionN.

The constant GLCD_PROTECTOVERRUN can be added to prevent Triangles from re-drawing at the screen

422

edges. Ensure the GLCD_Width and GLCD_HEIGHT constants are set correctly when using this additional
constant.

Example:

 #include <glcd.h>

 Triangle(0, 0, 31, 63, 127, 0)

423

Touch Screen
This is the Touch Screen section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

ADS 7843 Serial Driver

Syntax:

 ADS7843_Init

 ADS7843_GetXY

 ADS7843_SetPrecision

Command Availability:

Available on all microcontrollers. Requires the inclusion of the following:

 #include <ADS7843.h>

Explanation:

The ADS7843 device is a 12-bit sampling Analog-to-Digital Converter (ADC) with a synchronous serial
interface and low on resistance switches for driving touch screens.

The GCBASIC driver is integrated with the SDD1289 GLCD driver. To use the ADS7843 driver the
following is required to added to the GCBASIC source file.

ADS7843_Init is required to initialise the touch screen. This is mandated.

ADS7843_GetXY this sub-routine returns the X and Y coordinates of touched point.

ADS7843_SetPrecision this sub-routine sets the level of precision of the touch screen.

Required Constants:

Constants Controls/Direction Default Value

ADS7843_DOUT (IN) The chip output pin Mandated

ADS7843_IRQ (IN) The interrupt pin Mandated

ADS7843_CS (OUT) The chip select pin Mandated

ADS7843_CLK (OUT) The clock pin Mandated

424

Constants Controls/Direction Default Value

ADS7843_DIN (OUT) The chip input pin Mandated

The GCBASIC commands supported for this chip are:

Command Purpose Example

ADS7843_Init Initialise the device. ADS7843_Init [Optional precision = PREC_EXTREME]

ADS7843_Get
XY

Returns the X and Y
coordinates of touched point.

ADS7843_GetXY (TP_X, TP_Y)

ADS7843_Set
Precision

Set the precision of the
conversion result.

ADS7843_SetPrecision(precision)
(with PREC_EXTREME the conversion error is less than
3%)

Precision can be set to four values as shown in the table below. Passing a parameter of
ADS7843_SetPrecision changes the precision controls.

Constants Defined Value Default Value

#define PREC_LOW 1

#define PREC_MEDIUM 2

#define PREC_HI 3

#define PREC_EXTREME 4 Default Value

Example:

For more information see http://www.ti.com/product/ads7843.

This example shows how to drive a SDD1289 based Graphic LCD module with ADS7843 touch
controller.

 'Chip Settings
 #chip mega2560, 16

 'Include for GLCD
 #include <glcd.h>

 'Include for ADS7843
 #include <ADS7843.h>

 'GLCD Device Selection
 #DEFINE GLCD_TYPE GLCD_TYPE_SSD1289
 'Define ports for the SSD1289 display - ALL are required
 #DEFINE GLCD_WR PORTG.2

425

http://www.ti.com/product/ads7843

 #DEFINE GLCD_CS PORTG.1
 #DEFINE GLCD_RS PORTD.7
 #DEFINE GLCD_RST PORTG.0

 #DEFINE GLCD_DB0 PORTC.0
 #DEFINE GLCD_DB1 PORTC.1
 #DEFINE GLCD_DB2 PORTC.2
 #DEFINE GLCD_DB3 PORTC.3
 #DEFINE GLCD_DB4 PORTC.4
 #DEFINE GLCD_DB5 PORTC.5
 #DEFINE GLCD_DB6 PORTC.6
 #DEFINE GLCD_DB7 PORTC.7
 #DEFINE GLCD_DB8 PORTA.0
 #DEFINE GLCD_DB9 PORTA.1
 #DEFINE GLCD_DB10 PORTA.2
 #DEFINE GLCD_DB11 PORTA.3
 #DEFINE GLCD_DB12 PORTA.4
 #DEFINE GLCD_DB13 PORTA.5
 #DEFINE GLCD_DB14 PORTA.6
 #DEFINE GLCD_DB15 PORTA.7

 'GLCD font control
 #DEFINE GLCD_EXTENDEDFONTSET1

 'Define ports for ADS7843
 #define ADS7843_DOUT PORTE.5 ' Arduino Mega D3
 #define ADS7843_IRQ PORTE.4 ' Arduino Mega D2
 #define ADS7843_CS PORTE.3 ' Arduino Mega D5
 #define ADS7843_CLK PORTH.3 ' Arduino Mega D6
 #define ADS7843_DIN PORTG.5 ' Arduino Mega D4
 #define ADS7843_BUSY PORTH.4 ' Arduino Mega D7

 Wait 100 ms
 num=0
 Do Forever

 'Library function
 if ADS7843_IRQ=0 then

 num++
 GLCDPrint 10, 15, str(num),SSD1289_YELLOW, 2

 'Libary sub routine - returns two variables
 ADS7843_GetXY (TP_X , TP_Y)

 if TP_X>=100 then GLCDPrint 100, 50, Str(TP_X),SSD1289_YELLOW, 2
 if TP_X>=10 and TP_X<100 then GLCDPrint 100, 50, Str(TP_X)+" ",SSD1289_YELLOW,
2

426

 if TP_X<10 then GLCDPrint 100, 50, Str(TP_X)+" ",SSD1289_YELLOW, 2
 if TP_Y>=100 then GLCDPrint 100, 70, Str(TP_Y),SSD1289_YELLOW, 2
 if TP_Y>=10 and TP_Y<100 then GLCDPrint 100, 70, Str(TP_Y)+" ", SSD1289_YELLOW,
2
 if TP_Y<10 then GLCDPrint 100, 70, Str(TP_Y)+" ",SSD1289_YELLOW, 2

 'Set the pixel to yellow using the GLCD PSET sub routine
 Pset TP_X, TP_Y, SSD1289_YELLOW

 end if
 Wait 1 ms

 Loop

427

Liquid Crystal Display
This is the LCD section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

LCD Overview

Introduction:

The LCD routines in this section allow GCBASIC programs to control an alphanumeric Liquid Crystal
Displays based on the HD44780 IC. This covers most 16 x 1, 16 x 2, 20 x 4 and 40 x 4 LCD displays.

The GCBASIC methods allow the displays to be connected to the microcontroller

Connection Modes:

The table below shows the connection modes. These modes support the connection to the LCD using
differing methods.

Connection
Mode

Required Connections

0 No configuration is required directly by this method. The LCD routines must be
provided with other subroutines which will handle the communication. This is useful
for communicating with LCDs connected through RS232 or I2C.
This is an advanced method of driving an LCD.

1 Uses a combined data and clock line. This mode is used when the LCD is connected
through a shift register 74HC595, as detailed at here.
This method of driving an LCD requires an additional integrated circuit and other
passive components. This is not recommended for the beginner.

2 Uses separated Data and Clock lines. This mode is used when the LCD is connected
through a 74LS174 shift register IC, as detailed at here
This method of driving an LCD requires additional integrated circuits and other
passive components. This is not recommended for the beginner.

3 DB, CB, EB are connected to the microcontroller as the Data, Clock and Enable Bits.
This a common method to connect a microcontroller to an LCD. This requires 3 data
ports on the microcontroller.

4 R/W, RS, Enable and the highest 4 data lines (DB4 through DB7) are connected to the
microcontroller. The use of the R/W line is optional.
This a common method to connect a microcontroller to an LCD. This requires 7(6)
data ports on the microcontroller.

428

http://gcbasic.sourceforge.net/library/DIAGRAMS/1-Wire%20LCD/
http://gcbasic.sourceforge.net/library/DIAGRAMS/2-Wire%20LCD/

Connection
Mode

Required Connections

8 R/W, RS, Enable and all 8 data lines. The data lines must all be connected to the same I/O
port, in sequential order. For example, DB0 to PORTB.0, DB1 to PORTB.1 and so on,
with`DB7` going to PORTB.7.
This is a common method to connect a microcontroller to a LCD. This requires 11(10)
data ports on the microcontroller.

10 The LCD is controlled via I2C. A type 10 LCD 12C adapter. Set LCD_IO to 10 for the
YwRobot LCD1602 IIC V1 or the Sainsmart LCD_PIC I2C adapter
This is a common method and requires two data ports on the microcontroller.

12 The LCD is controlled via I2C. A type 12 LCD 12C adapter. Set LCD_IO to `12`for the
Ywmjkdz I2C adapter with a potentiometer (variable resistance) bent over top of chip.

This is a common method and requires two data ports on the microcontroller.

107 The LCD is controlled via serial. Set LCD_IO to 107 or K107.
The K107 requires one serial data ports on the microcontroller.

NOTE

Supported LCDs mapped to Connection Mode

The support of various types of LCD displays are shown in the following table.

Supported LCD Type
number of characters x number of lines

Connection Mode

16 x 1, 16 x 2, 20 x 2, 20 x 4 type LCD displays,
also known as 1601, 1602, 2002, 2004 type LCD displays.

0,1,2,4,8,10 and 12

40 x 4 LCD displays,
also known as 4004 type LCD displays.

4

16 x 1 LCD displays, with a non-standard/non-consective
memory map.
This LCD sub type is supported using a specific constant. Use
#define LCD_VARIANT 1601a to use this sub variant. Also known as
1601 type LCD displays.

Supports any
LCD_IO mode.

429

NOTE

Communication Performance

There may be a need to change the communication performance for a specific LCD as
some LCD’s are slower to operate. GCBASIC supports change the communications
speed.

To change the performance (communications speed) of the LCD use #DEFINE LCD_SPEED.
This method allows the timing to be optimised.

Example

 #DEFINE LCD_SPEED FAST

Define Performance Characteristics

LCD_SPEE
D

FAST - The speed is approximately 20,000 CPS.
MEDIUM - The speed is approximately 15,000 CPS.
SLOW - The speed is approximately 10,000 CPS.
OPTIMAL - The speed is approximately 30,000 CPS.

If LCD_SPEED is not defined, the speed defaults to SLOW

Using LCD_Speed OPTIMAL

430

NOTE

 OPTIMAL disables fixed delays and allows the LCD operate as fast as it can. In this
mode, The the busy flag is polled before each byte is sent to the HD44780 controller.
 This not only optimizes speed, but also assures that data is not sent to the diplay
controler until it is ready to receive the data.

With most displays this equates to a speed of about 30,000 characters per second. For
comparision about 10 times faster than I2C using a PC8574 Expander (See LCD_IO 10 or
See LCD_IO 112)

OPTIMAL is only supported in LCD_IO 4,8 and only when LCD_NO_RW is not defined (RW
Mode). When #DEFINE LCD_NO_RW is defined, reading data from the HD44780 is not
possible since this disables Read Mode on the controller. In this case busy flag checking
is not available and the GET subroutine is not avaiable.

In order to enable busy flag checking, and, therefore to use the GET command the
following criteria must be true.

1. LCD I/O Mode must be either 4-wire or 8-wire

2. #DEFINE LCD_NO_RW is not defined

3. An I\O pin is connected between the microcontroller and the RW connection on the
LCD Display

4. 'DEFINE LCD_RW port.pin is defined in the GCBASIC source code

Example:

 #DEFINE LCD_IO 4
 #DEFINE LCD_SPEED OPTIMAL

 #DEFINE LCD_DB7 PORTB.5
 #DEFINE LCD_DB6 PORTB.4
 #DEFINE LCD_DB5 PORTB.3
 #DEFINE LCD_DB4 PORTB.2

 #DEFINE LCD_RW PORTA.3 'Must be defined for RW Mode
 #DEFINE LCD_RS PORTA.2
 #DEFINE LCD_ENABLE PORTA.1

NOTE
Changing the LCD Width

To change the LCD width characteristics use #define LCD_WIDTH

431

See the separate sections of the Help file for the specifics of each Connection Mode.

For more help, see LCD_IO 0, LCD_IO 1, LCD_IO 2, LCD_IO 3, LCD_IO_2 74xx164, LCD_IO_2 74xx174,
LCD_IO 4, LCD_IO 8, LCD_IO 10 or LCD_IO 12

and,

LCD_Width, LCD_Speed

LCD_IO 0

Using connection mode 0:

To use connection mode 0, a subroutine to write a byte to the LCD must be provided.

Optionally, another subroutine to read a byte from the LCD can also be defined. If the LCD was to be
read, the function LCDReadByte would be set to the name of a function that reads the LCD and returns
the data byte from the LCD. If there is no way (or no requirement) to read from the LCD, then the
LCD_NO_RW constant must be set.

In connection mode 0, the LCD_RS constant will be set automatically to an unused bit variable. The
higher level LCD commands (such as Print and Locate) will set it, and the subroutine is responsible for
writing to the LCD. The subroutine should handle the process and then set the RS pin on the LCD
appropriately.

Relevant Constants:

Specific constants are used to control settings for the Liquid Crystal Display routines included with
GCBASIC. To set these constants the main program should specific constants to support the connection
mode using #define.

When using connection mode 0 only one constant must be set - all others are optional or can be
ignored.

Constant Name Controls Value

LCD_IO The I/O mode. 0

For a code example of connection mode 0 program, download here.

See the separate sections of the Help file for the specifics of each Connection Mode.

For more help, see LCD_IO 1, LCD_IO 2, LCD_IO 2_74xx164, LCD_IO 2_74xx174, LCD_IO 4,LCD_IO 8,
LCD_IO 10 or LCD_IO 12

LCD_IO 1

Using connection mode 1:

432

http://gcbasic.sourceforge.net/library/DEMO%20CODE/Demo%20code%20for%20lcd/Demo%20mode%200.gcb

This approach uses a single connectivity line that supports a combined data and clock signal between
the microcontroller and the LCD display. This approach is used when the LCD is connected through a
shift register 74HC595, as detailed at here. This connection method is also called a 1-wire connection.

This solution approach recognises the original work provided in the Elektor Magazine.

Relevant Constants:

Specific constants are used to control settings for the Liquid Crystal Display routines included with
GCBASIC. To set these constants the main program should specific constants to support the connection
mode using #define.

When using connection mode 1, only two constants must be set - all others are optional or can be
ignored.

How to connect and control the LCD background led: see LCDBacklight.

Constant Name Controls Default Value

LCD_IO The I/O mode. 1

LCD_CD The clock/data pin used in 1-bit mode. Mandated

LCD.h supports in 1-wire mode the control of pin 4 of the 74HC595 for the background led.

For a code example download One Wire LCD Example.

See for further code examples see 0,1 and 2 Wire LCD Solutions.

See the separate sections of the Help file for the specifics of each Connection Mode.

For more help, see LCD_IO 0, LCD_IO 2 LCD_IO 2_74xx164, LCD_IO 2_74xx174 LCD_IO 4, LCD_IO 8,
LCD_IO 10 or LCD_IO 12

LCD_IO 2_74xx164

Using connection mode 2_74XX164:

Use a Data and a Clock line. This manner is used when the LCD is connected through a shift register IC
either using a 74HC164 or a 74LS164, as detailed at here. This connection method is also called a 2-wire
connection.

This is the preferred two wire method to connect via a shift register to an LCD display.

Relevant Constants:

Specific constants are used to control settings for the Liquid Crystal Display routines included with
GCBASIC. To set these constants the main program should specific constants to support the connection
mode using #define.

433

http://gcbasic.sourceforge.net/library/DIAGRAMS/1-Wire%20LCD/1-wire%20LCD%2074HC595%20for%20GCB.jpg
http://gcbasic.sourceforge.net/library/DEMO%20CODE/Demo%20code%20for%20lcd/Demo%20mode%201.gcb
http://github.com/Anobium/Great-Cow-BASIC-Demonstration-Sources/tree/master/LCD_Solutions
http://gcbasic.sourceforge.net/library/DIAGRAMS/2-Wire%20LCD/

When using connection mode 2_74XX164 only three constants must be set - all others are optional or
can be ignored.

Constant Name Controls Default Value

LCD_IO The I/O mode. 2

LCD_DB The data pin used in 2-bit mode. Mandated

LCD_CB The clock pin used in 2- bit mode. Mandated

LCD.h supports in connection mode 2_74XX164 via the control of pin 11 of the 74HC164 / 74LS164 the
background led/backlight.

How to connect and control the LCD background led: see
http://gcbasic.sourceforge.net/help/_lcdbacklight.html

For a code example download Two Wire LCD Example.

See for further code examples see Two Wire LCD Solutions.

See the separate sections of the Help file for the specifics of each Connection Mode.

For more help, see LCD_IO 0, LCD_IO 1, LCD_IO 2, LCD_IO 2_74xx74, LCD_IO 4, LCD_IO 8, LCD_IO 10 or
LCD_IO 12

LCD_IO 2

Using connection mode 2:

This method uses a Data and a Clock line via a shift register to control the LCD display. This method is
used when the LCD is connected through a shift register IC either using a 74HC164 or a 74LS174, as
detailed at here. This connection method is also called a 2-wire connection.

This is a deprecated method mode to connect an LCD display to a microcontroller via a shift registry
either a 74LS174 (or a 74LS164 with diode connected to pin 11). This method does not support
backlight control and has no additional input/output pin.

If you have used the 2-wire mode prior to August 2015, please choose this method for your existing
code.

See LCD_IO 2 74xx164 for the preferred method to connect an LCD display to a microcomputer via a
shift register.

Relevant Constants:

Specific constants are used to control settings for the Liquid Crystal Display routines included with
GCBASIC. To set these constants the main program should specific constants to support the connection
mode using #define. When using 2-bit mode only three constants must be set - all others are optional

434

http://gcbasic.sourceforge.net/help/_lcdbacklight.html
http://gcbasic.sourceforge.net/library/DEMO%20CODE/Demo%20code%20for%20lcd/Demo%20mode%202.gcb
http://github.com/Anobium/Great-Cow-BASIC-Demonstration-Sources/tree/master/LCD_Solutions
http://gcbasic.sourceforge.net/library/DIAGRAMS/2-Wire%20LCD/

or can be ignored.

Constant Name Controls Default Value

LCD_IO The I/O mode. 2

LCD_DB The data pin used in 2-bit mode. Mandated

LCD_CB The clock pin used in 2- bit mode. Mandated

For a code example download Two Wire LCD Example.

See for further code examples see Two Wire LCD Solutions.

See the separate sections of the Help file for the specifics of each Connection Mode.

For more help, see LCD_IO 0, LCD_IO 1, LCD_IO 2_74xx164, LCD_IO 2_74xx174, LCD_IO 4, LCD_IO 8,
LCD_IO 10 or LCD_IO 12

LCD_IO 3

Using connection mode 3:

This method uses a Data and a Clock line via a shift register to control the LCD display plus an Enable
line. This method is used when the LCD is connected through a shift register IC using a LS74574.

This connection method is also called a 3-wire connection.

The diagram below shows a method to connect the LCD to a microcontroller.

435

http://gcbasic.sourceforge.net/library/DEMO%20CODE/Demo%20code%20for%20lcd/
http://github.com/Anobium/Great-Cow-BASIC-Demonstration-Sources/tree/master/LCD_Solutions

Relevant Constants:

Specific constants are used to control settings for the Liquid Crystal Display routines included with
GCBASIC. To set these constants the main program should specific constants to support the connection
mode using #define. When using 3-bit mode only three constants must be set.

Constant Name Controls Default Value

LCD_IO The I/O mode. 3

LCD_DB The data pin used in 3-bit mode. Mandated

LCD_CB The clock pin used in 3- bit mode. Mandated

LCD_EB The enable pin used in 3- bit mode. Mandated

Example:

436

 #chip 16f628a, 4
 #option explicit

 ;Setup LCD Parameters
 #define LCD_IO 3

 'Change ports as necessary
 #define LCD_DB PORTb.3 ; databit
 #define LCD_CB PORTb.4 ; clockbit
 #define LCD_EB PORTa.0 ; enable bit

 Dim BV as Byte

 'Program Start

 PRINT "GCBASIC"
 Locate 1,0
 PRINT "@2021"
 Wait 4 s

 DO Forever
 CLS
 WAIT 2 s
 PRINT "Test LCDHex "
 wait 3 s
 CLS
 wait 1 s

 for bv = 0 to 16
 locate 0,0
 Print "DEC " : Print BV
 locate 1,0
 Print "HEX "
 LCDHex BV
 Locate 1, 8
 LCDHEX BV, LeadingZeroActive

 wait 500 ms
 next
 CLS
 wait 1 s
 Print "END TEST"
 LOOP

437

See the separate sections of the Help file for the specifics of each Connection Mode.

For more help, see LCD_IO 0, LCD_IO 1, LCD_IO 2_74xx164, LCD_IO 2_74xx174, LCD_IO 4, LCD_IO 8,
LCD_IO 10 or LCD_IO 12

LCD_IO 2_74xx174

LCD_IO 2_74xx174 has been deprecated as preferred method mode to connect an LCD display to a
microcontroller via a shift register either a 74LS174 (or a 74LS164 with diode connected to pin 11). This
method does not support backlight control and has no additional input/output pin.

See LCD_IO 2_74xx164 for the preferred method to connect an LCD display to a microcontroller via a
shift register.

For more help, see LCD_IO 1, LCD_IO 2, LCD_IO 2_74xx164, LCD_IO 4, LCD_IO 8, LCD_IO 10 or LCD_IO
12

LCD_IO 4

Using connection mode 4:

To use connection mode 4 the R/W, RS, Enable control lines and the highest 4 data lines (DB4 through
DB7) must be connected to the microcontroller.

Relevant Constants:

Specific constants are used to control settings for the Liquid Crystal Display routines included with
GCBASIC. To set these constants the main program should specific constants to support the connection
mode using #define. Constants required for connection mode 4.

Constants are required for 4-bit mode as follows.

Constan
t Name

Controls Default Value

LCD_SPEE
D

FAST, MEDIUM or SLOW. MEDIUM

LCD_IO Must be 4 4

LCD_RS Specifies the output pin that is connected to
Register Select on the LCD.

Must be defined as port.bit

LCD_RW Specifies the output pin that is connected to
Read/Write on the LCD. The R/W pin can be
disabled*.

Must be defined as port.bit (unless R/W is
disabled)

LCD_Enab
le

Specifies the output pin that is connected to
Read/Write on the LCD.

Must be defined as port.bit

438

Constan
t Name

Controls Default Value

LCD_DB4 Output pin used to interface with bit 4 of the
LCD data bus

Must be defined as port.bit

LCD_DB5 Output pin used to interface with bit 5 of the
LCD data bus

Must be defined as port.bit

LCD_DB6 Output pin used to interface with bit 6 of the
LCD data bus

Must be defined as port.bit

LCD_DB7 Output pin used to interface with bit 7 of the
LCD data bus

Must be defined as port.bit

LCD_VFD_
DELAY

Specifies a delay between transmission of
data nibbles to LCD or VFD. Usage must
include number value and unit of time.
#DEFINE LCD_VFD_DELAY 1 ms Only applicable
when using LCD_IO 4

None.

LCD_OCUL
AR_OM161
4

Specifies OCULAR OM1614 suppport. This
changes the intialisation routine to a specific
routine for the OCULAR devices.

To specify explicit OCULAR_OM1614 support
#DEFINE LCD_OCULAR_OM1614 The OCULAR
devices requires LCD_RW

The R/W pin can be disabled by setting the LCD_NO_RW constant. If this is done, there is no need for the R/W
to be connected to the chip, and no need for the LCD_RW constant to be set. Ensure that the R/W line on
the LCD is connected to ground if not used.

For a code example download Four Wire LCD Example.

Also see for further code examples see Four Wire LCD Solutions.

See the separate sections of the Help file for the specifics of each Connection Mode.

For more help, see LCD_IO 0, LCD_IO 1, LCD_IO 2, LCD_IO 2_74xx164, LCD_IO 2_74xx174, LCD_IO 8,
LCD_IO 10 or LCD_IO 12

LCD_IO 8

Using connection mode 8:

Using connection mode will require R/W, RS, Enable and all 8 data lines.

The data lines must all be connected to the same I/O port, in sequential order. For example, DB0 to
PORTB.0, DB1 to PORTB.1 and so on, with DB7 going to PORTB.7.

Relevant Constants:

These constants are used to control settings for the Liquid Crystal Display routines included with

439

http://gcbasic.sourceforge.net/library/DEMO%20CODE/Demo%20code%20for%20lcd/Demo%20mode%204.gcb
http://github.com/Anobium/Great-Cow-BASIC-Demonstration-Sources/tree/master/LCD_Solutions

GCBASIC. To set them, place a line in the main program file that uses #define to assign a value to the
particular constant.

Constants are required for 8-bit mode as follows.

Constant
Name

Controls Default Value

LCD_SPEED FAST, MEDIUM or SLOW. MEDIUM

LCD_IO The I/O mode. Can be 2, 4 or 8. 8

LCD_RS Specifies the output pin that is connected to Register Select on
the LCD.

Must be defined

LCD_RW Specifies the output pin that is connected to Read/Write on the
LCD. The R/W pin can be disabled*.

Must be defined (unless
R/W is disabled)

LCD_Enable Specifies the output pin that is connected to Read/Write on the
LCD.

Must be defined

LCD_DATA_P
ORT

Output port used to interface with LCD data bus Must be defined

LCD_LAT Drives the port with LATx support. Resolves issues with faster
Mhz and the Microchip PIC read/write/modify feature. See
example below.

Optional

The R/W pin can be disabled by setting the LCD_NO_RW constant. If this is done, there is no need for the R/W
to be connected to the chip, and no need for the LCD_RW constant to be set. Ensure that the R/W line on
the LCD is connected to ground if not used.

For a code example download Eight Wire LCD example.

For code examples see Eight Wire Examples.

See the separate sections of the Help file for the specifics of each Connection Mode.

For more help, see LCD_IO 0, LCD_IO 1, LCD_IO 2, LCD_IO 2_74xx164, LCD_IO 2_74xx174, LCD_IO 4,
LCD_IO 10 or LCD_IO 12

LCD_IO 10

Using connection mode 10:

The LCD is controlled via I2C of a type 10 LCD 12C adapter. Use LCD_IO 10 for the YwRobot LCD1602 IIC
V1 or the Sainsmart LCD_PIC I2C adapter. To use mode 10 you must define the I2C ports as normal in
your GCBASIC code. Then, define the LCD type, set the I2C_address of the LCD adapter and the LCD
speed, if required. Finally, set the backlight control, if required.

Relevant Constants:

440

http://gcbasic.sourceforge.net/library/DEMO%20CODE/Demo%20code%20for%20lcd/Demo%20mode%208.gcb
http://github.com/Anobium/Great-Cow-BASIC-Demonstration-Sources/tree/master/LCD_Solutions

These constants are used to control settings for the Liquid Crystal Display routines included with
GCBASIC. To set them, place a line in the main program file that uses #define to assign a value to the
particular constant.

Constant Name Controls Value

LCD_IO The I/O mode. Must be 10 10

LCD_I2C_ADDRESS_1 Address of I2C adapter Default = 0x4E

LCD_I2C_ADDRESS_2 Address of I2C adapter Recommended = 0x4C

LCD_I2C_ADDRESS_3 Address of I2C adapter Recommended = 0x4A

LCD_I2C_ADDRESS_4 Address of I2C adapter Recommended = 0x48

LCD_I2C_ADDRESS_5 Address of I2C adapter Recommended = 0x46

LCD_I2C_ADDRESS_6 Address of I2C adapter Recommended = 0x44

LCD_I2C_ADDRESS_7 Address of I2C adapter Recommended = 0x42

LCD_I2C_ADDRESS_8 Address of I2C adapter Recommended = 0x40

Example Usage

An example for using two I2C-LCD. This example can be extended to support more than two or more (
up to eight) I2C-LCD(s).

This example shows you can have up to eight LCD on the I2C-Bus (8 Addresses 0x40 to 0x4E of the
PCF8574-Adaptor).

 // Set up I2C-LCD
 #DEFINE LCD_IO 10

 /* Set LCD_IO to 10 for the YwRobot LCD1602 IIC V1 or the Sainsmart LCD_PIC I2C
adapter
 Set LCD_IO to 12 for the Ywmjkdz I2C adapter with pot bent over top of chip */

 #DEFINE LCD_I2C_ADDRESS_1 0x4E ' prepare the first LCD on Address 0x4E
 #DEFINE LCD_I2C_ADDRESS_6 0x44 ' prepare the second LCD on Address 0x44

 // To switch between the two LCD can be done with

 LCD_I2C_ADDRESS_Current = LCD_I2C_ADDRESS_6 // now the second I2C-LCD is active

 // or

 LCD_I2C_ADDRESS_Current = LCD_I2C_ADDRESS_1 // now the first I2C-LCD is active

441

For code examples see I2C LCD Solutions.

See the separate sections of the Help file for the specifics of each Connection Mode.

For more help, see LCD_IO 0, LCD_IO 1, LCD_IO 2, LCD_IO 2_74xx164, LCD_IO 2_74xx174, LCD_IO 4,
LCD_IO 8, LCD_IO 12

LCD_IO 10 Port Configuration

Using mode 10

When using I2C LCD mode 10 the target I2C device address is setup as shown below. Each bit of the the
variable i2c_lcd_byte is defined to address the correct LCD display port.

 i2c_lcd_e = i2c_lcd_byte.2
 i2c_lcd_rw = i2c_lcd_byte.1
 i2c_lcd_rs = i2c_lcd_byte.0
 i2c_lcd_bl = i2c_lcd_byte.3
 i2c_lcd_d4 = i2c_lcd_byte.4
 i2c_lcd_d5 = i2c_lcd_byte.5
 i2c_lcd_d6 = i2c_lcd_byte.6
 i2c_lcd_d7 = i2c_lcd_byte.7

If you have an I2C LCD display adapter with a different set of connection of the adapter then change
this configuration to suit the specific of the adapter as follows. This should be done in the your main
program code.

 #define i2c_lcd_e i2c_lcd_byte.1
 #define i2c_lcd_rw i2c_lcd_byte.2
 #define i2c_lcd_rs i2c_lcd_byte.0
 #define i2c_lcd_bl i2c_lcd_byte.3
 #define i2c_lcd_d4 i2c_lcd_byte.7
 #define i2c_lcd_d5 i2c_lcd_byte.6
 #define i2c_lcd_d6 i2c_lcd_byte.5
 #define i2c_lcd_d7 i2c_lcd_byte.4

LCD_IO 12

Using connection mode 12:

The LCD is controlled via I2C. A type 12 is the Ywmjkdz I2C adapter with potentiometer variable
resistor) bent over top of chip. To use mode 12 you must define the I2C ports as normal in your GCB
code. Then, define the LCD type, set the I2C_address of the LCD adapter and the LCD speed, if required.

Relevant Constants:

442

http://github.com/Anobium/Great-Cow-BASIC-Demonstration-Sources/tree/master/LCD_Solutions

These constants are used to control settings for the Liquid Crystal Display routines included with
GCBASIC. To set them, place a line in the main program file that uses #define to assign a value to the
particular constant.

When using 2-bit mode only three constants must be set - all others can be ignored.

Constant Name Controls Value

LCD_IO I/O mode 12

LCD_I2C_Address_1 Address of I2C adapter Default 0x4E
could also be 0x27

LCD_I2C_Address_2 Address of I2C adapter Not set

LCD_I2C_Address_2 Address of I2C adapter Not set

LCD_I2C_Address_2 Address of I2C adapter Not set

To set the correct address see the picture below:

For code examples see I2C LCD Solutions.

See the separate sections of the Help file for the specifics of each Connection Mode.

For more help, see LCD_IO 0, LCD_IO 1, LCD_IO 2 LCD_IO 2_74xx164, LCD_IO 2_74xx174, LCD_IO 4,
LCD_IO 8, LCD_IO 10

443

http://github.com/Anobium/Great-Cow-BASIC-Demonstration-Sources/tree/master/LCD_Solutions

LCD_IO 12 Port Configuration

Using mode 12:

When using I2C LCD mode 12 the target I2C device address is setup as shown below. Each bit of the the
variable i2c_lcd_byte is defined to address the correct LCD display port.

 i2c_lcd_e = i2c_lcd_byte.4
 i2c_lcd_rw = i2c_lcd_byte.5
 i2c_lcd_rs = i2c_lcd_byte.6
 i2c_lcd_bl = i2c_lcd_byte.7
 i2c_lcd_d4 = i2c_lcd_byte.0
 i2c_lcd_d5 = i2c_lcd_byte.1
 i2c_lcd_d6 = i2c_lcd_byte.2
 i2c_lcd_d7 = i2c_lcd_byte.3

If you have an I2C LCD display adapter with a different set of connection of the adapter then change
this configuration to suit the specific of the adapter as follows. This should be done in the your main
program code.

 #define i2c_lcd_e i2c_lcd_byte.4
 #define i2c_lcd_rw i2c_lcd_byte.5
 #define i2c_lcd_rs i2c_lcd_byte.6
 #define i2c_lcd_bl i2c_lcd_byte.7
 #define i2c_lcd_d4 i2c_lcd_byte.3
 #define i2c_lcd_d5 i2c_lcd_byte.2
 #define i2c_lcd_d6 i2c_lcd_byte.1
 #define i2c_lcd_d7 i2c_lcd_byte.0

LCD_IO 14

Using connection mode 14:

Using this LCD IO methof the LCD is controlled via an SPI expander.

To use mode 14 you must define the SPI ports as normal in your GCB code. Then, define the LCD type,
set the SPI address of the SPI expander, and, the LCD speed, if required.

444

Relevant Constants:

These constants are used to control settings for the LCD routines included with GCBASIC. To set them,
place a line in the main program file that uses #define to assign a value to the particular constant.

When using this mode only three constants are mandated - all others can be ignored.

Constant Name Controls Value

LCD_IO I/O mode 14

LCD_SPI_DO Microcontroller SPI data out port Required

LCD_SPI_SCK Microcontroller SPI clock out port Required

LCD_SPI_CS Microcontroller SPI chip select port Required

Connectivity

The connectivity is shown below. The microcontroller connections are as shown below. This is an
example using the Microchip Explorer 8 board.

 RC3 > Expander SPI SCK (clock)
 RC5 > Expander SPI SI (slave in)
 RA2 > Expander SPI CS (chip select) - could be set to 0v0
 RB5 > Expander Reset (optional)

445

Optional configuration

There are some options you can tweak. See the example setup below. You can play with the use of
hardware or software SPI, SPI frequency (HWSPIMODE MASTERFAST). LED speed, the connectivity
between the expander and the LCD and otheroptions.

 //Constants - LCD connectivity type; controls whether to use HW SPI; The inter
character delay
 #define LCD_IO 14
 #define LCD_HARDWARESPI
 #define LCD_SPEED FAST
 #define HWSPIMODE MASTERFAST

 //These are the phyiscal connections from the expander to the LCD. These are
automatically set in the library and are shown here purely for clarity.
 #define LCD_SPI_EXPD_ADDRESS 0x40 // address of the expander
 #define LCD_SPI_EXPANDER_E_ADDRESS 0x40 // GPA6 on the expander
 #define LCD_SPI_EXPANDER_RS_ADDRESS 0x80 // GPA7 on the expander

 //Pin mappings for LCD IO SPI Expander
 #define LCD_SPI_DO portc.5 // constant is mandated
 #define LCD_SPI_SCK portc.3 // constant is mandated
 #define LCD_SPI_CS porta.2 // constant is required.
 // Optional(s) reset Port.Pin connection to expander, select one.
 // #define LCD_SPI_RESET_IN portb.5
 #define LCD_SPI_RESET_OUT portb.5

446

For code examples see LCD Solutions.

See the separate sections of the Help file for the specifics of each Connection Mode.

For more help, see LCD_IO 0, LCD_IO 1, LCD_IO 2 LCD_IO 2_74xx164, LCD_IO 2_74xx174, LCD_IO 4,
LCD_IO 8, LCD_IO 10, LCD_IO 12

LCD_IO 14 Port Configuration

Using mode 14:

When using LCD mode 14 this is an example program to show a working solution,

 #chip 18F67K40, 8
 #option explicit

 'PPS Tool version: 0.0.6.3
 // Generated for 18f67k40

 #startup InitPPS, 85
 #define PPSToolPart 18f67k40

 Sub InitPPS

 #ifdef LCD_HARDWARESPI
 SSP1CLKPPS = 0x13; //RC3->MSSP1:SCK1;
 RC3PPS = 0x19; //RC3->MSSP1:SCK1;
 RC5PPS = 0x1A; //RC5->MSSP1:SDO1;
 SSP1DATPPS = 0x14; //RC4->MSSP1:SDI1;
 #endif

 End Sub

 //Constants - LCD connectivity type
 #define LCD_IO 14

 //Comment out to use software SPI
 #define LCD_HARDWARESPI

 #define LCD_SPEED FAST

 //Optional. Can also select MASTERSLOW or MASTER. The compiler will set
automatically.
 #define HWSPIMODE MASTERFAST

 //These are phyiscal connections from the expander to the LCD. These are
automatically set in the library and are shown here purely for clarity.
 #define LCD_SPI_EXPD_ADDRESS 0x40

447

http://github.com/Anobium/Great-Cow-BASIC-Demonstration-Sources/tree/master/LCD_Solutions

 #define LCD_SPI_EXPANDER_E_ADDRESS 0x40 // GPA6 on the expander
 #define LCD_SPI_EXPANDER_RS_ADDRESS 0x80 // GPA7 on the expander

 //Mandated Pin mappings for LCD IO SPI Expander
 #define LCD_SPI_DO portc.5
 #define LCD_SPI_SCK portc.3
 #define LCD_SPI_CS porta.2
 // Optional(s) reset Port.Pin connection to expander, select one.
 // #define LCD_SPI_RESET_IN portb.5
 #define LCD_SPI_RESET_OUT portb.5

 ; ----- Main body of program commences here.

 ClS
 Print "Hello World"

LCD_IO 16

Using connection mode 16:

Using this LCD IO methof the LCD is controlled via the Microchip PIC16LF72 SPI expander.

To use mode 16 you must define the SPI ports as shown below.

Relevant Constants:

These constants are used to control settings for the LCD routines included with GCBASIC. To set them,
place a line in the main program file that uses #define to assign a value to the particular constant.

When using this mode only three constants are mandated - all others can be ignored.

Constant Name Controls Value

LCD_IO I/O mode 16

LCD_SPI_DO Microcontroller SPI data out port Required

LCD_SPI_SCK Microcontroller SPI clock out port Required

Connectivity

The connectivity is shown below. The microcontroller connections are as shown below. This is an
example using the Microchip PICDEM 4 2003 board.

448

 //Constants - LCD connectivity type;
 #DEFINE LCD_IO 16

 //PIN MAPPINGS FOR PIC16LF72 LCD IO SPI EXPANDER

 // CONSTANT IS MANDATED - DATA LINE
 #DEFINE LCD_SPI_DO PORTB.2

 // CONSTANT IS MANDATED - CLOCK LINE
 #DEFINE LCD_SPI_SCK PORTB.5

 //! Main program

 Print "GCBASIC Rocks"
 End

449

For code examples see LCD Solutions.

See the separate sections of the Help file for the specifics of each Connection Mode.

For more help, see LCD_IO 0, LCD_IO 1, LCD_IO 2 LCD_IO 2_74xx164, LCD_IO 2_74xx174, LCD_IO 4,
LCD_IO 8, LCD_IO 10, LCD_IO 12

LCD_IO 107

Using connection mode 107:

The LCD is controlled via the serial port. A type 107 is a K107 serial adapter. To use mode 107 you must
define the serial port as normal in your GCB code. Then, serial speed to match the K107 adapter.

Relevant Constants:

450

http://github.com/Anobium/Great-Cow-BASIC-Demonstration-Sources/tree/master/LCD_Solutions

These constants are used to control settings for the Liquid Crystal Display routines included with
GCBASIC. To set them, place a line in the main program file that uses #define to assign a value to the
particular constant.

When using 107 mode only one constants must be set - all others can be ignored.

Constant Name Controls Value

LCD_IO I/O mode 107 or K107

Example Code:

451

 #chip 16f18313
 #option Explicit

 'Generated by PIC PPS Tool for GCBASIC
 'Generated for 16f18313
 '
 #startup InitPPS, 85
 #define PPSToolPart 16f18313

 Sub InitPPS

 'Module: EUSART
 RA5PPS = 0x0014 'TX > RA5

 End Sub
 'Template comment at the end of the config file

 'USART settings for USART1
 #define USART_BAUD_RATE 115200
 #define USART_TX_BLOCKING
 #define USART_DELAY OFF

 #define LCD_IO 107 'K107

 do Forever
 CLS
 Print "GCBASIC 2021"
 Locate 1, 0
 Print "Reading ADC ANA0"

 Locate 3, 0
 Print "Scaled = "
 Print Scale(ReadAD(ANA0), 0, 236, 0, 100)
 wait 100 ms
 loop

See the separate sections of the Help file for the specifics of each Connection Mode.

For more help, see LCD_IO 0, LCD_IO 1, LCD_IO 2 LCD_IO 2_74xx164, LCD_IO 2_74xx174, LCD_IO 4,
LCD_IO 8, LCD_IO 10

LCD_VARIANT

Using LCD_VARIANT:

Some LCDs are non-standard. The non-standard LCDs may have a different memory architecture

452

where the memory is non-consective or different delay timing is required for the LCD IC. Use
LCD_VARIANT to change the operating behaviour of GCBASIC with respect to LCD operations. If a
LCD_VARIANT adaption has been created in the library then the non-standard LCD can be supported.

#DEFINE LCD_VARIANT 1601a

Use #define LCD_VARIANT 1601a to use this sub variant. Requires a LCD_IO then this sub type modifier.
This variant has a non consective memory as shown in the diagram below.

Example:

This example shows how to use the LCD_VARIANT constant. This example shows the use of software
I2C - any LCD mode can be used not just software I2C.

453

 #chip tiny84,1

 'Set up LCD
 #define LCD_IO 10
 #define LCD_VARIANT 1601a
 #define LCD_WIDTH 16

 'You may need to use SLOW or MEDIUM if your LCD is a slower device.
 #define LCD_SPEED FAST

 ' ----- Define Hardware settings
 ' Define I2C settings - CHANGE PORTS FOR YOUR NEEDS
 #define LCD_I2C_Address 0x0E
 #define I2C_MODE Master
 #define I2C_DATA PORTA.4
 #define I2C_CLOCK PORTA.5
 #define I2C_DISABLE_INTERRUPTS ON

 'You may need to invert these states. Dependent of LCD I2C adapter.
 #define LCD_Backlight_On_State 1
 #define LCD_Backlight_Off_State 0

 ; ----- Main body of program commences here.
 Locate 0,0
 PRINT "GCBASIC"

 Do
 Loop

For code examples see I2C Variants LCD Solutions.

See the separate sections of the Help file for the specifics of each Connection Mode.

For more help, see LCD_IO 0, LCD_IO 1, LCD_IO 2 LCD_IO 2_74xx164, LCD_IO 2_74xx174, LCD_IO 4,
LCD_IO 8, LCD_IO 10

LCD_SPEED

Using LCD_SPEED:

The communication performance of a LCD display can be controlled via a #DEFINE. This method allows
the timing to be optimised.

Example

454

https://github.com/Anobium/Great-Cow-BASIC-Demonstration-Sources/tree/master/LCD_Solutions/Variant1601a_LCD_Solutions

#DEFINE LCD_SPEED FAST

Define Required Connections

LCD_SPEE
D

Options are:
FAST - The speed is approximately 20,000 CPS.
MEDIUM - The speed is approximately 15,000 CPS.
SLOW - The speed is approximately 10,000 CPS.
OPTIMAL - The speed is approximately 30,000 CPS.

If LCD_SPEED is not defined, the speed defaults to SLOW

To change the performance (communications speed) of the LCD use #DEFINE LCD_SPEED. This method
allows the timing to be optimised.

Example

 #DEFINE LCD_SPEED FAST

If LCD_SPEED is not defined, the speed defaults to SLOW

Speed Parameter OPTIMAL

WHEN LCD_NO_RW is not defined, OPTIMAL disables fixed delays and allows the LCD operate as fast
as it can.

In this mode, The the busy flag is polled before each byte is sent to the HD44780 controller. This not
only optimizes speed, but also assures that data is not sent to the diplay controler until it is ready to
receive the data.

With most displays this equates to a speed of about 30,000 characters per second. For comparision
about 10 times faster than I2C using a PC8574 Expander (See LCD_IO 10 or See LCD_IO 112)

OPTIMAL is only supported in LCD_IO 4,8 and only when LCD_NO_RW is not defined (RW Mode)

When #DEFINE LCD_NO_RW is defined, reading data from the HD44780 is not possible since this disables
Read Mode on the controller. In this case busy flag checking is not available and the GET subroutine is
not avaiable.

In order to enable busy flag checking, and, therefore to use the GET command the following criteria
must be true.

1. LCD I/O Mode must be either 4-wire or 8-wire

2. #DEFINE LCD_NO_RW is not defined

3. An I\O pin is connected between the microcontroller and the RW connection on the LCD Display

455

4. 'DEFINE LCD_RW port.pin is defined in the GCBASIC source code

Example:

 #DEFINE LCD_IO 4
 #DEFINE LCD_SPEED OPTIMAL
 #DEFINE LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #DEFINE LCD_DB7 PORTB.5
 #DEFINE LCD_DB6 PORTB.4
 #DEFINE LCD_DB7 PORTB.3
 #DEFINE LCD_DB6 PORTB.2

 #DEFINE LCD_RW PORTA.3 'Must be defined for RW Mode
 #DEFINE LCD_RS PORTA.2
 #DEFINE LCD_ENABLE PORTA.1

LCD_WIDTH

Using LCD_WIDTH:

This constant changes the width characteristics of a LCD display. The standard width is assumed to
be 20 characters.

This constant allows the width to be optimised for specific LCD chipsets.

Example

#DEFINE LCD_WIDTH 16

Define Required Connections

LCD_WIDTH Default is 20
16 - Set the WIDTH 16 characters

If LCD_WIDTH is not defined, the WIDTH defaults to 20

CLS

Syntax:

 CLS

Command Availability:

456

Available on all microcontrollers.

Explanation:

The CLS command clears the contents of the LCD, and returns the cursor to the top left corner of the
screen

Example :

 'A Flashing text "Hello World" program for GCBASIC

 'General hardware configuration
 #chip 16F877A, 20

 'LCD connection settings
 #define LCD_IO 8
 #define LCD_DATA_PORT PORTC
 #define LCD_RS PORTD.0
 #define LCD_RW PORTD.1
 #define LCD_Enable PORTD.2
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is
the default width

 'Main routine
 Do
 Print "Hello World"
 Wait 1 sec
 CLS
 Wait 1 sec
 Loop

For more help, see LCD Overview

Supported in <LCD.H>

Get

Syntax:

 var = Get(Line, Column)

Command Availability:

Available on all microcontrollers with the LCD R/W line (pin 5) connected and if the following constant
definition is used; #define LCD_RW. Only available when the LCD is connected using the 4 or 8 bit mode

457

and when the constant definition #define LCD_NO_RW is NOT used.

Explanation:

The Get function reads the ASCII character code at a given location on the LCD.

For more help, see Put, LCD Overview

Supported in <LCD.H>

LCDBacklight

Syntax:

 LCDBacklight (On | Off)

Command Availability:

Available on all microcontrollers

Explanation:

Sets the LCD backlight on or off

Do not connect the LCD backlight directly to the microcontroller! Always refer to the datasheet for the
correct method to drive the LCD backlight.

For 0, 4, 8, 404 LCD types you must define the controlling port.pin for the LCD backlight.

 'this port.pin is connected to the LCD backlight via a suitable circuit
 #define LCD_Backlight porta.4
 ...
 ...
 ...
 ...
 LCDBacklight (On)

 more user code...
 LCDBacklight (Off)

Inverting the State of the LCD

You may need to invert the state of the LCD backlight control port. This can be achieved by setting the
following constants.

458

 'Invert the LCD Backlight States to suit the circuit board
 #define LCD_Backlight_On_State 0 'the default constant value is 1
 #define LCD_Backlight_Off_State 1 'the default constant value is 0

The diagram below shows a method to connect the LCD backlight to a microcontroller.

 The
diagram above was provided by William Roth, January 2015.

Supported in <LCD.H>

LCDCreateChar

Syntax:

 LCDCreateChar char, chardata()

Command Availability:

Available on all microcontrollers.

Explanation:

459

The LCDCreateChar command is used to send a custom character to the LCD.

Each character on the LCD is made up from an 8 row by 5 column (5x8) matrix of pixels. The data to be
sent to the LCD is composed of an 8 element array, where each element corresponds to a row. Inside
each element, the 5 lowest bits make up the data for the corresponding row. When a bit is set a dot will
be drawn at the matching location; when it is cleared, no dot will appear.

An array of more than 8 elements may be used, but only the first 8 will be read.

char is the ASCII value of the character to create. ASCII codes 0 through 7 are usually used to store
custom characters.
chardata() is an array containing the data for the character.

Example:

460

 'This program draws a smiling face character

 'General hardware configuration
 #chip 16F877A, 20

 'LCD connection settings
 #define LCD_IO 8
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_DATA_PORT PORTC
 #define LCD_RS PORTD.0
 #define LCD_RW PORTD.1
 #define LCD_Enable PORTD.2

 'Create an array to store the character until it is copied
 Dim CharArray(8)

 'Set the array to hold the character
 'Binary has been used to improve the readability of the code, but is not essential
 CharArray(1) = b'00011011'
 CharArray(2) = b'00011011'
 CharArray(3) = b'00000000'
 CharArray(4) = b'00000100'
 CharArray(5) = b'00000000'
 CharArray(6) = b'00010001'
 CharArray(7) = b'00010001'
 CharArray(8) = b'00001110'

 'Copy the character from the array to the LCD
 LCDCreateChar 0, CharArray()

 'Draw the custom character
 LCDWriteChar 0

For more help, see LCDWriteChar, LCD Overview

Supported in <LCD.H>

LCDCreateGraph

Syntax:

 LCDCreateGraph value

Command Availability:

461

Available on all microcontrollers.

Explanation:

The LCDCreateGraph command will create a graph like character which can then be displayed on the
LCD

Example :

 ;Chip Settings
 #chip 16F88,8

 ;Defines (Constants)
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RS PORTA.6
 #define LCD_NO_RW
 #define LCD_Enable PORTA.7
 #define LCD_DB4 PORTB.4
 #define LCD_DB5 PORTB.5
 #define LCD_DB6 PORTB.6
 #define LCD_DB7 PORTB.7

 Locate 0,0
 Print "Reset"
 wait 1 s
 cls

 Graph_Tests:

 cls
 'Draw the custom character - fill the LCD
 repeat 64
 LCDWriteChar 0
 end Repeat

 ' Update the characters at high speed without re-printing on LCD
 for graphvalue = 0 to 8
 LCDCreateGraph (0 , graphvalue)
 wait 100 ms
 next

Supported in <LCD.H>

462

LCDCmd

Syntax:

 LCDCMD value

Command Availability:

Available on all microcontrollers.

Explanation:

This command set LCD specific instructions to the LCD display. As shown in the table below.

INSTRUCTION Decimal Hexadecimal

Scroll display one character right (all lines) 28 1E

Scroll display one character left (all lines) 24 18

Home (move cursor to top/left character position) 2 2

Move cursor one character left 16 10

Move cursor one character right 20 14

Turn on visible underline cursor 14 0E

Turn on visible blinking-block cursor 15 0F

Make cursor invisible 12 0C

Blank the display (without clearing) 8 08

Restore the display (with cursor hidden) 12 0C

Clear Screen 1 01

Set cursor position (DDRAM address) 128 + addr 80+ addr

Set pointer in character-generator RAM (CG RAM address) 64 + addr 40+ addr

Example 1:

 ;Chip Settings
 #chip 16F88,8

 ;Defines (Constants)
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width

463

 #define LCD_RS PORTA.6
 #define LCD_NO_RW
 #define LCD_Enable PORTA.7
 #define LCD_DB4 PORTB.4
 #define LCD_DB5 PORTB.5
 #define LCD_DB6 PORTB.6
 #define LCD_DB7 PORTB.7

 Locate 0,0
 Print "Reset"
 wait 1 s
 cls

 LCD_Command_Tests:

 locate 0,8
 print "123456"
 'Scroll display one character right (all lines) 28
 '
 lcdcmd 28
 wait 1 s
 lcdcmd 28
 wait 1 s
 lcdcmd 28
 wait 1 s
 lcdcmd 28
 wait 1 s

 'Scroll display one character left (all lines) 24
 '
 lcdcmd 24
 wait 1 s
 lcdcmd 24
 wait 1 s
 lcdcmd 24
 wait 1 s
 lcdcmd 24
 wait 1 s

 'Home (move cursor to top/left character position) 2
 '
 lcdcursor flash
 lcdcmd 2
 wait 1 s

 'Move cursor one character left 16
 '

464

 lcdcursor flash
 locate 0,8

 lcdcmd 16
 wait 1 s
 lcdcmd 16
 wait 1 s
 lcdcmd 16
 wait 1 s
 lcdcmd 16
 wait 1 s

 'Move cursor one character right 20
 '
 lcdcmd 20
 wait 1 s
 lcdcmd 20
 wait 1 s
 lcdcmd 20
 wait 1 s
 lcdcmd 20
 wait 1 s

Example 2:

 #chip 16F877A,20
 #option Explicit

 'Use LCD in 4 pin mode and define LCD pins
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RW PORTE.1
 #define LCD_RS PORTE.0
 #define LCD_Enable PORTE.2
 #define LCD_DB4 PORTD.4
 #define LCD_DB5 PORTD.5
 #define LCD_DB6 PORTD.6
 #define LCD_DB7 PORTD.7

 ;Here are various LCD commands which can be used.
 ;These are the LCD commands for the HD44780 controller
 #define clrHome = 1 ;clear the display, home the cursor
 #define home = 2 ;home the cursor only
 #define RtoL = 4 ;print characters right to left
 #define insR = 5 ;insert characters to right
 #define LtoR = 6 ;print characters left to right

465

 #define insL = 7 ;insert characters to left
 #define lcdOff = 8 ;LCD screen off
 #define lcdOn = 12 ;LCD screen on, no cursor
 #define curOff = 12 ;an alias for the above
 #define block = 13 ;LCD screen on, block cursor
 #define under = 14 ;LCD screen on, underline cursor
 #define undblk = 15 ;LCD screen on, blinking and underline cursor
 #define CLeft = 16 ;cursor left
 #define CRight = 20 ;cursor right
 #define panR = 24 ;pan viewing window right
 #define panL = 28 ;pan viewing window left
 #define bus4 = 32 ;4-bit data bus mode
 #define bus8 = 48 ;8-bit data bus mode
 #define mode1 = 32 ;one-line mode (alias)
 #define mode2 = 40 ;two-line mode
 #define line1 = 128 ;go to start of line 1
 #define line2 = 192 ;go to start of line 2
 ;----- Variables
 dim char, msn, lsn, index, ii as byte
 ;----- Main Program
 LoadEeprom ;load the EEprom with strings

 do forever
 printMsg(0) ;print first message
 wait 3 S ;pause 3 seconds
 printMsg(2) ;print next message
 wait 3 S ;pause 3 seconds
 repeat 5 ;blink it five times
 LCDCmd(lcdOff) ;display off
 wait 500 mS ;pause
 LCDCmd(lcdOn) ;display on
 wait 500 mS ;pause
 end repeat
 wait 1 S ;pause before next demo
 ;demonstrate panning
 printMsg(4) ;print next message
 wait 3 S ;pause 3 seconds
 repeat 16
 LCDCmd(panL) ;pan left a step at a time
 wait 300 mS ;slow down to avoid blur
 end repeat
 repeat 16
 LCDCmd(panR) ;then pan right
 wait 300 mS
 end repeat
 wait 1 S ;pause before next demo
 ;demonstrate moving the cursor
 printMsg(6) ;print next message

466

 wait 3 S ;pause 3 seconds
 LCDHome
 LCDCmd(under) ;choose underline cursor
 for ii = 0 to 15 ;move cursor across first line
 LCDCmd(line1+ii)
 wait 200 mS
 next i
 for ii = 0 to 15 ;move cursor across second line
 LCDCmd(line2+ii)
 wait 200 mS
 next i
 for ii = 15 to 0 step -1 ;move cursor back over second line
 LCDCmd(line2+ii)
 wait 200 mS
 next i
 for ii = 15 to 0 step -1 ;move cursor back over first line
 LCDCmd(line1+ii)
 wait 200 mS
 next i
 wait 3 S
 ;demonstrate blinking block cursor
 printMsg(8) ;print next message
 LCDHome ;home the cursor
 LCDCmd(block) ;choose blinking block cursor
 wait 4 S ;pause 4 seconds
 LCDCmd(mode1) ;change to one long line mode
 LCDHome ;home the cursor again
 LCDCmd(curOff) ;and disable it

 ;demonstrate scrolling a lengthy one-line marquee
 for ii = 0xd0 to 0xff ;print next message - the remaining EEPROM
 EPread ii, char ;fetch directly from eeprom
 print chr(char)
 next i
 wait 1 S
 LCDHome ;home cursor once more
 repeat 141 ;scroll message twice
 LCDCmd(panR)
 wait 250 mS
 end repeat
 wait 2 S
 LCDCmd(mode2) ;change back to two line mode
 CLS ;clear the screen
 ;demonstrate all of the characters
 printMsg(11) ;print next message
 for ii = 33 to 127 ;print first batch of ASCII characters
 LCDCmd(line1+12) ;overwrite each character displayed

467

 print chr(ii) ;this is the ASCII code
 wait 500 mS
 next i
 for ii = 161 to 255 ;print next batch of ASCII characters
 LCDCmd(line1+12)
 print chr(ii)
 wait 500 mS
 next i
 ;say good-bye
 LCDCmd(line2)
 printMsg(11) ;print next message
 LCDHome ;home the cursor
 loop
 end

 ;----- Print a message to the LCD
 ;The parameter 'row' points to the start of the string.
 sub printMsg(in row as byte, in Optional StringLength As Byte = 15)
 Locate 0, 0 ;get set for first line

 for ii = 0 to StringLength
 index = row*16+ii
 EPread index, char ;fetch next character and
 print chr(char) ;transmit to the LCD
 next

 Locate 1,0 ;get set for second line
 for ii = 0 to StringLength
 index = (row+1)*16+ii
 EPread index, char ;fetch next character and
 print chr(char) ;transmit to the LCD
 next
 end sub

 sub loadEeprom

 ' Strings for EEPROM, Strings should be limited to 16 characters for the first 13
sstrings, then a long string to fill eeprom
 WriteEeprom "First we'll show"
 WriteEeprom "this message. "
 WriteEeprom "Then we'll blink"
 WriteEeprom "five times. "
 WriteEeprom "Now lets pan "
 WriteEeprom "left and right. "
 WriteEeprom "Watch the line "
 WriteEeprom "cursor move. "
 WriteEeprom "A block cursor "
 WriteEeprom "is available. "

468

 WriteEeprom "Characters: "
 WriteEeprom "Bye! "
 WriteEeprom "in one line mode"
 WriteEeprom "Next well scroll this long message as a marquee"
 end sub

 ; Write to the device eeprom
 sub WriteEeprom (in Estring())

 Dim eeLocation as Byte 'if the EEPROM size was larger than 256 bytes then this
would need to be a WORD

 for eeLocation = 1 to len (Estring)
 HSersend Estring(eeLocation)
 epwrite eeLocation, Estring(eeLocation)
 next
 end sub

Supported in <LCD.H>

LCDCursor

Syntax:

 LCDCursor value

Command Availability:

Available on all microcontrollers.

Explanation:

The LCDCursor command will accept the following parameters:

LCDON, LCDOFF, CURSORON, CURSOROFF, FLASHON, FLASHOFF

FLASH, and ON/OFF have been retained for backward compatibility with older releases of GCB.

LCDON will turn on (restore) the LCD display.
LCDOFF will turn off (hide) the LCD display.
CURSORON will turn on the cursor.
CURSOROFF will turn off the cursor.
FLASHON will flash the cursor.
FLASHOFF will stop flashing the cursor.

469

Example :
#config osc = intrc

 #chip 16f877a, 8

 ;Defines (Constants)
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RS PORTA.6
 #define LCD_NO_RW
 #define LCD_Enable PORTA.7
 #define LCD_DB4 PORTB.4
 #define LCD_DB5 PORTB.5
 #define LCD_DB6 PORTB.6
 #define LCD_DB7 PORTB.7

 Start:
 CLS
 WAIT 3 s
 PRINT "START DEMO"
 locate 1,0
 PRINT "DISPLAY ON"

 wait 3 s

 CLS
 Locate 0,0
 Print "Cursor ON"
 Locate 1,0
 LCDcursor CursorOn
 wait 3 S

 CLS
 LCDcursor CursorOFF
 locate 0,0
 Print "Cursor OFF"
 wait 3 s

 CLS
 Locate 0,0
 Print "FLASH ON"
 Locate 1,0
 LCDcursor FLASHON
 wait 3 s

 CLS

470

 locate 0,0
 Print "FLASH OFF"
 LCDCURSOR FLASHOFF
 wait 3 sec

 Locate 0,0
 Print "CURSOR&FLASH ON" 'Both are on at the same time
 locate 1,0
 LCDCURSOR CURSORON
 LCDCURSOR FLASHON
 Wait 3 sec

 Locate 0,0
 Print "CURSOR FLASH OFF"
 locate 1,0
 LCDCURSOR CursorOFF
 LCDCURSOR FLASHOFF
 Wait 3 sec

 CLS
 Locate 0,4
 PRINT "Flashing"
 Locate 1,4
 Print "Display"
 wait 500 ms

 repeat 5
 LCDCURSOR LCDOFF
 wait 500 ms
 LCDCURSOR LCDON
 wait 500 ms
 end repeat

 CLS
 Locate 0,0
 Print "DISPLAY OFF"
 Locate 1,0
 Print "FOR 5 SEC"
 Wait 2 SEC
 LCDCURSOR LCDOFF
 WAIT 5 s

 CLS
 Locate 0,0
 LCDCURSOR LCDON
 Print "END DEMO"
 wait 3 s
 goto start

471

Supported in <LCD.H>

LCDHex

Syntax:

 LCDHex value

 LCDHex value, LeadingZeroActive

Command Availability:

Available on all microcontrollers.

Explanation:

The LCDHex will display the byte value as a 1 or 2 character HEX string.

value is a byte value from 0 to 255.

LeadingZeroActive is a constant or byte value of 2.

Example :

 ;Set chip model required:
 #chip mega328p, 16
 ;Setup LCD Parameters
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_NO_RW
 #define LCD_Speed MEDIUM 'FAST IS OK ON ARDUINO UNO R3

 'Change as necessary
 #define LCD_RS PortC.0
 #define LCD_Enable PortC.1
 #define LCD_DB4 PortC.2
 #define LCD_DB5 PortC.3
 #define LCD_DB6 PortC.4
 #define LCD_DB7 PortC.5

 ' #chip 16f877a, 8
 ' ;Setup LCD Parameters
 ' #define LCD_IO 4
 ' #define LCD_NO_RW
 ' #define LCD_Speed fast 'FAST IS OK ON 16f877a

472

 '
 ' ;Change as necessary
 ' #define LCD_RS PortB.2
 ' #define LCD_Enable PortB.3
 ' #define LCD_DB4 PortB.4
 ' #define LCD_DB5 PortB.5
 ' #define LCD_DB6 PortB.6
 ' #define LCD_DB7 PortB.7

 'Program Start
 DO Forever
 CLS
 WAIT 2 s
 PRINT "Test LCDHex "
 wait 3 s
 CLS
 wait 1 s

 for bv = 0 to 255
 locate 0,0
 Print "DEC " : Print BV
 locate 1,0
 Print "HEX "
 LCDHex BV, LeadingZeroActive ; dislay leading Zero
 ' LCDHex BV ; do not display leading zero
 wait 1 s
 next
 CLS
 wait 1 s
 Print "END TEST"
 LOOP

Supported in <LCD.H>

LCDHome

Syntax:

 LCDHome

Command Availability:

Available on all microcontrollers.

Explanation:

473

The LCDHome command will return the cursor to home position.

The currentcontents of the LCD screen will be retained.

Example:

 ;Chip Settings
 #chip 16F88,8

 ;Defines (Constants)
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RS PORTA.6
 #define LCD_NO_RW
 #define LCD_Enable PORTA.7
 #define LCD_DB4 PORTB.4
 #define LCD_DB5 PORTB.5
 #define LCD_DB6 PORTB.6
 #define LCD_DB7 PORTB.7

 Locate 0,0
 Print "Reset"
 wait 1 s
 ClS

 Cursor_Home_Tests:

 cls
 lcdcursor flash
 print "Test Home Cmd"
 LCDHome
 wait 3 s

Supported in <LCD.H>

LCDDisplayOn

Syntax:

 LCDDisplayOn

Explanation:

Will turn on (restore) the LCD display

474

See also LCDCursor

Supported in <LCD.H>

LCDDisplayOff

Syntax:

 LCDDisplayOff

Explanation:

Will turn off (hide) the LCD display.

See also LCDCursor

Supported in <LCD.H>

LCDSpace

Syntax:

 LCDSpace value

Command Availability:

Available on all microcontrollers.

Explanation:

The LCDSpace command will print the required number of spaces on the LCD display

value is a byte value from 1 to 255. Where the value is the number of spaces required.

Example :

475

 Locate 0,0
 Print "Reset"
 wait 1 s
 cls

 LCD_Space_Tests:

 lcdcursor flash

 lcdspace 12

 print "*"

Supported in <LCD.H>

LCDWriteChar

Syntax:

 LCDWriteChar char

Command Availability:

Available on all microcontrollers.

Explanation:

The LCDWriteChar command will show the specified character on the LCD, at the current cursor
position.

char is the ASCII value of the character to show. On most LCDs, characters 0 through 7 are user defined,
and can be set using the LCDCreateChar command.

Example :

476

 'This program draws a smiling face character

 'Create an array to store the character until it is copied
 Dim CharArray(8)

 'Set the array to hold the character
 CharArray(1) = b'00011011'
 CharArray(2) = b'00011011'
 CharArray(3) = b'00000000'
 CharArray(4) = b'00000100'
 CharArray(5) = b'00000000'
 CharArray(6) = b'00010001'
 CharArray(7) = b'00010001'
 CharArray(8) = b'00001110'

 'Copy the character from the array to the LCD
 LCDCreateChar 0, CharArray()

 'Draw the custom character
 LCDWriteChar 0

For more help, see LCDCreateChar, LCD Overview

Supported in <LCD.H>

Locate

Syntax:

 Locate Line, Column

Command Availability:

Available on all microcontrollers.

Explanation:

The Locate command is used to move the cursor on the LCD to the given location.

Line is line number on the LCD display. A byte value from 0 to 255.

Column is column number on the LCD display. A byte value from 0 to 255.

Example :

477

 'A Hello World program for GCBASIC.
 'Uses Locate to show "World" on the second line

 'General hardware configuration
 #chip 16F877A, 20

 'LCD connection settings
 #define LCD_IO 8
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_DATA_PORT PORTC
 #define LCD_RS PORTD.0
 #define LCD_RW PORTD.1
 #define LCD_Enable PORTD.2

 'Main routine
 Print "Hello"
 Locate 1, 5
 Print "World"

For more help, see LCD Overview

Supported in <LCD.H>

Print

Syntax:

 Print string
 Print byte
 Print word
 Print long
 Print integer

Command Availability:

Available on all microcontrollers.

Explanation:

The Print command will show the contents of a variable on the LCD. It can display string, word, byte,
long or integer variables.

Example:

478

 'A Light Meter program.

 'General hardware configuration
 #chip 16F877A, 20
 #define LightSensor AN0

 'LCD connection settings
 #define LCD_IO 8
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_DATA_PORT PORTC
 #define LCD_RS PORTD.0
 #define LCD_RW PORTD.1
 #define LCD_Enable PORTD.2

 CLS
 Print "Light Meter"
 Locate 1,2
 Print "A GCBASIC Demo"
 Wait 2 s

 Do
 CLS
 Print "Light Level: "
 Print ReadAD(LightSensor)
 Wait 250 ms
 Loop

For more help, see LCD Overview

Supported in <LCD.H>

Put

Syntax:

 Put Line, Column, Character

Command Availability:

Available on all microcontrollers.

Explanation:

The Put command writes the given ASCII character code to the current location on the LCD.

479

Line is line number on the LCD display. A byte value from 0 to 255.

Column is column number on the LCD display. A byte value from 0 to 255.

Character is the requried ASCII code. A byte value from 0 to 255.

Example :

 'A scrolling star for GCBASIC

 'Misc Settings
 #define SCROLL_DELAY 250 ms

 'General hardware configuration
 #chip 16F877A, 20

 'LCD connection settings
 #define LCD_IO 8
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_DATA_PORT PORTC
 #define LCD_RS PORTD.0
 #define LCD_RW PORTD.1
 #define LCD_Enable PORTD.2

 'Main routine
 For StarPos = 0 To 16
 If StarPos = 0 Then
 Put 0, 16, 32
 Put 0, 0, 42
 Else
 Put 0, StarPos - 1, 32
 Put 0, StarPos, 42
 End If
 Wait SCROLL_DELAY
 Next

For more help, see LCD Overview

Supported in <LCD.H>

480

Examples

LCD_IO 2 Example

This a connection mode 2 Serial Driver to demonstrate LCD features. This for the 16F877A, but, it can
easily be adapted for other microcontrollers.

A 2 by 16 LCD is assumed.

Based on the works by Thomas Henry and then revised Evan R. Venn

 #chip 16F877A,20

 #define LCD_IO 2
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_DB portb.2
 #define LCD_CB portb.0
 #define LCD_NO_RW
 ;Here are various LCD commands which can be used.
 ;These are the LCD commands for the HD44780 controller

 #define clrHome = 1 ;clear the display, home the cursor
 #define home = 2 ;home the cursor only
 #define RtoL = 4 ;print characters right to left
 #define insR = 5 ;insert characters to right
 #define LtoR = 6 ;print characters left to right
 #define insL = 7 ;insert characters to left
 #define lcdOff = 8 ;LCD screen off
 #define lcdOn = 12 ;LCD screen on, no cursor
 #define curOff = 12 ;an alias for the above
 #define block = 13 ;LCD screen on, block cursor
 #define under = 14 ;LCD screen on, underline cursor
 #define undblk = 15 ;LCD screen on, blinking and underline cursor
 #define CLeft = 16 ;cursor left
 #define CRight = 20 ;cursor right
 #define panR = 24 ;pan viewing window right
 #define panL = 28 ;pan viewing window left
 #define bus4 = 32 ;4-bit data bus mode
 #define bus8 = 48 ;8-bit data bus mode
 #define mode1 = 32 ;one-line mode (alias)
 #define mode2 = 40 ;two-line mode
 #define line1 = 128 ;go to start of line 1
 #define line2 = 192 ;go to start of line 2
 ;----- Variables
 dim char, msn, lsn, index, ii as byte
 ;----- Main Program

481

 LoadEeprom ;load the EEprom with strings

 do forever
 printMsg(0) ;print first message
 wait 3 S ;pause 3 seconds
 printMsg(2) ;print next message
 wait 3 S ;pause 3 seconds
 repeat 5 ;blink it five times
 LCDCmd(lcdOff) ;display off
 wait 500 mS ;pause
 LCDCmd(lcdOn) ;display on
 wait 500 mS ;pause
 end repeat
 wait 1 S ;pause before next demo
 ;demonstrate panning
 printMsg(4) ;print next message
 wait 3 S ;pause 3 seconds
 repeat 16
 LCDCmd(panL) ;pan left a step at a time
 wait 300 mS ;slow down to avoid blur
 end repeat
 repeat 16
 LCDCmd(panR) ;then pan right
 wait 300 mS
 end repeat
 wait 1 S ;pause before next demo
 ;demonstrate moving the cursor
 printMsg(6) ;print next message
 wait 3 S ;pause 3 seconds
 doHome ;home cursor
 LCDCmd(under) ;choose underline cursor
 for ii = 0 to 15 ;move cursor across first line
 LCDCmd(line1+i)
 wait 200 mS
 next i
 for ii = 0 to 15 ;move cursor across second line
 LCDCmd(line2+i)
 wait 200 mS
 next i
 for ii = 15 to 0 step -1 ;move cursor back over second line
 LCDCmd(line2+i)
 wait 200 mS
 next i
 for ii = 15 to 0 step -1 ;move cursor back over first line
 LCDCmd(line1+i)
 wait 200 mS
 next i
 wait 3 S

482

 ;demonstrate blinking block cursor
 printMsg(8) ;print next message
 doHome ;home the cursor
 LCDCmd(block) ;choose blinking block cursor
 wait 4 S ;pause 4 seconds
 LCDCmd(mode1) ;change to one long line mode
 doHome ;home the cursor again
 LCDCmd(curOff) ;and disable it

 ;demonstrate scrolling a lengthy one-line marquee
 for ii = 0xd0 to 0xff ;print next message - the remaining EEPROM
 EPread ii, char ;fetch directly from eeprom
 print chr(char)
 next i
 wait 1 S
 doHome ;home cursor once more
 repeat 141 ;scroll message twice
 LCDCmd(panR)
 wait 250 mS
 end repeat
 wait 2 S
 LCDCmd(mode2) ;change back to two line mode
 doClr ;clear the screen
 ;demonstrate all of the characters
 printMsg(11) ;print next message
 for ii = 33 to 127 ;print first batch of ASCII characters
 LCDCmd(line1+12) ;overwrite each character displayed
 print chr(ii) ;this is the ASCII code
 wait 500 mS
 next i
 for ii = 161 to 255 ;print next batch of ASCII characters
 LCDCmd(line1+12)
 print chr(ii)
 wait 500 mS
 next i
 ;say good-bye
 LCDCmd(line2)
 printMsg(11) ;print next message
 doHome ;home the cursor
 loop

 end

 ;----- Clear the screen
 sub doClr
 LCDCmd(clrHome)
 wait 5 mS ;this command takes extra time

483

 end sub

 ;----- Home the cursor
 sub doHome
 LCDCmd(home)
 wait 5 mS ;and so does this one
 end sub

 ;----- Print a message to the LCD
 ;The parameter 'row' points to the start of the string.
 sub printMsg(in row as byte, in Optional StringLength As Byte = 15)
 LCDCmd(line1) ;get set for first line

 for ii = 0 to StringLength
 index = row*16+ii
 EPread index, char ;fetch next character and
 print chr(char) ;transmit to the LCD
 next
 LCDCmd(line2) ;get set for second line
 for ii = 0 to StringLength
 index = (row+1)*16+ii
 EPread index, char ;fetch next character and
 print chr(char) ;transmit to the LCD
 next
 end sub

 sub loadEeprom

 ' Strings for EEPROM, Strings should be limited to 16 characters for the first 13
sstrings, then a long string to fill eeprom
 location = 0
 WriteEeprom "First we'll show"
 WriteEeprom "this message. "
 WriteEeprom "Then we'll blink"
 WriteEeprom "five times. "
 WriteEeprom "Now lets pan "
 WriteEeprom "left and right. "
 WriteEeprom "Watch the line "
 WriteEeprom "cursor move. "
 WriteEeprom "A block cursor "
 WriteEeprom "is available. "
 WriteEeprom "Characters: "
 WriteEeprom "Bye! "
 WriteEeprom "in one line mode"
 WriteEeprom "Next well scroll this long message as a marquee"

 end sub

484

 ; Write to the device eeprom
 sub WriteEeprom (in Estring()) as string * 64

 for ee = 1 to len (Estring)
 HSersend Estring(ee)
 epwrite location, Estring(ee)
 location++
 next

 end sub

LCD_IO 4 Example

This is a connection mode 4 Driver to demonstrate LCD features. This for the 16F877A, but, it can easily
be adapted for other microcontrollers.

A 2 by 16 LCD is assumed.

 #chip 16F877A,20

 'Use LCD in 4 pin mode and define LCD pins
 #define LCD_IO 4
 #define LCD_RW PORTE.1
 #define LCD_RS PORTE.0
 #define LCD_Enable PORTE.2
 #define LCD_DB4 PORTD.4
 #define LCD_DB5 PORTD.5
 #define LCD_DB6 PORTD.6
 #define LCD_DB7 PORTD.7
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width

 ;----- Main Program

 do forever

 Print "GCBASIC 2021"
 wait 3 s
 CLS

 loop
 end

LCD_IO 8 Example

This is an connection mode 8 Driver to demonstrate LCD features. This for the 16F877A, but, it can

485

easily be adapted for other microcontrollers.

A 2 by 16 LCD is assumed.

Based on the works by Thomas Henry and then revised Evan R. Venn

 #chip 16F877A,20

 'Use LCD in 8 pin mode and define LCD pins
 #define LCD_IO 8
 #define LCD_RW PORTE.1
 #define LCD_RS PORTE.0
 #define LCD_Enable PORTE.2
 #define LCD_Data_Port PORTD
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width

 ;Here are various LCD commands which can be used.
 ;These are the LCD commands for the HD44780 controller
 #define clrHome = 1 ;clear the display, home the cursor
 #define home = 2 ;home the cursor only
 #define RtoL = 4 ;print characters right to left
 #define insR = 5 ;insert characters to right
 #define LtoR = 6 ;print characters left to right
 #define insL = 7 ;insert characters to left
 #define lcdOff = 8 ;LCD screen off
 #define lcdOn = 12 ;LCD screen on, no cursor
 #define curOff = 12 ;an alias for the above
 #define block = 13 ;LCD screen on, block cursor
 #define under = 14 ;LCD screen on, underline cursor
 #define undblk = 15 ;LCD screen on, blinking and underline cursor
 #define CLeft = 16 ;cursor left
 #define CRight = 20 ;cursor right
 #define panR = 24 ;pan viewing window right
 #define panL = 28 ;pan viewing window left
 #define bus4 = 32 ;4-bit data bus mode
 #define bus8 = 48 ;8-bit data bus mode
 #define mode1 = 32 ;one-line mode (alias)
 #define mode2 = 40 ;two-line mode
 #define line1 = 128 ;go to start of line 1
 #define line2 = 192 ;go to start of line 2
 ;----- Variables
 dim char, msn, lsn, index, ii as byte
 ;----- Main Program
 LoadEeprom ;load the EEprom with strings

486

 do forever
 printMsg(0) ;print first message
 wait 3 S ;pause 3 seconds
 printMsg(2) ;print next message
 wait 3 S ;pause 3 seconds
 repeat 5 ;blink it five times
 LCDCmd(lcdOff) ;display off
 wait 500 mS ;pause
 LCDCmd(lcdOn) ;display on
 wait 500 mS ;pause
 end repeat
 wait 1 S ;pause before next demo
 ;demonstrate panning
 printMsg(4) ;print next message
 wait 3 S ;pause 3 seconds
 repeat 16
 LCDCmd(panL) ;pan left a step at a time
 wait 300 mS ;slow down to avoid blur
 end repeat
 repeat 16
 LCDCmd(panR) ;then pan right
 wait 300 mS
 end repeat
 wait 1 S ;pause before next demo
 ;demonstrate moving the cursor
 printMsg(6) ;print next message
 wait 3 S ;pause 3 seconds
 doHome ;home cursor
 LCDCmd(under) ;choose underline cursor
 for ii = 0 to 15 ;move cursor across first line
 LCDCmd(line1+i)
 wait 200 mS
 next i
 for ii = 0 to 15 ;move cursor across second line
 LCDCmd(line2+i)
 wait 200 mS
 next i
 for ii = 15 to 0 step -1 ;move cursor back over second line
 LCDCmd(line2+i)
 wait 200 mS
 next i
 for ii = 15 to 0 step -1 ;move cursor back over first line
 LCDCmd(line1+i)
 wait 200 mS
 next i
 wait 3 S
 ;demonstrate blinking block cursor
 printMsg(8) ;print next message

487

 doHome ;home the cursor
 LCDCmd(block) ;choose blinking block cursor
 wait 4 S ;pause 4 seconds
 LCDCmd(mode1) ;change to one long line mode
 doHome ;home the cursor again
 LCDCmd(curOff) ;and disable it

 ;demonstrate scrolling a lengthy one-line marquee
 for ii = 0xd0 to 0xff ;print next message - the remaining EEPROM
 EPread ii, char ;fetch directly from eeprom
 print chr(char)
 next i
 wait 1 S
 doHome ;home cursor once more
 repeat 141 ;scroll message twice
 LCDCmd(panR)
 wait 250 mS
 end repeat
 wait 2 S
 LCDCmd(mode2) ;change back to two line mode
 doClr ;clear the screen
 ;demonstrate all of the characters
 printMsg(11) ;print next message
 for ii = 33 to 127 ;print first batch of ASCII characters
 LCDCmd(line1+12) ;overwrite each character displayed
 print chr(ii) ;this is the ASCII code
 wait 500 mS
 next i
 for ii = 161 to 255 ;print next batch of ASCII characters
 LCDCmd(line1+12)
 print chr(ii)
 wait 500 mS
 next i
 ;say good-bye
 LCDCmd(line2)
 printMsg(11) ;print next message
 doHome ;home the cursor
 loop
 end

 ;----- Clear the screen
 sub doClr
 LCDCmd(clrHome)
 wait 5 mS ;this command takes extra time
 end sub

 ;----- Home the cursor

488

 sub doHome
 LCDCmd(home)
 wait 5 mS ;and so does this one
 end sub

 ;----- Print a message to the LCD
 ;The parameter 'row' points to the start of the string.
 sub printMsg(in row as byte, in Optional StringLength As Byte = 15)
 LCDCmd(line1) ;get set for first line

 for ii = 0 to StringLength
 index = row*16+ii
 EPread index, char ;fetch next character and
 print chr(char) ;transmit to the LCD
 next
 LCDCmd(line2) ;get set for second line
 for ii = 0 to StringLength
 index = (row+1)*16+ii
 EPread index, char ;fetch next character and
 print chr(char) ;transmit to the LCD
 next
 end sub

 sub loadEeprom

 ' Strings for EEPROM, Strings should be limited to 16 characters for the first 13
sstrings, then a long string to fill eeprom
 location = 0
 WriteEeprom "First we'll show"
 WriteEeprom "this message. "
 WriteEeprom "Then we'll blink"
 WriteEeprom "five times. "
 WriteEeprom "Now lets pan "
 WriteEeprom "left and right. "
 WriteEeprom "Watch the line "
 WriteEeprom "cursor move. "
 WriteEeprom "A block cursor "
 WriteEeprom "is available. "
 WriteEeprom "Characters: "
 WriteEeprom "Bye! "
 WriteEeprom "in one line mode"
 WriteEeprom "Next well scroll this long message as a marquee"
 end sub

 ; Write to the device eeprom
 sub WriteEeprom (in Estring()) as string * 64
 for ee = 1 to len (Estring)

489

 HSersend Estring(ee)
 epwrite location, Estring(ee)
 location++
 next
 end sub

LCD_IO 10 Example

This is an connection mode 10 I2C Driver to demonstrate LCD features. This for the 16F877A, but, it can
easily be adapted for other microcontrollers.

A 2 by 16 LCD is assumed with the LCD being driven using an LCD I2C adapter. Two types are
supported the YwRobot LCD1602 IIC V1 / a Sainsmart LCD_PIC I2C adapter or the Ywmjkdz I2C adapter
with pot bent over top of chip.

The demonstrates reading a DS18B20 and showing the results on the LCD.

Example:

 #chip mega328p, 16
 #include <DS18B20.h>

 ; ----- Define Hardware settings
 ' Define I2C settings - CHANGE PORTS
 #DEFINE I2C_MODE Master
 #DEFINE I2C_DATA PORTC.4
 #DEFINE I2C_CLOCK PORTC.5
 #DEFINE I2C_DISABLE_INTERRUPTS ON

 '''Set up LCD
 #DEFINE LCD_IO 10
 #DEFINE LCD_I2C_ADDRESS_1 0x4E ; LCD 1
 #DEFINE LCD_I2C_ADDRESS_2 0x4C ; LCD 2

 ; ----- Constants
 ' DS18B20 port settings - this is required
 #DEFINE DQ PortC.3

 ; ----- Quick Command Reference:

 '''Set LCD_10 to 10 for the YwRobot LCD1602 IIC V1 or the Sainsmart LCD_PIC I2C
adapter
 '''Set LCD_10 to 12 for the Ywmjkdz I2C adapter with pot bent over top of chip

 ; ----- Variables
 dim TempC_100 as word ' a variabler to handle the temperature calculations
 dim DSdataRaw as Integer

490

 ; ----- Main body of program commences here.

 'Change to the correct LCD by setting LCD_I2C_ADDRESS_Current to the correct
address then write to LCD.
 LCD_I2C_ADDRESS_Current = LCD_I2C_ADDRESS_1: DisplayInformation (1)
 LCD_I2C_ADDRESS_Current = LCD_I2C_ADDRESS_2: DisplayInformation (1)
 wait 4 s
 LCD_I2C_ADDRESS_Current = LCD_I2C_ADDRESS_1: CLS
 LCD_I2C_ADDRESS_Current = LCD_I2C_ADDRESS_2: CLS

 ccount = 0
 Do forever

 ' The function readtemp12 returns the raw value of the sensor.
 ' The sensor is read as a 12 bit value therefore each unit equates to 0.0625 of a
degree
 DSdataRaw = readtemp12 ; save to this variable to prevent the delay bewtween
screen up dates
 ' The function readtemp returns the integer value of the sensor
 DSdata = readtemp

 LCD_I2C_ADDRESS_Current = LCD_I2C_ADDRESS_1: DisplayInformation (2) ; update
LCD1
 LCD_I2C_ADDRESS_Current = LCD_I2C_ADDRESS_2: DisplayInformation (2) ; update
LCD2
 DSdata = DSdataRaw ; Set the data
 LCD_I2C_ADDRESS_Current = LCD_I2C_ADDRESS_1: DisplayInformation (3) ; update
LCD1
 DSdata= DSdataRaw ; Set the data
 LCD_I2C_ADDRESS_Current = LCD_I2C_ADDRESS_2: DisplayInformation (3) ; update
LCD2

 ccount++

 wait 1 s

 loop
 End

 Sub DisplayInformation (LCDCommand)

 Select case LCDCommand

 Case 1
 CLS
 print "GCBASIC 2021"

491

 locate 1,0
 print "DS18B20 Demo"

 Case 2
 ' Display the integer value of the sensor on the LCD
 locate 0,0
 print hex(ccount)
 print " Ceil"
 locate 0,8
 print DSdata
 print chr(223)+"C"+" "

 Case 3

 ' Display the integer and decimal value of the sensor on the LCD

 SignBit = DSdata / 256 / 128
 If SignBit = 0 Then goto Positive
 ' its negative!
 DSdata = (DSdata # 0xffff) + 1 ' take twos comp

 Positive:

 ' Convert value * 0.0625. Mulitple value by 6 then add result to
multiplication of the value with 25 then divide result by 100.
 TempC_100 = DSdata * 6
 DSdata = (DSdata * 25) / 100
 TempC_100 = TempC_100 + DSdata

 Whole = TempC_100 / 100
 Fract = TempC_100 % 100
 If SignBit = 0 Then goto DisplayTemp
 Print "-"

 DisplayTemp:
 locate 1,0
 print hex(ccount)
 print " Real"
 locate 1,8
 print str(Whole)
 print "."
 ' To ensure the decimal part is two digits
 Dig = Fract / 10
 print Dig
 Dig = Fract % 10
 print Dig
 print chr(223)
 print "C"+" "

492

 End Select

 end sub

493

Pulse width modulation
This is the Pulse width modulation section of the Help file. Please refer the sub-sections for details
using the contents/folder view for the MicroChip PIC PWM capabilities and the ATMEL AVR PWM
capabilities.

Microchip PIC PWM Overview

Introduction:

The methods described in this section allow the generation of Pulse Width Modulation (PWM) signals.
PWM signals enables the microcontroller to control items like the speed of a motor, or the brightness
of a LED or lamp.

The methods can also be used to generate the appropriate frequency signal to drive an infrared LED
for remote control applications.

GCBASIC support the four different method shown below:
 - Two methods use the microcontroller CCP module
 - One method uses the microcontroller PWM module, and
 - One method is a software emulation of PWM.

Hardware PWM using a CCP module

Using PWM with the CCP module: This option requires a CCP module within the microcontroller.

Hardware PWM is only available through the "CCP" or "CCPx" pin. This is a hardware limitation of
Microchip PIC microcontrollers.

Microcontrollers with PPS can change the pin - use the PPS tool to set the desired output pin.

This method uses three parameters to setup the PWM.

 'HPWM channel, frequency, duty cycle
 HPWM 1, 76, 80

Hardware PWM using a PWM module

Using microcontroller PWM module. This option requires a PWM module within the microcontroller
Microcontrollers with PPS can change the pin - use the PPS tool to set the desired output pin.

This method uses four parameters to setup the PWM.

 'HPWM channel, frequency, duty cycle, timer
 HPWM 5, 76, 80, 2

494

Hardware PWM using the CCP1 in fixed mode

Using Hardware PWM on fixed mode PWM requires a CCP1 module.

The fixed mode can use CCP1 only, and, the parameters of the PWM cannot be dynamically changed in
the user program. The parameters are fixed by the definition of two constants.

 #define PWM_Freq 76 'Set frequency in KHz
 #define PWM_Duty 80 'Set duty cycle to 80 %

 HPWMOn

 wait 5 s

 HPWMOff

Software PWM

Using Software PWM on requires no specific modules with the microcontroller.

The PWM parameters for duty and the number of pulses can be changed dynamically in the user
program.

The PWM is only operational for the number of cycles stated in the calling method.

 'A call to use the software PWM on the specific port, with a duty of 127 for 100
cycles

 ; ----- Constants
 'PWM constant. This is a required constant.
 #define PWM_Out1 portb.0

 ; ----- Define Hardware settings
 'PWM port out. This is not required but a good practice.
 dir PWM_Out1 out

 'Pulse the PWM
 PWMOut 1, 127, 100

Relevant Constants:

A number of constants are used to control settings for the PWM hardware module of the
microcontroller. To set them, place a line in the main program file that uses #define to assign a value to
the particular constant.

495

PWM Software Mode

Syntax:

 PWMOut channel, duty cycle, cycles

Command Availability:

Available on all microcontrollers. This method does NOT require a PWM module within the
microcontroller.

This command uses a software PWM routine within GCBASIC to produce a PWM signal on the selected
port of the chip.

The method PWMOut does not make use of any special hardware within the microcontroller. The PWM
signal is generated only while the PWMOut command is executing - therefore, when the PWMOut is not
executing by moving onto the next command, the PWM signal will stop.

For more help, see PWMOut

PWMOut

Syntax:

 PWMOut channel, duty cycle, cycles

Command Availability:

Available on all microcontrollers. This method does NOT require a PWM module within the
microcontroller.

This command uses a software PWM routine within GCBASIC to produce a PWM signal on the selected
port of the chip.

The method PWMOut does not make use of any special hardware within the microcontroller. The PWM
signal is generated only while the PWMOut command is executing - therefore, when the PWMOut is not
executing by moving onto the next command, the PWM signal will stop.

Explanation :

channel sets the channel that the PWM is to be generated on. This must have been defined previously
by setting the constants PWM_Out1

PWM_Out2, PWM_Out3 or PWM_Out4. The maximum number of channels available is 4.

duty cycle specifies the PWM duty cycle, and ranges from 0 to 255. 255 corresponds to 100%, 127 to

496

50%, 63 to 25%, and so on.

cycles is used to set the amount of PWM pulses to supply. This is useful for situations in which a pulse
of a specific length is required.

The formula for calculating the time taken for one cycle is:

 TCYCLE = (28 + 10C)TOSC+ (255 * PWM_Delay)

where:

 -C is the number of channels used
 -TOSC is the length of time taken to execute 1 instruction on the chip (0.2 us on a 20 MHz chip, 1 us on a
4 Mhz chip)
 -PWM_Delay is a length of time specified using the PWM_Delay constant

Example 1 :

497

 'This program controls the brightness of an LED on PORTB.0
 'using the software PWM routine and a potentiometer.
 #chip 16f877a, 20

 ; ----- Constants
 'PWM constant. This is a required constant.
 #define PWM_Out1 portb.0

 ; ---- Optional Constant to add an delay after PWM pulse
 ''#Define PWM_Delay 1 us

 ; ----- Define Hardware settings
 'PWM port out. This is not required but good practice.
 dir PWM_Out1 out

 'A potentiometer is attached to ANO

 ; ----- Variables
 ' No Variables specified in this example.

 ; ----- Main body of program commences here.
 do
 '100 cycles is a purely arbitrary value as the loop will maintain a relatively
constant PWM
 PWMOut 1, ReadAD(AN0), 100
 loop

end

Example 2 :

498

 'This program controls the brightness of an LED on gpio.1
 'using the software PWM routine and a potentiometer.
 #chip 12f675, 4

 ; ----- Constants
 'PWM constant. This is a required constant.
 #define PWM_Out1 gpio.1

 ; ----- Define Hardware settings
 'PWM port out. This is not required but good practice.
 dir PWM_Out1 out

 'A potentiometer is attached to ANO

 ; ----- Variables
 ' No Variables specified in this example.

 ; ----- Main body of program commences here.
 do
 '100 cycles is a purely arbitrary value
 PWMOut 1, ReadAD(AN0), 100
 loop
 end

HPWM CCP

Syntax:

 HPWM channel, frequency, duty cycle

Command Availability:

Only available on Microchip PIC microcontrollers with Capture/Compare/PWM (CCP) module.

This command supports the CCP 8 bit support with Timer 2 only.

For CCP/PWM support for timers 2, 4 and 6, if the specific devices supports alternative CCP/PWM clock
sources - see here HPWM_CCPTimerN

For PWM 10 Bit support with other timers - see here HPWM 10 Bit

Explanation:

This command sets up the hardware PWM module of the Microchip PIC microcontroller to generate a
PWM waveform of the given frequency and duty cycle.

499

If you only need one particular frequency and duty cycle, you should use PWMOn and the constants
PWM_Freq and PWM_Duty instead.

channel is 1, 2, 3, 4 or 5, and corresponds to the pins CCP1, CCP2, CCP3, CCP4 and CCP5 respectively. On
chips with only one CCP port, pin CCP or CCP1 is always used, and channel is ignored. (It should be set
to 1 anyway to allow for future upgrades to more powerful microcontrollers.)

frequency sets the frequency of the PWM output. It is measured in KHz. The maximum value allowed is
255 KHz. The minimum value varies depending on the clock speed. 1 KHz is the minimum on chips 16
MHz or under and 2 Khz is the lowest possible on 20 MHz chips. In situations that do not require a
specific PWM frequency, the PWM frequency should equal approximately 1 five-hundredth the clock
speed of the microcontroller (ie 40 Khz on a 20 MHz chip, 16 KHz on an 8 MHz chip). This gives the best
duty cycle resolution possible.

duty cycle specifies the desired duty cycle of the PWM signal, and ranges from 0 to 255 where 255 is
100% duty cycle.

To stop the PWM signal use the HPWMOff method with the parameter of the channel.

 'Stop the CCP/PWM signal
 HPWMOff (1)

The optional constant HPWM_FAST can be defined to enable the recalculation of the timer prescaler when
needed. This will provide faster operation, but uses extra byte of RAM and may cause problems if HPWM
and PWMOn are used together in a program. This will not cause any issue when using HPWM and PWMOff in
the same program with HPWM_FAST.

The optional constant DisableCCPFixedModePWM can be defined to prevent Timer2 from being enabled.
This constant may be required when you need to use Timer2 for non-CCP/PWM support.

Example:

500

 'This program will alter the brightness of an LED using
 'CCP/PWM.

 'Select chip model and speed
 #chip 16F877A, 20

 'Set the CCP1 pin to output mode
 DIR PORTC.2 out

 'Main code
 do
 'Turn up brightness over the range
 For Bright = 1 to 255
 HPWM 1, 40, Bright
 wait 10 ms
 next
 'Turn down brightness over the range
 For Bright = 255 to 1 Step -1
 HPWM 1, 40, Bright
 wait 10 ms
 next
 loop

HPWMUpdate for CCP/PWM Modules(s)

Syntax:

 HPWMUpdate (channel, duty_cycle)

Command Availability:

Available on Microchip PIC microcontrollers with the CCP module.

Explanation:

This command updates the duty cycle only.

• You MUST have previously called the HPWM CCP command using the full command to set the
channel specific settings for frequency and timer source. See the example below for the usage.

• You MUST specify the constant #define HPWM_FAST to support HPWMUpdate when using CCP
module.

This command only supports the previously called HPWM CCP command, or, if you have set more than
one HPWM CCP channel then to use the command you must have set the channel to the same
frequency.

501

The command only supports the CCP module of the Microchip PIC microcontroller to generate a PWM
waveform at the previously defined frequency and timer source.

channel is 1, 2, 3, 4 or 5. These corresponds to the CCP1 through to CCP5 respectively. The channel
MUST be supported by the microcontroller. Check the microcontroller specific datasheet for the
available channel.

duty cycle specifies the desired duty cycle of the PWM signal, and ranges from 0 to 255 where 255 is
100% duty cycle.

Example for CCP PWM:

 'This program will alter the brightness of an LED using
 'hardware PWM.

 #chip 16F1938
 #option Explicit

 'Set the direction of the CCP/PWM port
 DIR portc.2 Out

 #define HPWM_FAST 'Required to support HPWMUpdate when using CCP module
 HPWM 1, 40, dutyvalue

 do
 'use for-loop to show the duty changing a 8bit value
 dim dutyvalue as byte
 for dutyvalue = 0 to 255
 HPWMUpdate 1, dutyvalue
 wait 10 ms
 next
 for dutyvalue = 254 to 1
 HPWMUpdate 1, dutyvalue
 wait 10 ms
 next
 loop

For more help, see PWMOff

HPWMOff

Syntax:

502

 HPWMOff (channel) 'selectively turn off the CCP channel

 HPWMOff 'turn off CCP channel 1 only

Command Availability:

Only available on Microchip PIC microcontrollers with Capture&Compare/PWM (CCP) modules.

Explanation:

This command will disable the output of the CCP1/PWM module on the Microchip PIC chip.

Example:

 'Select chip model and speed
 #chip 16F877A, 20

 'Set the CCP1 pin to output mode
 DIR PORTC.2 out

 'Main code
 do
 'Turn up brightness over 2.5 seconds
 For Bright = 1 to 255
 HPWM 1, 40, Bright
 wait 10 ms
 next

 wait 1 s
 HPWMOff (1)' turn off the PWM channel

 loop

For more help, see HPWMOff

HPWM_CCPTimerN

Syntax:

 HPWM_CCPTimerN channel, frequency, duty cycle [, timer 2, 4 or 6]

Command Availability:

Only available on Microchip PIC microcontrollers with Capture/Compare/PWM (CCP) module.

503

This command supports the CCP 8 bit support with selectable Timer 2, 4 or 6 only for CCP/PWM only.

For CCP/PWM support for timers 2 only see HPWM CCPTimer

Explanation:

This command sets up the hardware PWM module of the Microchip PIC microcontroller to generate a
PWM waveform of the given frequency and duty cycle.

If you only need one particular frequency and duty cycle, you should use PWMOn and the constants
PWM_Freq and PWM_Duty instead.

channel is 1, 2, 3, 4 or 5, and corresponds to the pins CCP1, CCP2, CCP3, CCP4 and CCP5 respectively. On
chips with only one CCP port, pin CCP or CCP1 is always used, and channel is ignored. (It should be set
to 1 anyway to allow for future upgrades to more powerful microcontrollers.)

frequency sets the frequency of the PWM output. It is measured in KHz. The maximum value allowed is
255 KHz. The minimum value varies depending on the clock speed. 1 KHz is the minimum on chips 16
MHz or under and 2 Khz is the lowest possible on 20 MHz chips. In situations that do not require a
specific PWM frequency, the PWM frequency should equal approximately 1 five-hundredth the clock
speed of the microcontroller (ie 40 Khz on a 20 MHz chip, 16 KHz on an 8 MHz chip). This gives the best
duty cycle resolution possible.

duty cycle specifies the desired duty cycle of the PWM signal, and ranges from 0 to 255 where 255 is
100% duty cycle.

timer specifies the timer source. Timers 2, 4 and 6 are supported.

To stop the PWM signal use the HPWMOff method with the parameter of the channel.

 'Stop the CCP/PWM signal
 HPWMOff (1)

Example:

504

 #chip 16F1825, 4

 DIR portc Out
 DIR porta Out

 initialisation:

 'Command as follows:
 ' HPWM_CCPTimerN CCP_Channel, Frequency, Duty, Timer Source. Timer source defaults
to timer 2, so, the timersource is optional.

 HPWM_CCPTimerN 3, 30, 77 , 4 'CCP/PWM module 3 using timer 4
 HPWM_CCPTimerN 4, 40, 102, 6 'CCP/PWM module 4 using timer 6
 HPWM 1, 10, 26 'CCP/PWM module 1 with no parameter therefore
timer 2

 do
 loop

HPWMOff

Syntax:

 HPWMOff (channel) 'selectively turn off the CCP channel

 HPWMOff 'turn off CCP channel 1 only

Command Availability:

Only available on Microchip PIC microcontrollers with Capture&Compare/PWM (CCP) modules.

Explanation:

This command will disable the output of the CCP1/PWM module on the Microchip PIC chip.

Example:

505

 'Select chip model and speed
 #chip 16F877A, 20

 'Set the CCP1 pin to output mode
 DIR PORTC.2 out

 'Main code
 do
 'Turn up brightness over 2.5 seconds
 For Bright = 1 to 255
 HPWM 1, 40, Bright
 wait 10 ms
 next

 wait 1 s
 HPWMOff (1)' turn off the PWM channel

 loop

For more help, see HPWMOff

HPWM 10 Bit

Syntax:

 HPWM channel, frequency, duty cycle, timer [, resolution]

Command Availability:

Only available on Microchip PIC microcontrollers with the 10-bit PWM module.

For the Capture/Compare/PWM (CCP) module, see here HPWM CCP

Explanation:

This command sets up the hardware PWM module of the Microchip PIC microcontroller to generate a
PWM waveform of the given frequency and duty cycle. Once this command is called, the PWM will be
emitted until PWMOff is called.

channel is 1, 2, 3, 4, 5, 6, 7 or 8. These corresponds to the HPWM1 through to HPWM8 respectively.
The 10-bit PWM channel MUST be supported by the microcontroller. Check the microcontroller
specific datasheet for the available channel.

frequency sets the frequency of the PWM output. It is measured in KHz. The maximum value allowed is
255 KHz. The minimum value varies depending on the clock speed. 1 KHz is the minimum on chips 16

506

MHz or under and 2 Khz is the lowest possible on 20 MHz chips. In situations that do not require a
specific PWM frequency, the PWM frequency should equal approximately 1 five-hundredth the clock
speed of the microcontroller (ie 40 Khz on a 20 MHz chip, 16 KHz on an 8 MHz chip). This gives the best
duty cycle resolution possible.

duty cycle specifies the desired duty cycle of the PWM signal, and ranges from 0 to 1023 where 1023 is
100% duty cycle. This should be a WORD value. Note: Byte values are supported as a Byte value is
factorised to a Word value. To use a Byte value and to ensure the 10-bit resolution you should cast the
parameter as a Word, [WORD]byte_value or [WORD]constant_value

timer specifies the desired timer to be used. These can be timer 2, 4 or 6.

Optional resolution specifies the desired resolution to be used. These can be either 255 or 1023. The
rational of this optional parameter is to support the duty cycle with a BYTE or a WORD range. If you
call the method with a WORD the resolution will be set to 1023.

Notes:

PWM channels 1 and 2 are disable by default. You must enable using the constants USE_HPWMn
where n is the PWM channel you want to enable. You can disable any PWM channel by setting the
appropiatge change to FALSE.

On some microcontrollers you may need to set the port.pin as an output for PWM to operated as
desired.

 #define USE_HPWM1 TRUE
 #define USE_HPWM2 TRUE

Example 1:

507

 'This program will alter the brightness of an LED using
 'hardware PWM.

 'Select chip model and speed
 #chip 16F18855, 32

 'Generated by PIC PPS Tool for GCBASIC
 '
 'Template comment at the start of the config file
 '
 #startup InitPPS, 85

 Sub InitPPS

 'Module: PWM6
 RA2PPS = 0x000E 'PWM6OUT > RA2

 End Sub
 'Template comment at the end of the config file

 'Set the PWM pin to output mode
 DIR PORTA.2 out

 dim Bright as word

 'Main code
 do
 'Turn up brightness over the range
 For Bright = 0 to 1023
 HPWM 6, 40, Bright, 2
 wait 10 ms
 next
 'Turn down brightness over the range
 For Bright = 1023 to 0 Step -1
 HPWM 6, 40, Bright, 2
 wait 10 ms
 next
 loop

Example 2:

508

 'This program will alter the brightness of an LED using
 'hardware PWM.

 'Select chip model and speed
 #chip 16F1705, 32

 'Generated by PIC PPS Tool for GCBASIC
 '
 'Template comment at the start of the config file
 '
 #startup InitPPS, 85

 Sub InitPPS

 'Module: PWM3
 RA2PPS = 0x000E 'PWM3OUT > RA2

 End Sub
 'Template comment at the end of the config file

 'Set the PWM pin to output mode
 DIR PORTA.2 out

 dim Bright as word

 'Main code
 do
 'Turn up brightness over the range
 For Bright = 0 to 1023
 HPWM 3, 40, Bright, 2
 wait 10 ms
 next
 'Turn down brightness over the range
 For Bright = 1023 to 0 Step -1
 HPWM 3, 40, Bright, 2
 wait 10 ms
 next
 loop

For more help, see PWMOff

HPWMUpdate for PWM Module(s)

Syntax:

509

 HPWMUpdate (channel, duty_cycle)

Command Availability:

Available on Microchip PIC microcontrollers with the PWM module.

Explanation:

This command updates the duty cycle only.

• You MUST have previously called the HPWM 10 Bit command using the full command (see HPWM
10 Bit) to set the channel specific settings for frequency and timer source. See the example below
for the usage.

• You MUST have previously called the HPWM 10 Bit command with the same type of variable, or,
use casting to ensure the variable tpye is the same type.

This command only supports the previously called HPWM 10 Bit command, or, if you have set more
than one HPWM 10 Bit PWM channel then to use the command you must have set the channel to the
same frequency.

The command only supports the hardware PWM module of the Microchip PIC microcontroller to
generate a PWM waveform at the previously defined frequency and timer source.

channel is 1, 2, 3, 4, 5, 6, 7 or 8. These corresponds to the HPWM1 through to HPWM8 respectively. The
channel MUST be supported by the microcontroller. Check the microcontroller specific datasheet for
the available channel.

duty cycle specifies the desired duty cycle of the PWM signal, and ranges from 0 to 1023 where 1023 is
100% duty cycle.

Example for Hardware PWM:

510

 'This program will alter the brightness of an LED using
 'hardware PWM.

 'Select chip model and speed
 #chip 16F18855, 32

 'Generated by PIC PPS Tool for GCBASIC
 '
 'Template comment at the start of the config file
 '
 #startup InitPPS, 85

 Sub InitPPS

 'Module: PWM6
 RA2PPS = 0x000E 'PWM6OUT > RA2

 End Sub
 'Template comment at the end of the config file

 'Set the PWM pin to output mode
 DIR PORTA.2 out

 'Setup PWM - this is mandated as this specifies the frequency and the clock source.
 'Uses casting [word] to ensure the intialisation value of Zero (0) is a treated as a
word. The variable type MUST match the HPWMUpdate variable type.
 HPWM 6, 40, [word]0, 2
 'Main code
 do
 'Turn up brightness over 2.5 seconds
 For Bright = 0 to 1023
 HPWMUpdate 6, Bright
 wait 10 ms
 next
 'Turn down brightness over 2.5 seconds
 For Bright = 1023 to 0 Step -1
 HPWMUpdate 6, Bright
 wait 10 ms
 next
 loop

For more help, see PWMOff, HPWM 10 Bit

511

HPWMOff

Syntax:

 HPWMOff (channel, PWMHardware)

Command Availability:

Only available on Microchip PIC microcontrollers with PWM modules.

Explanation:

This command will disable the output of the PWM module on the Microchip PIC chip.

PWMHardware is a GCBASIC defined constant not a user vaariable.

Example:

512

 'This program will alter the brightness of an LED using
 'hardware PWM.

 'Select chip model and speed
 #chip 16F18855, 32

 'Generated by PIC PPS Tool for GCBASIC
 '
 'Template comment at the start of the config file
 '
 #startup InitPPS, 85

 Sub InitPPS

 'Module: PWM6
 RA2PPS = 0x000E 'PWM6OUT > RA2

 End Sub
 'Template comment at the end of the config file

 'Set the PWM pin to output mode
 DIR PORTA.2 out

 'Main code
 For ForLoop = 1 to 4
 'Turn up brightness over 2.5 seconds
 For Bright = 1 to 255
 HPWM 6, 40, Bright, 2
 wait 10 ms
 next
 'Turn down brightness over 2.5 seconds
 For Bright = 255 to 1 Step -1
 HPWM 6, 40, Bright, 2
 wait 10 ms
 next
 next

 HPWMOff 6, PWMHardware 'where PWMHardware is the defined constant or you can use
TRUE

HPWM 16 Bit

Syntax:

513

 HPWM16 channel, frequency, duty cycle 'Enable a 16-bit PWM channel'

 HPWM16On channel 'Enable a specific PWM channel using
parameters set by the HPWM16 method'

 HPWM16Off channel 'Disable a specific PWM channel'

Command Availability:

Only available on Microchip PIC microcontrollers with the 16-bit PWM module. 16-bit PWM support
includes both dynamic mode and fixed mode operations. See the examples below for usage.

The PIC microcontroller chip specific DAT file must contain CHIPPWM16TYPE = 1. If the chip specific DAT
does not contain CHIPPWM16TYPE = 1 and the microcontroller does support PWM 16 Bit please report the
omission to GCBASIC the support forum.

For the Capture/Compare/PWM (CCP) module or the 10-bit PWM module, see the other sections of the
Help.

Explanation:

This command sets up the hardware PWM module of the Microchip PIC microcontroller to generate a
PWM waveform of the given frequency and duty cycle. Once this command is called, the PWM will be
emitted until HPWM16Off method is called.

channel is 1, 2, 3.. 12. These corresponds to the 16-bit PWM channel respectively.
The 16-bit PWM channel MUST be supported by the microcontroller. Check the microcontroller
specific datasheet for the available channel.

frequency sets the frequency of the PWM output. It is measured in KHz. The maximum value allowed is
0xFFFF. The minimum value varies depending on the clock speed. 1 KHz is the minimum on chips 16
MHz or under and 2 Khz is the lowest possible on 20 MHz chips. In situations that do not require a
specific PWM frequency, the PWM frequency should equal approximately 1 five-hundredth the clock
speed of the microcontroller (ie 40 Khz on a 20 MHz chip, 16 KHz on an 8 MHz chip). This gives the best
duty cycle resolution possible.

duty cycle specifies the desired duty cycle of the PWM signal, and ranges from 0 to 0xFFFF where
0xFFFF is 100% duty cycle. This should be a WORD value.

Example 1:

514

 ' This program will enable dynamic mode PWM signals
 '
 ' All the 12 PWM16 channels can configured at separate dynamic frequencies dynamic
duty, the syntax is:
 '
 ' HPWM16(xx, frequency, duty)
 '
 ' xx can be 1 through 12, for this specific microcontroller there are three PWM16
channels.
 '
 ' To set the parameters of GCBASIC PWM fixed mode for the channels use the commands
shown below::

 #chip 12F1572, 32
 #config mclr=on

 Dir PORTA Out

 HPWM16(1, 30, 16384) '30 kHz, 25% duty cycle (16384/65535)
 HPWM16(2, 30, 16384) '30 kHz, 25% duty cycle (16384/65535)
 HPWM16(3, 30, 16384) '30 kHz, 25% duty cycle (16384/65535)

 do Forever
 loop

 #define USE_HPWM16_1 TRUE
 #define USE_HPWM16_2 TRUE
 #define USE_HPWM16_3 TRUE
 #define USE_HPWM16_4 FALSE
 #define USE_HPWM16_5 FALSE
 #define USE_HPWM16_6 FALSE
 #define USE_HPWM16_7 FALSE
 #define USE_HPWM16_8 FALSE
 #define USE_HPWM16_9 FALSE
 #define USE_HPWM16_10 FALSE
 #define USE_HPWM16_11 FALSE
 #define USE_HPWM16_12 FALSE

The 16-bit library also supports fixed mode PWM operations. The following two examples show the
constants and the commands to control 16-bit PWM Fixed Mode operations.

Example 2:

515

 ' This program will enable fix mode PWM signals
 '
 ' All the 12 PWM16 channels can configured at separate fixed frequencies and fixed
duty, the syntax is:
 '
 ' #define HPWM16_xx_Freq 38 'Set frequency in KHz on channel xx
 ' #define HPWM16_xx_Duty 50 'Set duty cycle to 50% on channel xx
 '
 ' xx can be 1 through 12
 '
 ' To set the parameters of GCBASIC PWM fixed mode on channel 1 use the following:
 '
 ' #define HPWM16_1_Freq 0.1 to > 1000 'Set the frequency, but, the clock
speed must be low for low PWM frequency
 ' #define HPWM16_1_Duty 0.1 to 100 'Set duty cycle as percentage 0-
100%, just change the number
 '

 #chip 12F1572, 32
 #config mclr=on

 Dir PORTA Out

 #define HPWM16_1_Freq 400 '800Hz to greater than 1mhz... greater than
1mhz at a clock speed of 32hz provides a clipped square wave.
 #define HPWM16_1_Duty 50
 HPWM16On (1)

 do Forever
 loop

Example 3:

516

 ' This program will enable fix mode PWM signals
 '
 ' All the 12 PWM16 channels can configured at separate fixed frequencies and fixed
duty, the syntax is:
 '
 ' #define HPWM16_xx_Freq 38 'Set frequency in KHz on channel xx
 ' #define HPWM16_xx_Duty 50 'Set duty cycle to 50% on channel xx
 '
 ' xx can be 1 through 12, for this specific microcontroller there are three PWM16
channels.
 '
 ' To set the parameters of GCBASIC PWM fixed mode for the three channels use the
following:

 #chip 12F1572, 32
 #config mclr=on

 Dir PORTA Out

 #define HPWM16_1_Freq 100 '100khz
 #define HPWM16_1_Duty 40 '40% duty
 HPWM16On (1)

 #define HPWM16_2_Freq 200 '200khz
 #define HPWM16_2_Duty 50 '50% duty
 HPWM16On (2)

 #define HPWM16_3_Freq 300 '300khz
 #define HPWM16_3_Duty 60 '60% duty
 HPWM16On (3)

 do Forever
 loop

For more help, see PWMOff

HPWM Fixed Mode

Syntax:

517

 PWMOn 'only applies to CCP/PWM channel 1
 'or
 PWMOff

 PWMOn(channel) 'where the parameter can be any valid CCP/PWM channel, 1,
2, 3, 4 or 5
 'or
 PWMOff(channel)

 PWMOn(module_number , PWMModule) 'where the parameter can be any valid
PWM channel 1 .. 9
 'or
 PWMOff(module_number , PWMModule)

Command Availability:

Only available on Microchip PIC microcontrollers with a CCP/PWM or PWM module.

See here HPWM CCP for the method to change PWM parameters dynamically or to use other CCP
channels - this method support CCP1/PWM, CCP2/PWM, CCP3/PWM, CCP4/PWM and CCP5/PWM.

Explanation:

This command sets up the hardware PWM module of the Microchip PIC microcontroller to generate a
PWM waveform of the given frequency and duty cycle. Once this command is called, the PWM will be
emitted until PWMOff is called.

These constants are required to set the parameters for the PWM. The frequency and the duty applies
to all channels when using the method(s) or macro(s) shown above.

Constant Name Controls Default Value

PWM_Freq Specifies the output frequency of the PWM module in KHz. 38

PWM_Duty Sets the duty cycle of the PWM module output. Given as percentage. 50

For CCP/PWM modules are also supported using a call to a method or a macro, as follows:

Method/Macro Controls Default Value

PWMOn No parameter enables
CCP1/PWM only

No parameter

PWMOff Disables CCP1/PWM only

518

Method/Macro Controls Default Value

PWMOn(channel) Where the parameter is
any valid CCP/PWM
channel

channel can be 1, 2, 3, 4 or 5

PWMOff(channel) Where the parameter is
any valid CCP/PWM
channel

channel can be 1, 2, 3, 4 or 5

PWMOn(module,
PWMMODULE)

Where the parameter is
any valid PWM module

module can be 1..9
See the example below for the constants to control
fixed mode PWM using PWM modules.

PWMOff(channel,
PWMMODULE)

Where the parameter is
any valid CCP/PWM module

module can be 1..9

Fixed Mode PWM for PWM Modules.

To set the Fixed Mode PWM for PWM Modules you need to set a timer frequency, a PWM module cycle
and the PWM model source clock.

The options for source clock are shown below. These are the PWM timers supported by the PWM
modules, where nn is the frequency.

 PWM_Timer2_Freq `nn` or
 PWM_Timer4_Freq `nn` or
 PWM_Timer6_Freq `nn`.

The PWM module duty is set using PWM_`yy`_Duty xx' where `yy is between 1 and 9 and is a valid
PWM module, and, xx is the Duty cycle for specific channels

 #define PWM_yy_Duty xx

The PMW module clock source us PWM_`zz`_Clock_Source tt. Where zz is channel and tt is the PWM
clock source.

 #define PMW_zz_Clock_Source tt

You do not need to define all the timers and or all the channels, just define the constants you need.

The minimum is A timer with a frequency A PWM channel with a duty A PWM channel clock
source

519

Example: For PWM channel 6 with a frequency of 38Khz with a duty of 50% with a clock source of
timer 2, use

 #define PWM_Timer2_Freq 38
 #define PWM_7_Duty 50
 #define PMW_7_Clock_Source 6

Details of the constants with example parameters.

#define PWM_Timer2_Freq 20 'Set frequency in KHz, just change the number
#define PWM_Timer4_Freq 40 'Set frequency in KHz, just change the number
#define PWM_Timer6_Freq 60 'Set frequency in KHz, just change the number

Supported PWM modules, with example parameters.

#define PWM_1_Duty 10 'Set duty cycle as percentage 0-100%, just change the
number
#define PMW_1_Clock_Source 2

#define PWM_2_Duty 20
#define PMW_2_Clock_Source 4

#define PWM_3_Duty 30
#define PMW_3_Clock_Source 6

#define PWM_4_Duty 40
#define PMW_4_Clock_Source 2

#define PWM_5_Duty 50
#define PMW_5_Clock_Source 6

#define PWM_6_Duty 60
#define PMW_6_Clock_Source 6

#define PWM_7_Duty 70
#define PMW_7_Clock_Source 4

520

#define PWM_8_Duty 80
#define PMW_8_Clock_Source 4

#define PWM_9_Duty 90
#define PMW_9_Clock_Source 6

Example #1:

Enable CCP1/PWM channel only. This is the legacy command.

 #chip 16f877a,20

 'Set the PWM pin to output mode
 DIR PORTC.2 out

 'Main code

 #define PWM_Freq 38 'Frequency of PWM in KHz
 #define PWM_Duty 50 'Duty cycle of PWM (%)

 PWMOn 'Will enable CCP1/PWM Only

 wait 10 s 'Wait 10 s

 PWMOff 'Will disable CCP1/PWM Only

 do
 loop

Example #2:

Enable any CCP/PWM channel using a call to a method.

521

 #chip 16f877a,20

 'Set the PWM pin to output mode
 DIR PORTC.2 out

 'Main code

 #define PWM_Freq 38 'Frequency of PWM in KHz
 #define PWM_Duty 50 'Duty cycle of PWM (%)

 PWMOn (2) 'Will enable any valid CCP/PWM channel

 wait 10 s 'Wait 10 s

 PWMOff (2) 'Will disable any valid CCP/PWM channel

 do
 loop

Example #3:*

Enable any PWM module using a PWM specific method.

 'A real simple and easy PWM setup for 8 and 10 bit PWM channels
 #chip 18f25k42, 16

 #startup InitPPS, 85

 Sub InitPPS

 'Module: PWM5
 RA0PPS = 0x000D 'PWM5 > RA0
 'Module: PWM6
 RA1PPS = 0x000E 'PWM6 > RA1
 'Module: PWM7
 RA2PPS = 0x000F 'PWM7 > RA2
 'Module: PWM8
 RA3PPS = 0x0010 'PWM8 > RA3

 End Sub

 'Template comment at the end of the config file
 dir porta Out
 dir portb Out
 dir portc Out

522

 'This is the setup section for fixed mode PWM

 'The only options are PWM_Timer2_Freq nn|PWM_Timer4_Freq nn|PWM_Timer6_Freq nn.
These are the PWM timers
 'The PWM_yy_Duty xx' where yy is between 1 and 9 and is a valid PWM module, and,
xx is the Duty cycle for specific channels
 'The PMW_zz_Clock_Source tt. Where zz is channel and tt is the PWM clock source.
 'You do not need to define all the timers and channels, just define the constants
you need.
 'The minimum is
 ' A timer with a frequency
 ' A PWM channel with a duty
 ' A PWM channel clock source
 ' For PWM channel 2 with a frequency of 38Khz with a duty of 50% with a clock
source of timer 2, use
 ' #define PWM_Timer2_Freq 38
 ' #define PWM_7_Duty 50
 ' #define PMW_7_Clock_Source 2

 #define PWM_Timer2_Freq 20 'Set frequency in KHz, just change the number
 #define PWM_Timer4_Freq 40 'Set frequency in KHz, just change the number
 #define PWM_Timer6_Freq 60 'Set frequency in KHz, just change the number

 ' Supported PWM module but not by this specific microcontroller
 '
 ' #define PWM_1_Duty 10 'Set duty cycle as percentage 0-100%, just
change the number
 ' #define PMW_1_Clock_Source 2
 '
 ' #define PWM_2_Duty 20
 ' #define PMW_2_Clock_Source 4
 '
 ' #define PWM_3_Duty 30
 ' #define PMW_3_Clock_Source 6
 '
 ' #define PWM_4_Duty 40
 ' #define PMW_4_Clock_Source 2

 #define PWM_5_Duty 50
 #define PMW_5_Clock_Source 6

 #define PWM_6_Duty 60
 #define PMW_6_Clock_Source 6

 #define PWM_7_Duty 70
 #define PMW_7_Clock_Source 4

523

 #define PWM_8_Duty 80
 #define PMW_8_Clock_Source 4

 ' Supported PWM module but not by this specific microcontroller
 '
 ' #define PWM_9_Duty 90
 ' #define PMW_9_Clock_Source 6

 ' Enable module 7
 HPWMOn (7, PWMModule)
 wait 2 s
 ' Disable channel 7
 HPWMOff (7, PWMModule)
 ' wait 2 s

 ' Enable others module
 HPWMOn (5, PWMModule)
 HPWMOn (6, PWMModule)
 HPWMOn (7, PWMModule)
 HPWMOn (8, PWMModule)

 ' Enable CCP/PWM channel 1 - uses constants FREQ and DUTY
 PWMOn

 ' Enable CCP/PWM channel 2
 PWMOn (2)
 do
 loop

 End

For more help, see PWMOn and PWMOff or, for AVR see Fixed Mode PWM for AVR

PWMOn

Syntax:

 PWMOn

524

Command Availability:

Only available on Microchip PIC microcontrollers with Capture/Compare/PWM module CCP1.

This command does not operate on any other CCP channel.

Explanation:

Example 1:

This command will enable the output of the CCP1/PWM module on the Microchip PIC microcontroller.

 'This program will enable a 76 Khz PWM signal, with a duty cycle
 'of 80%. It will emit the signal for 10 seconds, then stop.
 #define PWM_Freq 76 'Set frequency in KHz
 #define PWM_Duty 80 'Set duty cycle to 80 %
 PWMOn 'Turn on the PWM
 WAIT 10 s 'Wait 10 seconds
 PWMOff 'Turn off the PWM

Example 2:

This command will enable the output of the CCP1/PWM module on the Microchip PIC microcontroller.

Note the chip frequency.

 'This program will enable a 62Hz PWM signal, with a duty cycle
 'of 50%.

 #Chip 12F1840, 1

 dir porta.2 out
 #define PWM_Freq .0625 'Set frequency in Hz equates to 62Hz
 #define PWM_Duty 50 'Set duty cycle to 80 %
 PWMON

 Do
 loop

Example 3:

525

This command will enable the output of the CCP1/PWM module on the Microchip PIC microcontroller.

Note the chip frequency.

 'This program will enable a 7.7Hz PWM signal, with a duty cycle
 'of 50%.

 #Chip 12F1840, 0.125

 dir porta.2 out
 #define PWM_Freq .0077 'Set frequency in Hz equates to 7.7Hz
 #define PWM_Duty 50 'Set duty cycle to 50 %
 PWMON

 Do
 loop

For more help, also see PWMOff

PWMOff

Syntax:

 PWMOff

Command Availability:

Only available on Microchip PIC microcontrollers with Capture/Compare/PWM module CCP1.

This command does not operate on any other CCP channel.

Explanation:

This command will disable the output of the CCP1/PWM module on the Microchip PIC chip.

Example:

526

 'This program will enable a 76 Khz PWM signal, with a duty cycle
 'of 80%. It will emit the signal for 10 seconds, then stop.
 #define PWM_Freq 76 'Set frequency in KHz
 #define PWM_Duty 80 'Set duty cycle to 80 %
 PWMOn 'Turn on the PWM
 WAIT 10 s 'Wait 10 seconds
 PWMOff 'Turn off the PWM

For more help, also see PWMOn

Hardware PWM Code Optimisation

About Hardware PWM Code Optimisation

For compatibility all channels are supported by default. This is maintains backward compatibility.

To mimise the code, use the following to disable support for a specific Capture/Compare/PWM (CCP)
module, timers or the PWM module.

Setting a constant to FALSE will remove the support of the capability from the method and therefore
will reduce the program size.

 #define USE_HPWMCCP1 FALSE
 #define USE_HPWMCCP2 FALSE
 #define USE_HPWMCCP3 FALSE
 #define USE_HPWMCCP4 FALSE

To further mimise the code, use the following to disable support for a specific PWM channels. Only
PWM channels 5, 6 and 7 are supported.

 #define USE_HPWM3 FALSE
 #define USE_HPWM4 FALSE
 #define USE_HPWM5 FALSE
 #define USE_HPWM6 FALSE
 #define USE_HPWM7 FALSE

To further mimise the code, use the following to disable support for a specific timers.

 #define USE_HPWM_TIMER2 TRUE
 #define USE_HPWM_TIMER4 TRUE
 #define USE_HPWM_TIMER6 TRUE

527

Example

This will save 335 bytes of program memory by removing support for CCP1, CCP2 and CCP4.

 #chip 16f18855,32
 #Config MCLRE_ON

 UNLOCKPPS
 RC2PPS = 0x0A 'RC2->CCP2:CCP2;
 LOCKPPS

 #define USE_HPWMCCP1 FALSE ' This is not used so optimise
 #define USE_HPWMCCP2 TRUE ' This is used so include in the compiled code
 #define USE_HPWMCCP3 FALSE ' This is not used so optimise
 #define USE_HPWMCCP4 FALSE ' This is not used so optimise

 'Setting the port an output is VERY important... LED will not work if you do not set
as an output.
 dir portC.2 out ; CCP2

 do forever
 For Bright = 1 to 255
 HPWM 2, 40, Bright
 wait 10 ms
 next

 loop

ATMEL AVR PWM Overview

Introduction:

The methods described in this section allow the generation of Pulse Width Modulation (PWM) signals.
PWM signals enables the microcontroller to control items like the speed of a motor, or the brightness
of a LED or lamp.

The methods can also be used to generate the appropriate frequency signal to drive an infrared LED
for remote control applications.

GCBASIC support the methods described in this section.

Hardware PWM using a Timer/Counter with a OCRnx module

The AVR devices use a Timer/Counter and OCRnx module that has a variable period register. The
Hardware PWM is available through the OCnx pin.

528

The method uses three parameters to setup the HPWM.

'HPWM channel, frequency, duty cycle
HPWM 2, 100, 50

Relevant Constants:

A number of constants are used to control settings for PWM hardware module of the microcontroller.
To set them, place a line in the main program file that uses #define to assign a value to the particular
constant.

See HPWM AVR OCRnx

HPWM AVR OCRnx

Syntax:

 HPWM channel, frequency, duty cycle

Command Availability:

The HPWM command is available on Atmel AVR microcontrollers with an OCnx pin, and is compatible
with the PIC HPWM command method. Due to the the unique way of AVR PWM implementation, and
code efficiency, there are some notable differences in the HPWM initialization and its use.

This command supports the Fast PWM Mode and period registers for their respective devices.
Typically Timer0 and Timer2 do not have a period register and the "A" channel is sacrificed to provide
that function. Therefore, channel 1 and channel 6 will not be available, but are documented for
possible future use. Some device Timers do not have an adjustable period register, so this command is
not feasible (consult the datasheet).

Explanation:

The HPWM command sets up the hardware PWM module of the Atmel AVR microcontrollers to
generate a PWM waveform of the given frequency and duty cycle. Once this command is called, the
PWM will be emitted until the duty cycle parameter is written to zero.

If the need is just one particular frequency and duty cycle, one should use PWMOn and the constants
PWM_Freq and PWM_Duty instead. PWMOn for the AVR is uniquely assigned to the OC0B pin, or
channel 2. PWMOff will only shutdown the AVR HPWM channel 2.

529

channel described as 1, 2, 3,…16 correspond to the pins OCR0A, OCR0B….OCR5C as detailed in the
channel constant table. Channel 1 and channel 6 are not available.

frequency sets the frequency of the PWM output measured in Khz. The maximum value allowed is 255
KHz. In situations that do not require a specific PWM frequency, the PWM frequency should equal
approximately 4 times the clock speed (GCB chipMHz) of the microcontroller (ie 63 KHz on a 16 MHz
chip, 32 KHz on 8 MHz, 4 Khz on 1 MHz). This gives the best duty cycle resolution possible. Alternate
frequencies with good duty cycle resolution are 1Khz, and 4Khz with chipMhz values of 16 and 8
respectively.

duty cycle specifies the desired duty cycle of the PWM signal, and ranges from 0 to 255 where 255 is
100% duty cycle. The AVR fast PWM mode has a small spike at the extreme setting of 0x00, on most
devices, with each period register rollover. By using the HPWM command, and writing 0x00 to the
duty cycle parameter, the PWM signal will shutdown completely and avoid the spike. The PWM signal
can then be restarted again with a new HPWM command.

Note: Due to the AVR having a timer prescaler of just 1, 8, and 64; the AVR frequency and duty cycle
resolution will be different from the PIC frequency and duty cycle resolution. The AVR HPWM
parameters will likely need adjusting ,when substituted into an existing PIC program, and where
accuracy is required.

HPWM Constants:

The AVR HPWM timer constants for channel number control are shown in the table below. Each timer
constant needs to be defined for any one of the channels it controls.

Timer
Constants

Controls Options

AVRTC0 Specifies AVR TC0 associated with channel 1, and 2 Must be
defined

AVRTC1 Specifies AVR TC1 associated with channel 3, 4 and 5
Channel 5 present on larger pinout devices

Must be
defined

AVRTC2 Specifies AVR TC2 associated with channel 6, and 7 Must be
defined

AVRTC3 Specifies AVR TC3 associated with channel 8, 9, and 10 Must be
defined

AVRTC4 Specifies AVR TC4 associated with channel 11,12, and 13 Must be
defined

AVRTC5 Specifies AVR TC5 associated with channel 14, 15, and 16 Must be
defined

The GCBASIC HPWM channel constants for output pin control are shown in the table below. Each
HPWM channel used needs to be defined. The Port pin associated with each OCnx must be set to

530

output.

Channel
Constants

Controls Options

AVRCHAN1 Specifies AVR HPWM channel 1 to the associated output pin OC0A
OCR0A is used as period register and thus not available

N/A

AVRCHAN2 Specifies AVR HPWM channel 2 to the associated output pin OC0B Must be
defined

AVRCHAN3 Specifies AVR HPWM channel 3 to the associated output pin OC1A
MUX’d with OC0A pin on some ATTiny’s

Must be
defined

AVRCHAN4 Specifies AVR HPWM channel 4 to the associated output pin OC1B Must be
defined

AVRCHAN5 Specifies AVR HPWM channel 5 to the associated output pin OC1C
On some larger pinout devices and MUX’d with OC0A pin

Must be
defined

AVRCHAN6 Specifies AVR HPWM channel 6 to the associated output pin OC2A
OCR2A is used as a period register and thus not available

N/A

AVRCHAN7 Specifies AVR HPWM channel 7 to the associated output pin OC2B Must be
defined

AVRCHAN8 Specifies AVR HPWM channel 8 to the associated output pin OC3A Must be
defined

AVRCHAN9 Specifies AVR HPWM channel 9 to the associated output pin OC3B Must be
defined

AVRCHAN10 Specifies AVR HPWM channel 9 to the associated output pin OC3C Must be
defined

AVRCHAN11 Specifies AVR HPWM channel 11 to the associated output pin OC4A Must be
defined

AVRCHAN12 Specifies AVR HPWM channel 12 to the associated output pin OC4B Must be
defined

AVRCHAN13 Specifies AVR HPWM channel 13 to the associated output pin OC4C Must be
defined

AVRCHAN14 Specifies AVR HPWM channel 14 to the associated output pin OC5A Must be
defined

AVRCHAN15 Specifies AVR HPWM channel 15 to the associated output pin OC5B Must be
defined

AVRCHAN16 Specifies AVR HPWM channel 16 to the associated output pin OC5C Must be
defined

Example:

531

 'Using HPWM command to alternate ramping leds with the UNO board
 #chip mega328,16

 '************pwm************************
 'Must define AVRTCx, AVRCHANx, and set OCnX pin dir to out

 #define AVRTC0 'Timer0
 #define AVRCHAN2
 dir PortD.5 Out 'OC0B, UNO pin 5

 #define AVRTC1 'Timer1
 #define AVRCHAN3
 #define AVRCHAN4
 dir PortB.1 out 'OC1A, UNO pin 9
 dir PortB.2 Out 'OC1B, UNO pin 10

 #define AVRTC2 'Timer2
 #define AVRCHAN7
 dir PortD.3 Out 'OC2B, UNO pin 3

 do

 '63khz works good with 16MHz
 '32khz with 8MHz intosc
 '4KHz with 8MHz intosc and ckDiv8 fuse
 freq = 63
 For PWMled1 = 0 to 255
 HPWM 2,freq,PWMled1
 PWMled2 = NOT PWMled1
 HPWM 3,freq,PWMled2
 HPWM 4,freq,PWMled2
 HPWM 7,freq,PWMled1
 wait 5 ms
 Next

 For PWMled1 = 255 to 0
 HPWM 2,freq,PWMled1
 PWMled2 = NOT PWMled1
 HPWM 3,freq,PWMled2
 HPWM 4,freq,PWMled2
 HPWM 7,freq,PWMled1
 wait 5 ms
 Next

 loop

532

HPWM Fixed Mode for AVR

Syntax:

 PWMOn

 'or

 PWMOff

Command Availability:

This command is only available on the Atmel AVR microcontrollers with a Timer/Counter0 OC0B
register.

Explanation:

The PWMOn command will only enable the output of the OC0B/PWM module of the Atmel AVR
microcontroller.

This command is not available for any other OCnx/PWM modules.

This command sets up the hardware PWM module of the Atmel AVR microcontroller to generate a
PWM waveform of the given frequency and duty cycle. Once PWMON method is called, the PWM will
be emitted until PWMOff is called.

These constants are required for PWMOn.

Constant Name Controls Default Value

PWM_Freq Specifies the output frequency of the PWM module in KHz. 38

PWM_Duty Sets the duty cycle of the PWM module output. Given as percentage. 50

Example:

533

 'This program demonstrates the PWMOn and PWMOff commands
 'of the fixed mode HPWM on OC0B pin.

 #chip mega328p,16

 'activate appropriate PWM output pins
 dir PortD.5 Out 'OC0B

 'define PWM_Freq in kHz
 'define PWM_Duty in %

 #define PWM_Freq 40
 #define PWM_Duty 50

 do

 'turn on/off single channel 40 KHz PWM on OC0B pin
 PWMON
 wait 5 s
 PWMOFF
 wait 5 s

 loop

For more help, see PWMOn and PWMOff or, for Microchip microcontrollers see Fixed Mode PWM
for Microchip

PWMOn for AVR

Syntax:

 PWMOn

Command Availability:

This command is only available on the Atmel AVR microcontrollers with a Timer/Counter0 OC0B
register.

Explanation:

The PWMOn command will only enable the output of the OC0B/PWM module of the Atmel AVR
microcontroller.

534

This command is not available for any other OCnx/PWM modules.

Example:

 'This program demonstrates the PWMOn and PWMOff commands
 'of the fixed mode HPWM on OC0B pin.

 #chip mega328p,16

 'activate appropriate PWM output pins
 dir PortD.5 Out 'OC0B

 'define PWM_Freq in kHz
 'define PWM_Duty in %

 #define PWM_Freq 40
 #define PWM_Duty 50

 do

 'turn on/off single channel 40 KHz PWM on OC0B pin
 PWMON
 wait 5 s
 PWMOFF
 wait 5 s

 loop

For more help, see PWMOff

PWMOff for AVR

Syntax:

 PWMOff

Command Availability:

This command is only available on the Atmel AVR microcontrollers with a Timer/Counter0 OC0B
register.

Explanation:

535

The PWMOff command will only disable the output of the OC0B/PWM module of the Atmel AVR
microcontrollers.

This command is not available for any other OCnx/PWM modules.

Example:

 'This program demonstrates the PWMOn and PWMOff commands
 'of the fixed mode HPWM on OC0B pin.

 #chip mega328p,16

 'activate appropriate PWM output pins
 dir PortD.5 Out 'OC0B

 'define PWM_Freq in kHz
 'define PWM_Duty in %

 #define PWM_Freq 40
 #define PWM_Duty 50

 do

 'turn on/off single channel 40 KHz PWM on OC0B pin
 PWMON
 wait 5 s
 PWMOFF
 wait 5 s

 loop

For more help, see PWMOn

536

Random Numbers
This is the Random Numbers section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Overview

Introduction:

These routines allow GCBASIC to generate pseudo-random numbers.

The generator uses a 16 bit linear feedback shift register to produce pseudo-random numbers. The
most significant 8 bits of the LFSR are used to provide an 8 bit random number.

When compiling a program, GCBASIC will generate an initial seed for the generator. However, this
seed will be the same every time the program runs, so the sequence of numbers produced by a given
program will always be the same. To work around this, there is a Randomize subroutine. It can be
provided with a new seed for the generator (which will cause the generator to move to a different
point in the sequence). Alternatively, Randomize can be set to obtain a seed from some other source
such as a timer every time it is run.

Relevant Constants:

These constants are used to control settings for the random number generation. To set them, place a
line in the main program file that uses #define to assign a value to the particular constant.

Constant Name Controls Default
Value

RANDOMIZE_SEE
D

Source of the random seed if Randomize is called without a
parameter

Timer0

Example:

 #define RANDOMIZE_SEED Timer2

Random

Syntax:

 var = Random

Command Availability:

Available on all microcontrollers

537

Explanation:

The Random function will generate a pseudo-random number between 0 and 255 inclusive.

The numbers generated by Random will follow the same sequence every time, until Randomize is used.

Example:

 'Set chip model
 #chip tiny2313, 1

 'Use randomize, with the value on PORTD as the seed
 Randomize PORTD

 'Generate random numbers, and output on PORTB
 Do
 PORTB = Random
 Wait 1 s
 Loop

Randomize

Syntax:

 Randomize
 Randomize seed

Command Availability:

Available on all microcontrollers

Explanation:

Randomize is used to seed the pseudo random number generator, so that it will produce a different
sequence of numbers each time it is used.

The random number generator in GCBASIC is a 16 bit linear feedback shift register, which is explained
here: http://en.wikipedia.org/wiki/Linear_feedback_shift_register

Generally, you will get the same sequence every time it is used. However, you can seed it so that it will
start at a different point at the sequence using the Randomize command.

If you wanted to use an analog reading to seed the generator, this would work:

538

http://en.wikipedia.org/wiki/Linear_feedback_shift_register

Randomize ReadAD10(AN0)

If no seed is specified, then the RANDOMIZE_SEED constant will be used as the seed. If seed is
specified, then it will be used to seed the generator.

It is important that the seed is different every time that Randomize is used. If the seed is always the
same, then the sequence of numbers will always be the same. It is best to use a running timer, an
input port, or the analog to digital converter as the source of the seed, since these will normally
provide a different value each time the program runs.

Example:

 'Set chip model
 #chip tiny2313, 1

 'Use randomize, with the value on PORTD as the seed
 Randomize PORTD

 'Generate random numbers, and output on PORTB
 Do
 PORTB = Random
 Wait 1 s
 Loop

539

7-Segment Displays
This is the 7-Segment Displays section of the Help file. Please refer the sub-sections for details using
the contents/folder view.

7 Segment Displays Overview

Introduction

The 7 Segment Displays module provide a cheap red, green, blue or white bright LED Display. The
Ebay modules can be had for $1 to $4 per piece, somtimes less. They only need 2 pins to control: CLK
and DIO for control 4 digit 7 segment LED Display. They often have a colon LED

The GCBASIC 7 segment display methods make it easier for GCBASIC programs to display numbers and
letters on 7 segment LED displays.

There are two ways that the 7 segment display routines can be set up.

• A pre 2020 method 7 segment legacy method

• A revised method for TM1637 4 LEDs, or, TM1637 6 LEDs

7 Segment Displays - Legacy

Introduction

The GCBASIC 7 segment display methods make it easier for GCBASIC programs to display numbers and
letters on 7 segment LED displays.

The GCBASIC methods support up to four digit 7 segment display devices, common anode/cathode and
inversion of the port logic to support driving the device(s) via a transistor.

There are three ways that the 7 segment display routines can be set up.

Metho
d

Description

1 Connect the microcontroller to the 7 segment display (via suitable resistors) using any eight
output bits. Use DISP_SEG_x and DISP_SEL_x constants to specify the outpout ports and the
select port(s) to be used.

540

Metho
d

Description

2 Connect the microcontroller to the 7 segment display (via suitable resistors) using whole port
(8 bits) of the microcontroller. This implies the connections are consectutive in terms of the 8
output bits of the port. Use the DISPLAYPORTn and DISPSELECTn constants to specify the whole
port and the select port(s) to be used. This method will generate the most efficient code.

3 Connect the microcontroller to the 7 segment display (via suitable resistors) using whole port
(8 bits) of the microcontroller. This implies the connections are consectutive in terms of the 8
output bits of the port. Use the DISPLAYPORTn and DISP_SEL_n constants to specify the whole
port and the select port(s) to be used.

The GCBASIC methods assume the 7 segment display(s) is to be connected to a common parallel bus
with a Common Cathode. See the sections Common Cathode and Common Anode for examples of
using GCBASIC code to control these different configurations

Shown below are the differing constants that must be set for the three connectivity options.

Ind
ex

Method Descr
iptio
n

Constants Default Value

1 DISP_SEG_x
&
DISP_SEL_x

DISP_S
EG_x

Specifies the output pin (output bit)
used to control a specific segment of
the 7 segment display. There are seven
constants that must be specified.
DISP_SEG_A through DISP_SEG_G. One
must be set for each segment. Typical
commands are: #define DISP_SEG_A
portA.0 #define DISP_SEG_B portA.1
#define DISP_SEG_C portA.2 #define
DISP_SEG_D portA.3 #define DISP_SEG_E
portA.4 #define DISP_SEG_F portA.5
#define DISP_SEG_G portA.6

Must be specified to use this
connectivity option.

DISP_S
EG_DOT

Specifies the output pin (output bit)
used to control the decimal point on
the 7 segment display. Typical
commands are: #define DISP_SEG_DOT
portA.7

Optional.

541

Ind
ex

Method Descr
iptio
n

Constants Default Value

DISP_S
EL_x

Specifies the output pin (output bit)
used to control a specific 7 segment
display. These constants are used to
control the specific 7 segment display
being addresses. Typical commands
are: #define DISP_SEL_1 portA.0
#define DISP_SEL_2 portA.1

A valid output pin (output bit) must be
specified. Must be specified to use
this connectivity option.

2 DISPLAYPOR
Tn &
DISPSELECT
n

DISPLA
YPORTn

Specifies the output port used to
control the 7 segment display. Port.bit
>> Segment port.0 >> A port.1 >>
B port.2 >> C port.3 >> D port.4
>> E port.5 >> F port.6 >> G

Can be DISPLAYPORTA and/or
DISPLAYPORTB and/or DISPLAYPORTC
and/or DISPLAYPORTD Where
DISPLAYPORTn can be A, B, C or D which
corresponding to displays 1, 2, 3 and
4, respectively. Must be specified to
use this connectivity option.

DISPSE
LECTn

Specifies the output command used to
select a specific 7 segment display
addressed by DISPLAYPORT_n. Used to
control output pin (output bit) when
several displays are multiplexed.
Typical commands are: #define
DispSelectA Set portA.0 on #define
DispSelectB Set portA.1 on

Can be DISPSELECTA and/or DISPSELECTB
and/or DISPSELECTC and/or DISPSELECTD
Must be specified to use this
connectivity option.

DISPDE
SELECT
n

An optional command to specify the
output command used to deselect a
specific 7 segment display addressed
by DISPLAYPORT_n. Used to control
output pin (output bit) when several
displays are multiplexed. Typical
commands are: #define
DispDeSelectA Set portA.0 off
#define DispDeSelectB Set portA.1
off

Can be DISPDESELECTA and/or
DISPDESELECTB and/or DISPDESELECTC
and/or DISPDESELECTD

3 DISPLAYPOR
Tn &
DISP_SEL_n

542

Ind
ex

Method Descr
iptio
n

Constants Default Value

DISPLA
YPORTn

Specifies the output port used to
control the 7 segment display. Port.bit
>> Segment port.0 >> A port.1 >>
B port.2 >> C port.3 >> D port.4
>> E port.5 >> F port.6 >> G

Can be DISPLAYPORTA and/or
DISPLAYPORTB and/or DISPLAYPORTC
and/or DISPLAYPORTD Where
DISPLAYPORTn can be A, B, C or D which
corresponding to displays 1, 2, 3 and
4, respectively. Must be specified to
use this connectivity option.

DISP_S
EL_n

Specifies the output command used to
select a specific 7 segment display
addressed by DISPLAYPORTn. Typical
commands are: #define DISP_SEL_1
portA.0 #define DISP_SEL_2 portA.1

Must be specified to use this
connectivity option. Can be specified
as DISP_SEL_1 and/or DISP_SEL_2
and/or DISP_SEL_3 and/or DISP_SEL_4

Example 1:

 'A Common Cathode 7 Segment display 2 digit example
 #chip 16F886, 8

 'support for Common Anode
 '#DEFINE 7SEG_COMMONANODE

 'support for pfet or pnp high side drivers
 '#DEFINE 7SEG_HIGHSIDE

 ' ----- Constants
 'You need to specify the port settings
 'by one of the following three methods
 'The Directions of the ports are automaically set according to the defines

 'METHOD 1
 'Define individual port pins for segments and selects

 #DEFINE DISP_SEG_A PORTB.0
 #DEFINE DISP_SEG_B PORTB.1
 #DEFINE DISP_SEG_C PORTB.2
 #DEFINE DISP_SEG_D PORTB.3
 #DEFINE DISP_SEG_E PORTB.4
 #DEFINE DISP_SEG_F PORTB.5
 #DEFINE DISP_SEG_G PORTB.6
 #DEFINE DISP_SEG_DOT PORTB.7 '' available on some displays as dp or colon

 #DEFINE DISP_SEL_1 PORTC.5
 #DEFINE DISP_SEL_2 PORTC.4

543

 'METHOD 2 Define DISPLAYPORTA (B,C,D) for up to 4 digit display segments
 'Define DISPSELECTA (B,C,D) for up to 4 digit display selects

 '#DEFINE DISPLAYPORTA PORTB ' same port name can be assigned
 '#DEFINE DISPLAYPORTB PORTB

 '#DEFINE DispSelectA Set portC.5 off
 '#DEFINE DispSelectB Set portC.4 off
 '#DEFINE DispDeSelectA Set portC.5 on
 '#DEFINE DispDeSelectB Set portC.4 on

 'METHOD 3 Define DISPLAYPORTA (B,C,D) for up to 4 digit display segments
 'Define port pins for the digit display selects

 '#DEFINE DISPLAYPORTA PORTB
 '#DEFINE DISPLAYPORTB PORTB

 '#DEFINE DISP_SEL_1 PORTC.5
 '#DEFINE DISP_SEL_2 PORTC.4

 Dim Message As String
 Message = " HAPPY HOLIDAYS "
 Do
 For Counter = 1 to len(Message)-1
 Repeat 50
 Displaychar 1, Message(Counter)
 wait 3 ms
 DisplayChar 2, Message(Counter+1)
 wait 3 ms

 End Repeat
 Wait 100 ms
 Next
 Loop

544

Also, see DisplayChar, DisplayValue

545

Common Cathode

This is a Common Cathode 7 Segment display example.

No additional configuration is required when using Common Cathnode.

Constant
Name

Controls Comment

7Seg_Common
Anode

Inverts controls for Common Anode
displays

Required for Common Cathode displays

7Seg_HighSi
de

Support PFET or PNP high side
driving of the display

Inverts Common Cathode addressing pin logic for
multiplexed displays

This is a Common Cathode 7 Segment display example.

Example:

 'Chip model
 #chip 16f1783,8

 'Output ports for the 7-segment device
 #define DISP_SEG_A PORTC.0
 #define DISP_SEG_B PORTC.1
 #define DISP_SEG_C PORTC.2
 #define DISP_SEG_D PORTC.3
 #define DISP_SEG_E PORTC.4
 #define DISP_SEG_F PORTC.5
 #define DISP_SEG_G PORTC.6

 ' This is the usage of the SEG_DOT for decimal point support
 ' An optional third parameter of '1' will turn on the decimal point
 ' of that digit when using DisplayValue command
 #define DISP_SEG_DOT PortC.7

 'Select ports for the 7-segment device
 #define Disp_Sel_1 PortA.1
 #define Disp_Sel_2 PortA.2
 #define Disp_Sel_3 PortA.3

 dim count as word
 dim number as word

 Do Forever
 For count = 0 to 999
 number = count
 Num2 = 0

546

 Num3 = 0
 If number >= 100 Then
 Num3 = number / 100
 'SysCalcTempX is the remainder after a division has been completed
 number = SysCalcTempX
 End if
 If number >= 10 Then
 Num2 = number / 10
 number = SysCalcTempX
 end if
 Num1 = number
 Repeat 10
 DisplayValue 1, Num1,1 'Optional third parameter turns on the dp dot on
that digit
 wait 5 ms
 DisplayValue 2, Num2
 wait 5 ms
 DisplayValue 3, Num3
 wait 5 ms

 end Repeat
 Next
 Loop

Also, see 7 Degment Display Overview,DisplayChar, DisplayValue

Common Anode

This is a Common Anode 7 Segment display example.

Additional configuration is required when using Common Anode.

When setting up the 7 segment Common Anode display you MUST use the 7Seg_CommonAnode constant.
You can optionally use the 7Seg_HighSide constant to support PFET or PNP high side driving of the
Common Anode displays as follows:

Constant
Name

Controls Comment

7Seg_Common
Anode

Inverts controls for Common Anode
displays

Required for Common Cathode displays

7Seg_HighSi
de

Support PFET or PNP high side
driving of the display

Inverts Common Cathode addressing pin logic for
multiplexed displays

Example:

 'A Common Anode 7 Segment display example using bs250p pfets

547

 'Chip model
 #chip 16f1783,8

 'support for Common Cathode
 #define 7Seg_CommonAnode

 'support for pfet or pnp high side drivers
 #define 7Seg_HighSide

 #define DISP_SEG_A PORTC.0
 #define DISP_SEG_B PORTC.1
 #define DISP_SEG_C PORTC.2
 #define DISP_SEG_D PORTC.3
 #define DISP_SEG_E PORTC.4
 #define DISP_SEG_F PORTC.5
 #define DISP_SEG_G PORTC.6
 #define DISP_SEG_DOT PORTC.7

 #define Disp_Sel_1 PortA.1
 #define Disp_Sel_2 PortA.2
 #define Disp_Sel_3 PortA.3

 dim count as word
 dim number as word

 Do Forever
 For count = 0 to 999
 number = count
 Num2 = 0
 Num3 = 0
 If number >= 100 Then
 Num3 = number / 100
 'SysCalcTempX is the remainder after a division has been completed
 number = SysCalcTempX
 End if
 If number >= 10 Then
 Num2 = number / 10
 number = SysCalcTempX
 end if
 Num1 = number
 Repeat 10
 DisplayValue 1, Num1, 1 'Optional third parameter turns on the dp on that
digit
 wait 5 ms
 DisplayValue 2, Num2
 wait 5 ms
 DisplayValue 3, Num3
 wait 5 ms

548

 end Repeat
 Next
 Loop

Also, see 7 Degment Display Overview, DisplayChar, DisplayValue

DisplayValue

Syntax:

 DisplayValue (display, data, dot)

Command Availability:

Available on all microcontrollers.

Explanation:

This command will display the given value on a seven segment LED display.

display is the number of the display to use. Up to 4 digits.

data is the value between 0 and F to be shown.

dot is an optional parameter. When it is 1 then the decimal point for that digit is turned on.

The command also support HEX characters in the range between 0x00 and 0x0F (0 to 15). See example
two below for usage.

Example 1:

549

 'This program will count from 0 to 99 on two LED displays
 #chip 16F819, 8

 'See 7 Segment Display Overview for alternate ways of defining Ports
 #define DISP_SEG_A PORTB.0
 #define DISP_SEG_B PORTB.1
 #define DISP_SEG_C PORTB.2
 #define DISP_SEG_D PORTB.3
 #define DISP_SEG_E PORTB.4
 #define DISP_SEG_F PORTB.5
 #define DISP_SEG_G PORTB.6
 '#define DISP_SEG_DOT PORTB.7 ' Optional DP

 #define DISP_SEL_1 PORTA.0
 #define DISP_SEL_2 PORTA.1

 Do
 For Counter = 0 To 99

 'Get the 2 digits
 Number = Counter
 Num1 = 0
 If Number >= 10 Then
 Num1 = Number / 10
 'SysCalcTempX stores remainder after division
 Number = SysCalcTempX
 End If
 Num2 = Number

 'Show the digits
 'Each DisplayValue will erase the other (multiplexing)
 'So they must be called often enough that the flickering
 'cannot be seen.
 Repeat 500
 DisplayValue 1, Num1
 Wait 1 ms
 DisplayValue 2, Num2
 Wait 1 ms
 End Repeat
 Next
 Loop

Example 2:

550

 'This program will count from 0 to 0xff on two LED displays
 #chip 16F819, 8

 #define DISP_SEG_A PORTB.0
 #define DISP_SEG_B PORTB.1
 #define DISP_SEG_C PORTB.2
 #define DISP_SEG_D PORTB.3
 #define DISP_SEG_E PORTB.4
 #define DISP_SEG_F PORTB.5
 #define DISP_SEG_G PORTB.6

 #define DISP_SEL_1 PORTA.0
 #define DISP_SEL_2 PORTA.1
 #define DISP_SEL_4 PORTA.2
 #define DISP_SEL_3 PORTA.3

 Do
 For Counter = 0 To 0xff

 'Get the 2 digits
 Number = Counter
 Num1 = 0
 If Number >= 0x10 Then
 Num1 = Number / 0x10
 'SysCalcTempX stores remainder after division
 Number = SysCalcTempX
 End If
 Num2 = Number

 'Show the digits
 'Each DisplayValue will erase the other (multiplexing)
 'So they must be called often enough that the flickering
 'cannot be seen.
 Repeat 500
 DisplayValue 1, Num1
 Wait 1 ms
 DisplayValue 2, Num2
 Wait 1 ms
 End Repeat
 Next
 Loop

Also, see 7 Segment Display Overview, DisplayChar, DisplaySegment

551

DisplayChar

Syntax:

 DisplayChar (display, character, dot)

Command Availability:

Available on all microcontrollers.

Explanation:

This command will display the given ASCII character on a seven segment LED display.

display is the number of the display to use. Up to 4 digits.

character is the ASCII character to be shown.

dot is an optional parameter. When it is 1 then the decimal point for that digit is turned on.

This example below is a Common Cathode configuration.

Example 1:

 'This program will show " Hello " on a LED display
 'The display should be connected to PORTB and the Enable on PORTA.0

 #chip 16F877A, 20

 #define DISPLAYPORTA PORTB
 #define DISP_SEL_1 PORTA.0

 Dim Message As String
 Message = " Hello "
 Do
 For Counter = 1 to len(Message)
 DisplayChar 1, Message(Counter)
 Wait 250 ms
 Next
 Loop

This is a Common Anode example There are three different methods for port specification Note the
ports are specified bit by bit in this case but could be specified like Example 1 See Overview for further
explanation.

552

Example 2:

 'This program will show amessage on a LED display
 'This is a Dual digit Common anode with driver transistors example
 #chip 16F886, 8

 'support for Common Anode
 #define 7Seg_CommonAnode

 'support for pfet or pnp high side drivers
 #define 7Seg_HighSide

 ' Constants
 ' You need to specify the port settings
 #define DISP_SEG_A PORTB.0
 #define DISP_SEG_B PORTB.1
 #define DISP_SEG_C PORTB.2
 #define DISP_SEG_D PORTB.3
 #define DISP_SEG_E PORTB.4
 #define DISP_SEG_F PORTB.5
 #define DISP_SEG_G PORTB.6

 #define DISP_SEL_1 PORTC.5
 #define DISP_SEL_2 PORTC.4

 Dim Message As String
 Message = " Happy Holidays "
 Do
 For Counter = 1 to len(Message)-2
 Repeat 50
 Displaychar 1, Message(Counter)
 wait 3 ms
 DisplayChar 2, Message(Counter+1)
 wait 3 ms
 end Repeat
 Wait 100 ms
 Next
 Loop

Also, see 7 Degment Display Overview, DisplayValue, DisplaySegment

DisplaySegment

Syntax:

553

 DisplayValue (display, data)

Command Availability:

Available on all microcontrollers.

Explanation:

This command will display the given value on a seven segment LED display.

display is the number of the display to use. Up to 4 digits.

data is the value between 0 and 255. Where data is the representation of the segments to be set.

Example

 'This program will count from 10 to 0 then fire the rocket!
 'The method DisplaySegment 1, smallTCharacter. Sets the 7 segment to the value of
120, see the constant, 120 equates to a small t.
 ; ----- Configuration

 #chip 16F690, 4

 ; ----- Define Hardware settings
 Dir PORTC Out
 DIR PORTA.5 out
 DIR PORTA.4 out
 DIR PORTA.0 out
 DIR PORTA.1 out
 DIR PORTA.2 in
 DIR PORTB.7 out
 ; ----- Constants
 ; You need to specify the port settings
 #define DISP_SEG_A PORTC.0
 #define DISP_SEG_B PORTC.1
 #define DISP_SEG_C PORTC.2
 #define DISP_SEG_D PORTC.3
 #define DISP_SEG_E PORTC.4
 #define DISP_SEG_F PORTC.5
 #define DISP_SEG_G PORTC.6
 #define DECPNT PORTC.7
 #define DISP_SEL_1 PORTA.5
 #define DISP_SEL_2 PORTA.4
 #define DISP_SEL_3 PORTA.1
 #define DISP_SEL_4 PORTA.0

554

 #define smallTCharacter 120 'raw character for 't' on 7 segment.

 #define sw1 PORTA.2

 #define firingPort PORTB.7

 ; ----- Variables
 CountDownValue = 10

 ; ----- Main body of program commences here.
 DECPNT = 1 'Decimal Point off

 Main:
 ' Push number to 7 Segment Display
 if sw1 = 0 then goto Countdown

 num2 = 1
 num3 = 0
 cnt = 5
 gosub display

 goto main

 Countdown:

 num2 = CountDownValue/10
 num3 = CountDownValue%10
 cnt = 60

 gosub display

 If sw1 = 0 then goto hld

 if CountDownValue = 0 then
 firingPort = 1
 cnt = 200
 gosub dispfire
 firingPort = 0
 CountDownValue = 10
 goto main
 end if

 CountDownValue = CountDownValue - 1

 goto Countdown

555

 display:
 Repeat cnt
 DisplaySegment 1, smallTCharacter
 wait 5 ms
 Displaychar 2, "-"
 DisplayValue 3, Num2
 wait 5 ms
 DisplayValue 4, Num3
 wait 5 ms
 end Repeat

 return

 hld:
 if sw1 = 0 then goto hld
 cnt = 5
 gosub Display
 if sw1 = 1 then goto hld
 goto countdown

 DispFire:
 Repeat cnt

 Displaychar 1, "F"
 wait 5 ms
 Displaychar 2, "i"
 wait 5 ms
 Displaychar 3, "r"
 wait 5 ms
 Displaychar 4, "E"
 wait 5 ms
 End Repeat
 return

 end

Also, see 7 Segment Display Overview, DisplayChar

7 Segment Displays - TM1637 4 Digits

Introduction

The TM1637 disaplay module is used for displaying numbers on a keyboard matrix. The matrix of
LEDs consists of four 7- segment displays working together.

The TM1637 specification is

• Two wire interface

556

• Eight adjustable luminance levels

• 3.3V/5V interface

• Supports Four alpha-numeric digits

• Operating current consumption: 80mA

Why to use TM1637 Display Module?

The TM1637 can be interfaced to any system using only two ports. This is the main reason the module
is preferred over other module.

Another reason TM1637 display is preferred is because of its low cost. Although there are other
display modules present in the market they cost more.

The module design is robust so it can sustain in tough environments and still can perform its function
for a long time. The module consumes low power and can be installed in mobile applications.

How to use TM1637 Display Module?

As mentioned earlier the module communication can only be done using the two pins DIO and CLK
respectively. The data is sent to the module or received from the module though these two pins. So
the characters to be displayed are sent in the form of serial data through this interface. A typical circuit
diagram of display module interface to a controller is shown below.

557

The module can work on +5V regulated power and any higher voltage may lead to permanent
damage. The interface is established as shown in figure above. All you need to do is connect DIO and
CLK to any of GPIO (General Purpose Input Output) pins of controller and establish serial data
exchange through programming.

GCBASIC Support

The GCBASIC 7 segment display methods make it easier for GCBASIC programs to display numbers and
letters on 7 segment LED displays.

The GCBASIC methods support up to four digit 7 segment display devices, common anode/cathode and
inversion of the port logic to support driving the device(s) via a transistor.

Brightness can be set: 8 is display on minimum bright , 15 is display on max bright. Less than 8 is
display off.

The TM1637 chip supports the reading of the keyboard matrix however that is not supported in the
library.

DataSheets

The datasheets can found here:

English - here.

Chinese - here.

Usage

The following will set the display.

Constant Description

TM1637_CLK Must be a bi-directional port. The direction/port setting is managed by the library.

TM1637_DIO Must be a bi-directional port. The direction/port setting is managed by the library.

Example program

558

http://gcbasic.sourceforge.net/library/TM1637/TM1637_V2.4_EN.pdf
http://gcbasic.sourceforge.net/library/TM1637/TM1637_V2.4.pdf

 #chip mega328p,16
 #include <TM1637a.h>

 #define TM1637_CLK PortD.2 ' Arduino Digital_2
 #define TM1637_DIO PortD.3 ' Arduino Digital_3

 '---- main program --------

 TMWrite4Dig (17, 16, 17, 16, 0) 'clear display
 wait 2 s
 TMWrite4Dig (17, 16, 17, 16, 10,0) '- -
 wait 2 s
 TMchar_Bright = 10

TMWrite4Dig

Syntax:

 TMWrite4Dig (dig1, dig2, dig3, dig4 [, Brightness], Colon]])

Command Availability:

Available on all microcontrollers.

Explanation:

Command defines each digit (left to right) as 0 to 9 OR 0x00 to 0x0F (15). Additionally 0x10 (16) is a
blank, 0x11 (17) is a minus sign, 0x12 (18) is a degree sign, 0x13 (19) is a bracket and 0x14 (20) is a
question mark.

Brightness set the brightness (8-15). Colon turns the colon (only on digit 2) to off (0) or on (1).

559

TM_Bright

Syntax:

 TM_Bright = Brightness

Command Availability:

Available on all microcontrollers.

Explanation:

Brightness sets the brightness for the display with a range of 8 to 15. Default to 15.

TMDec

Syntax:

 TMDec Value [, Options]

Command Availability:

Available on all microcontrollers.

Explanation:

Value is a word value. Only values from 0 to 9999 can be displayed, values greater than 9999 will be
displayed as ----.

Options as follows:

• 0 or omitted, only decimal value will be displayed;

• 1 decimal valur with the leading zeros;

• 2 decimal number with the colon on digit 2;

• 3 decimal number with the colon on digit 2 and the leading zeros.

560

TMHex

Syntax:

 TMHex Value

Command Availability:

Available on all microcontrollers.

Explanation:

Value is a word value. Only values from from 0x0000 to 0xFFFF can be displayed. Non-hex values will
be displayed as greater than 9999 will be displayed ??.

TMWriteChar

Syntax:

 TMWriteChar (TMaddr, TMchar)

Command Availability:

Available on all microcontrollers.

Explanation:

TMaddr is 0 , 1 , 2 , 3 (display left to right) TMchar is a letter from A to Z (default alphabet) or from a to
z Siekoo alphabet by Alexander Fakoo, more info at: http://en.fakoo.de/siekoo.html. You can insert the
special characters (blank, -,) and/or ?).

Character map:

561

http://en.fakoo.de/siekoo.html

7 Segment Displays - TM1637 6 Digits

Introduction

The TM1637 display module is used for displaying numbers on a keyboard matrix. The matrix of LEDs
consists of six 7- segment displays working together.

The TM1637 specification is

• Two wire interface

• Eight adjustable luminance levels

• 3.3V/5V interface

• Supports six alpha-numeric digits

• Operating current consumption: 80mA

Using the TM1637 Display Module

[graphic] | TM1637_6d.gif

Why to use TM1637 Display Module?

The TM1637 can be interfaced to any system using only two ports. This is the main reason the module
is preferred over other module.

Another reason TM1637 display is preferred is because of its low cost. Although there are other

562

display modules present in the market they cost more.

The module design is robust so it can sustain in tough environments and still can perform its function
for a long time. The module consumes low power and can be installed in mobile applications.

How to use TM1637 Display Module?

As mentioned earlier the module communication can only be done using the two pins DIO and CLK
respectively. The data is sent to the module or received from the module though these two pins. So
the characters to be displayed are sent in the form of serial data through this interface. A typical circuit
diagram of display module interface to a controller is shown below.

The module can work on +5V regulated power and any higher voltage may lead to permanent
damage. The interface is established as shown in figure above. All you need to do is connect DIO and
CLK to any of GPIO (General Purpose Input Output) pins of controller and establish serial data
exchange through programming.

GCBASIC Support

The GCBASIC 7 segment display methods make it easier for GCBASIC programs to display numbers and
letters on 7 segment LED displays.

563

The GCBASIC methods supports six 7 segment display devices, common anode/cathode and inversion
of the port logic to support driving the device(s) via a transistor.

Brightness can be set: 8 is display on minimum bright , 15 is display on max bright. Less than 8 is
display off.

The TM1637 chip supports the reading of the keyboard matrix however that is not supported in the
library.

DataSheets

The datasheets can found here:

English - here.

Chinese - here.

Usage

The following will set the display.

Constant Description

TM1637_CLK Must be a bi-directional port. The direction/port setting is managed by the library.

TM1637_DIO Must be a bi-directional port. The direction/port setting is managed by the library.

Example program

 #chip mega328p,16
 #include <TM1637a.h>

 #define TM1637_CLK PortD.2 ' Arduino Digital_2
 #define TM1637_DIO PortD.3 ' Arduino Digital_3

 '---- main program --------

 TMWrite6Dig (17, 16, 17, 16, 0) 'clear display
 wait 2 s
 TMWrite6Dig (17, 16, 17, 16, 10,0) '- -
 wait 2 s
 TMchar_Bright = 10

564

http://gcbasic.sourceforge.net/library/TM1637/TM1637_V2.4_EN.pdf
http://gcbasic.sourceforge.net/library/TM1637/TM1637_V2.4.pdf

TMWrite6Dig

Syntax:

 TMWrite6Dig (dig1, dig2, dig3, dig4, dig5, dig6, Brightness, Point)

Command Availability:

Available on all microcontrollers.

Explanation:

Command defines each digit (left to right) as 0 to 9 or 0x00 to 0x0F (15). Additionally 0x10 (16) is a
blank, 0x11 (17) is a minus sign, 0x12 (18) is a degree sign, 0x13 (19) is a bracket and 0x14 (20) is a
question mark.

Brightness set the brightness (8-15). Colon turns the colon (only on digit 2) to off (0) or on (1).

TM_Bright

Syntax:

 TM_Bright = Brightness

Command Availability:

Available on all microcontrollers.

Explanation:

Brightness sets the brightness for the display with a range of 8 to 15. Default to 15.

TM_Bright must be defined before the first use the commands: TMDec, TMHex or TMWriteChar, to set
the brightness of the characters (8-15), without this, the display will be blank.

565

TMDec

Syntax:

 TMDec Value [, Options]

Command Availability:

Available on all microcontrollers.

Explanation:

Value is a word value. Only values from 0 to 9999 can be displayed, values greater than 9999 will be
displayed as ----.

Options as follows:

• 0 or omitted, only decimal value will be displayed;

• 1 decimal valur with the leading zeros;

• 2 decimal number with the colon on digit 2;

• 3 decimal number with the colon on digit 2 and the leading zeros.

TMHex

Syntax:

 TMHex Value

Command Availability:

Available on all microcontrollers.

Explanation:

Value is a word value. Only values from from 0x0000 to 0xFFFF can be displayed. Non-hex values will
be displayed as greater than 9999 will be displayed ??.

566

TMWriteChar

Syntax:

 TMWriteChar (TMaddr, TMchar)

Command Availability:

Available on all microcontrollers.

Explanation:

TMaddr is 0 , 1 , 2 , 3 4, 5 (display left to right) TMchar is a letter from A to Z (default alphabet) or from a
to z Siekoo alphabet by Alexander Fakoo, more info at: http://en.fakoo.de/siekoo.html. You can insert
the special characters (blank, -,) and/or ?).

Character map:

TM_Point

Syntax:

567

http://en.fakoo.de/siekoo.html

 TM_Point = (Point)

Command Availability:

Available on all microcontrollers.

Explanation:

Must be defined before use the command TMDec to set the decimal point(s)

Rules for decimal points

You can use the TM_Point and TMWrite6dig commands to turn on one or more decimal points. This is
achieved with an 8-bit binary number, with the leftmost bit (MSB) representing the 1st decimal point,
the next the 2nd, and so on. The state of the last two bits is ignored because it is only 6 digits.

Examples:

• binary number 0B01010000 (decimal 80) switch on decimal point on digits 2 and 4. • number 0 switch
off all digital points • 255 (0B11111111) switch all on.

568

One Wire Devices
This is the One Wire Devices section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

DS18B20

The DS18B20 is a 1-Wire digital temperature sensor from Maxim IC.

The sensor reports degrees C with 9 to 12-bit precision from -55C to 125C (+/- 0.5C).

Each sensor has a unique 64-Bit Serial number etched into it. This allows for a number of sensors to be
used on one data bus. This sensor is used in many data-logging and temperature control projects.

Reading the temperature from a DS18B20 takes up to 750ms(max).

To use the DS18B20 driver the following is required to added to the GCBASIC source file.

 #include <DS18B20.h>

Note the GCBASIC commands do not work with the older DS1820 or DS18S20 as they have a different
internal resolution.

These commands are not designed to be used with parasitically powered DS18B20 sensors.

Comma
nd

Usage Returns

ReadDigi
talTemp

Returns two global variables. As follows: DSint the integer
value read from the sensors DSdec the string value read from
the sensors

Byte variables: DSint String
variable: DSdec

ReadTe
mp

ReadTemp is a function that returns the raw value of the
sensor. The temperature is read back in whole degree steps,
and the sensor operates from -55 to + 125 degrees
Celsius.; Note that bit 7 is 0 for positive temperature
values and 1 for negative values (ie negative values will
appear as 128 + numeric value).

Word variable via the
ReadTemp() function

ReadTe
mp12

ReadTemp is a function that returns the raw 12bit value of the
sensor. The temperature is read back as the raw 12 bit data
into a word variable (0.0625 degree resolution).; The
user must interpret the data through mathematical
manipulation. See the DS18B20 datasheet for more
information on the 12 bit temperature/data information
construct.

Word variable via the
ReadTemp12() function

569

For more help, see ReadDigitalTemp, ReadTemp or ReadTemp12

ReadDigitalTemp

Syntax:

 ReadDigitalTemp

Command Availability:

Available on all microcontrollers.

Explanation:

Return the value of the sensor in two global variables. The following two lines must be included in the
GCBASIC source file.

 #include <DS18B20.h>
 #define DQ PortC.3 ; change port configuration as required

This method returns whole part of the sensor value in the byte variable DSint, the method also returns
decimal part of the sensor value in the byte variable DSdec.

Example:

570

 'Chip Settings. Assumes the development board with with a 16F877A
 #chip 16F877A,1

 #include <DS18B20.h>

 'Use LCD in 4 pin mode and define LCD pins
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RW PORTE.1
 #define LCD_RS PORTE.0
 #define LCD_Enable PORTE.2
 #define LCD_DB4 PORTD.4
 #define LCD_DB5 PORTD.5
 #define LCD_DB6 PORTD.6
 #define LCD_DB7 PORTD.7

 ' DS18B20 port settings
 #define DQ PortC.3

 do forever

 ReadDigitalTemp

 ' Display the integer value of the sensor on the LCD
 cls
 print "Temp"
 locate 0,8
 print DSInt
 print "."
 print DSdec
 print chr(223)+"C"
 wait 2 s

 loop

ReadTemp

Syntax:

 byte_var = ReadTemp

Command Availability:

Available on all microcontrollers.

571

Explanation:

ReadTemp is a function that returns the raw value of the sensor. The following two lines must be
included in the GCBASIC source file.

 #include <DS18B20.h>
 #define DQ PortC.3 ; change port configuration as required

ReadTemp reads the sensor and stores in output variable. The conversion takes up to 750ms. Readtemp
carries out a full 12 bit conversion and then rounds the result to the nearest full degree Celsius.

To read the full 12 bit value of the sensor use the readtemp12 command.

The temperature is read back in whole degree steps, and the sensor operates from -55 to + 125 degrees
Celsius. Note that bit 7 is 0 for positive temperature values and 1 for negative values (ie negative values
will appear as 128 + numeric value).

Note the Readtemp command does not work with the older DS1820 or DS18S20 as they have a different
internal resolution. This command is not designed to be used with parasitically powered DS18B20
sensors, the 5V pin of the sensor must be connected.

Example:

572

 'Chip Settings. Assumes the development board with with a 16F877A
 #chip 16F877A,1

 #include <DS18B20.h>

 'Use LCD in 4 pin mode and define LCD pins
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RW PORTE.1
 #define LCD_RS PORTE.0
 #define LCD_Enable PORTE.2
 #define LCD_DB4 PORTD.4
 #define LCD_DB5 PORTD.5
 #define LCD_DB6 PORTD.6
 #define LCD_DB7 PORTD.7

 ' DS18B20 port settings
 #define DQ PortC.3

 ccount = 0
 CLS

 do forever
 ' The function readtemp returns the integer value of the sensor
 DSdata = readtemp

 ' Display the integer value of the sensor on the LCD
 locate 0,0
 print hex(ccount)
 print " Ceil"
 locate 0,8
 print DSdata
 print chr(223)+"C"

 wait 2 s
 ccount++

 loop

ReadTemp12

Syntax:

 byte_var = ReadTemp12

573

Command Availability:

Available on all microcontrollers.

Explanation:

ReadTemp12 is a function that returns the raw value of the sensor. The following two lines must be
included in the GCBASIC source file.

 #include <DS18B20.h>
 #define DQ PortC.3 ; change port configuration as required

Reads sensor and stores in output variable. The conversion takes up to 750ms. Readtemp12 carries out a
full 12 bit conversion.

This command is for advanced users only. For standard ‘whole degree’ data use the Readtemp command.

The temperature is read back as the raw 12 bit data into a word variable (0.0625 degree resolution).
The user must interpret the data through mathematical manipulation. See the DS18B20 datasheet for
more information on the 12 bit temperature/data information construct.

The function readtemp12 does not work with the older DS1820 or DS18S20 as they have a different
internal resolution. This command is not designed to be used with parasitically powered DS18B20
sensors, the 5V pin of the sensor must be connected.

Example:

 'Chip Settings. Assumes the development board with with a 16F877A
 #chip 16F877A,1

 #include <DS18B20.h>

 'Use LCD in 4 pin mode and define LCD pins
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RW PORTE.1
 #define LCD_RS PORTE.0
 #define LCD_Enable PORTE.2
 #define LCD_DB4 PORTD.4
 #define LCD_DB5 PORTD.5
 #define LCD_DB6 PORTD.6
 #define LCD_DB7 PORTD.7

; ----- DS18B20 port settings
 #define DQ PortC.3

574

; ----- Variables
 Dim TempC_100 as word ' a variabler to handle the temperature calculations
 Dim CCOUNT, SIGNBIT, WHOLE, FRACT, DIG as Byte
 Dim TempC_100 as word ' a variable to handle the temperature calculations

 ccount = 0
 CLS

 do forever

 'Display the integer and decimal value of the sensor on the LCD

 ' The function readtemp12 returns the raw value of the sensor.
 ' The sensor is read as a 12 bit value. Each unit equates to 0.0625 of a degree
 DSdata = readtemp12
 SignBit = DSdata / 256 / 128
 If SignBit = 0 Then goto Positive
 ' its negative!
 DSdata = (DSdata # 0xffff) + 1 ' take twos comp

 Positive:

 ' Convert value * 0.0625. Mulitple value by 6 then add result to multiplication of
the value with 25 then divide result by 100.
 TempC_100 = DSdata * 6
 DSdata = (DSdata * 25) / 100
 TempC_100 = TempC_100 + DSdata

 Whole = TempC_100 / 100
 Fract = TempC_100 % 100
 If SignBit = 0 Then goto DisplayTemp
 Print "-"

 DisplayTemp:
 locate 1,0
 print hex(ccount)
 print " Real"
 locate 1,8
 print str(Whole)
 print "."
 ' To ensure the decimal part is two digits
 Dig = Fract / 10
 print Dig
 Dig = Fract % 10
 print Dig
 print chr(223)
 print "C"

575

 wait 2 s
 ccount++

 loop

DS18B20SetResolution

Syntax:

For Single Channel/Device only. The method assumes a single DS18B20 device on the OneWire bus.

 DS18B20SetResolution ([DS18B20SetResolution_CONTSTANT])

Command Availability:

Available on all microcontrollers.

Explanation:

Set the DS18B20 operating resolution. The configuration register of the DS18B20 allows the user to set
the resolution of the temperature-to-digital conversion to 9, 10, 11, or 12 bits. This method set the
operating resolution to either 9, 10, 11, or 12 bits.

Calling the method with no parameter will set the operating resolution of the DS18B20 to 12 bits. See
example 3 below.

Constants

CONSTANT Operating
resolution

Temprature
resolution

DS18B20_TEMP_9_BIT 9 bits 0.5c

DS18B20_TEMP_10_BIT 10 bits 0.25c

DS18B20_TEMP_11_BIT 11 bits 0.125c

DS18B20_TEMP_12_BIT 12 bits 0.0625c

Example Usage 1

The follow example sets the operating resolution of the DS18B20 to 12 bits.

576

 #include <DS18B20.h>
 #define DQ PortC.3 ; change port configuration as required
 DS18B20SetResolution (DS18B20_TEMP_12_BIT)

Example Usage 2

The follow example sets the operating resolution of the DS18B20 to 9 bits.

 #include <DS18B20.h>
 #define DQ PortC.3 ; change port configuration as required
 DS18B20SetResolution (DS18B20_TEMP_9_BIT)

Example Usage 3

The follow example sets the operating resolution of the DS18B20 to the default value of 12 bits.

 #include <DS18B20.h>
 #define DQ PortC.3 ; change port configuration as required
 DS18B20SetResolution ()

Working Example Program

The following program will display the temperature on a serial attached LCD. Change the
DS18B20SetResolution () method to set the resolution of a specific setting.

You may need to change the chip, edit/remove PPS, and/or the change LCD settings to make this
program work with your configuration.

#chip 16f18313
#config MCLR=ON
#option Explicit
#include <ds18b20.h>

 'Generated by PIC PPS Tool for GCBASIC
 'PPS Tool version: 0.0.6.1
 'PinManager data: v1.79.0
 'Generated for 16f18313
 '
 'Template comment at the start of the config file
 '
 #startup InitPPS, 85
 #define PPSToolPart 16f18313

 Sub InitPPS

577

 'Module: EUSART
 RA5PPS = 0x0014 'TX > RA5

 End Sub
 'Template comment at the end of the config file

 'USART settings for USART1
 #define USART_BAUD_RATE 115200
 #define USART_TX_BLOCKING
 #define USART_DELAY OFF

 #define LCD_IO 107 'K107
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width

 ; ----- Constants
 ' DS18B20 port settings
 #define DQ RA4

; ----- Variables
 dim TempC_100 as LONG ' a variabler to handle the temperature calculations
 Dim DSdata,WHOLE, FRACT, DIG as word
 Dim CCOUNT, SIGNBIT as Byte

; ----- Main body of program commences here.

 ccount = 0
 CLS
 print "GCBasic 2021"
 locate 1,0
 print "DS18B20 Demo"
 wait 2 s
 CLS

 DS18B20SetResolution (DS18B20_TEMP_12_BIT)

 do forever
 ' The function readtemp returns the integer value of the sensor
 DSdata = readtemp

 ' Display the integer value of the sensor on the LCD
 locate 0,0
 print hex(ccount)
 print " Ceil"
 locate 0,8

578

 print DSdata
 print chr(223)+"C"

 ' Display the integer and decimal value of the sensor on the LCD

 ' The function readtemp12 returns the raw value of the sensor.
 ' The sensor is read as a 12 bit value therefore each unit equates to 0.0625 of a
degree
 DSdata = readtemp12

 SignBit = DSdata / 256 / 128
 If SignBit = 0 Then goto Positive
 ' its negative!
 DSdata = (DSdata # 0xffff) + 1 ' take twos comp

 Positive:
 ' Convert value * 0.0625 by factorisation
 TempC_100 = DSdata * 625
 Whole = TempC_100 / 10000
 Fract = TempC_100 % 10000

 If SignBit = 0 Then goto DisplayTemp
 Print "-"

 DisplayTemp:
 Locate 3,0
 Print Whole
 Print "."
 Print leftpad(str(Fract),4,"0")

 wait 2 s
 ccount++

 loop

579

Serial Communications
This is the Serial Communications section of the Help file. Please refer the sub-sections for details
using the contents/folder view.

RS232 (software)

This is the Software Serial Communications section of the Help file. Please refer the sub-sections for
details using the contents/folder view.

RS232 Software Overview

Introduction:

These routines allow the microcontroller to send and receive RS232 data.

All functions are implemented using software, so no special hardware is required on the
microcontroller. However, if the microcontroller has a hardware serial module (usually referred to as
UART or USART), and the serial data lines are connected to the appropriate pins, the hardware routines
should be used for smaller code, improved reliability and higher baud rates.

Relevant Constants:

These constants are used to control settings for the RS232 serial communication routines. To set them,
place a line in the main program file that uses #define to assign a value to the particular constant.

Constant Name/s Controls Default Value

SendALow, SendBLow,
SendCLow

These are used to define the commands used to send a low
(0) bit on serial channels A, B and C respectively.

No Default
Must be defined

SendAHigh,
SendBHigh,
SendCHigh

These are used to define the commands used to send a high
(1) bit on serial channels A, B and C respectively.

No Default
Must be defined

RecALow, RecBLow,
RecCLow

The condition that is true when a low bit is being received Sys232Temp.0 OFF
Must be defined

RecAHigh, RecBHigh,
RecCHigh

The condition that is true when a high bit is being received Sys232Temp.0 ON
Must be defined

InitSer

Syntax:

 InitSer channel, rate, start, data, stop, parity, invert

Command Availability:

580

Available on all microcontrollers.

Explanation:

This command will set up the serial communications. The parameters are as follows:

channel is 1, 2 or 3, and refers to the I/O ports that are used for communication.

rate is the bit rate, which is given by the letter r and then the desiredrate in bps. Acceptable units are
r300, r600, r1200, r2400, r4800, r9600 and r19200.

start gives the number of start bits, which is usually 1. To make the microcontroller wait for the start
bit before proceeding with the receive, add 128 to start. (Note: it may be desirable to use the
WaitForStart constant here.)

data tells the program how many data bits are to be sent or received. In most situations t his is 8, but it
can range between 1 and 8, inclusive.

stop is the number of stop bits. If start bit 7 is on, then this number will be ignored.

parity refers to a system of error checking used by many devices. It can be odd (in which there must
always be an odd number of high bits), even (where the number of high bits must always be even), or
none (for systems that do not use parity).

invert can be either "normal" or "invert". If it in "invert", then high bits will be changed to low, and low
to high.

Example:

Please refer to SerSend for an example of InitSer

For more help, see RS232 Software Overview

SerSend

Syntax:

 SerSend channel, data

Command Availability:

Available on all microcontrollers.

Explanation:

This command will send a byte given by data using the RS232 channel referred to as channel according
to the rules set using InitSer.

581

Example:

 'This program will send a byte using PORTB.2, the value of which
 'depends on whether a button is pressed. This can be used with the example for
SerReceive.

 #chip 16F819, 8

 #define RS232Out PORTB.2
 #define RS232In PORTB.1

 Dir RS232Out Out
 Dir RS232In In

 'Config Software-UART
 #define SendAHigh Set RS232Out ON
 #define SendALow Set RS232Out OFF
 #define RecAHigh Set RS232In ON
 #define RecALow Set RS232In OFF

 Dir Button In

 InitSer 1, r9600, 1+WaitForStart, 8, 1, none, normal
 Do
 If Button = On Then Temp = 100
 If Button = Off Then Temp = 0
 SerSend 1, Temp
 Wait 100 ms
 Loop

For more help, see RS232 Software Overview, InitSer

SerReceive

Syntax:

 SerReceive channel, output

Command Availability:

Available on all microcontrollers.

Explanation:

This command will read a byte from the RS232 channel given by channel according to the rules set
using InitSer, and store the received byte in the variable output.

582

Example:

 'This program will read a byte from PORTB.2, and set the LED on if
 'the byte is more than 50. This can be used with the SerSend
 'example program.

 #chip 16F88, 8

 #define RecAHigh PORTB.2 ON
 #define RecALow PORTB.2 OFF
 #define LED PORTB.0

 Dir PORTB.0 Out
 Dir PORTB.2 In

 InitSer 1, r9600, 1 + WaitForStart, 8, 1, none, normal
 Do
 SerReceive 1, Temp
 If Temp <= 50 Then Set LED Off
 If Temp > 50 Then Set LED On
 Loop

For more help, see RS232 Software Overview, InitSer

SerPrint

Syntax:

 SerPrint channel, value

Command Availability:

Available on all microcontrollers.

Explanation:

SerPrint is used to send a value over the serial connection. value can be a string, integer, long, word or
byte.

channel is the serial connection to send data through (1 | 2 |3).

SerPrint will not send any new line characters. If the chip is sending to a terminal, these commands
should follow SerPrint.

583

 SerSend channel, 13
 SerSend channel, 10

Example:

 'This program will display any values received over the serial
 'connection. If "pot" is received, the value of the analog sensor
 'will be sent.

 'Chip settings
 #chip 18F2525, 8

 'LCD settings
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RS PORTC.7
 #define LCD_RW PORTC.6
 #define LCD_Enable PORTC.5
 #define LCD_DB4 PORTC.4
 #define LCD_DB5 PORTC.3
 #define LCD_DB6 PORTC.2
 #define LCD_DB7 PORTC.1

 'Serial settings
 #define RS232Out PORTB.0
 #define RS232In PORTB.1

 'Set pin direction
 Dir RS232Out Out
 Dir RS232In In

 'Config Software-UART
 #define SendAHigh Set RS232Out ON
 #define SendALow Set RS232Out OFF
 #define RecAHigh Set RS232In ON
 #define RecALow Set RS232In OFF
 set RS232Out On

 Do
 'Potentiometer
 #define POT_PORT PORTA.0
 #define POT_AN AN0

 'Set pin direction
 Dir POT_PORT In

584

 'Create buffer variables to store received messages
 Dim Buffer As String
 Dim OldBuffer As String
 BufferSize = 0

 'Set up serial connection
 InitSer 1, r9600, 1 + WaitForStart, 8, 1, none, invert

 'Show test messages
 Print "Serial Tester"
 Wait 1 s
 SerPrint 1, "GCBASIC RS232 Test"
 SerSend 1, 13
 SerSend 1, 10
 Wait 1 s

 'Main loop
 'Get a byte from the terminal
 SerReceive 1, Temp

 'If Enter key was pressed, deal with buffer contents
 If Temp = 13 Then
 Buffer(0) = BufferSize

 'Try to execute commands in buffer
 If Not ExecCommand (Buffer) Then
 'Show message on bottom line, last message on top.
 CLS
 Print OldBuffer
 Locate 1, 0
 Print Buffer
 'Store the message for next time
 OldBuffer = Buffer
 End If

 BufferSize = 0
 End If
 'Backspace code, delete last character in buffer
 If Temp = 8 Then
 If BufferSize > 0 Then BufferSize -= 1
 End If
 'Received ASCII code between 32 and 127, add to buffer
 If Temp >= 32 And Temp <= 127 Then
 BufferSize += 1
 Buffer(BufferSize) = Temp
 End If
 Loop

585

 'Takes a sensor reading and sends it to terminal
 Sub SendSensorReading
 SerPrint 1, "Sensor Reading: "
 SerPrint 1, ReadAD10(POT_AN)
 SerSend 1, 13
 SerSend 1, 10
 End Sub

 'Will check the buffer for a command
 'If command found, run it and return true
 'If not, return false
 Function ExecCommand (CmdIn As String)
 ExecCommand = False
 'If received command is "pot", show potentiometer value
 If CmdIn = "pot" Then
 SendSensorReading
 ExecCommand = True
 End If
 End Function

For more help, see RS232 Software Overview

586

RS232 (software optimised)

This is the Software Serial Communications section of the Help file. Please refer the sub-sections for
details using the contents/folder view.

RS232 Software Overview - Optimised

Introduction:

These routines allow the microcontroller to send and receive RS232 data.

SoftSerial is a library for the GCBASIC compiler and works on AVR and PIC microcontrollers. These
routines allow the microcontroller to send and receive RS232 data. All functions are implemented
using software, so no special hardware is required on the microcontroller. SoftSerial uses ASM
routines for minimal overhead. If the microcontroller has a hardware serial module (usually referred
to as UART or USART) the hardware routines can be used too.

Features

• 3 independent channels Ser1… , Ser2… , Ser3…

• I/O pins user configurable

• polarity can be inverted

• freely adjustable baud rate

• maximum baudrate depends on MCU speed

◦ PIC@ 1Mhz 9600 baud

◦ PIC@ 4Mhz 38400 baud

◦ PIC@ 8Mhz 64000 baud

◦ PIC@16Mhz 128000 baud

◦ AVR@ 1Mhz 28800 baud

◦ AVR@ 8Mhz 115200 baud

◦ AVR@16Mhz 460800 baud

• 5 - 8 data bits

• 1 or 2 stop bits

• parity bit not supported

Relevant Constants:

These constants are used to control settings for the RS232 serial communication routines. To set them,
place a line in the main program file that uses #define to assign a value to the particular constant.

587

Constant Name/s Controls Valid
Values

Default value

SER1_TXPORT,
SER2_TXPORT,
SER3_TXPORT

These are used to define the port for
sending on serial channels 1, 2 and 3
respectively. Note, that we also have to
define a PortPin (see next line). It is
not necessary to define this, if we
want to receive only. Sample: #define
SER1_TXPORT PortB

PORTA
-
PORTx

No default defined. An
appropiate constant must be
defined.

SER1_TXPIN,
SER2_TXPIN,
SER3_TXPIN

These are used to define the pin (the
corresponding bit) for sending on
serial channels 1, 2 and 3 respectively.
Sample: #define SER1_TXPIN 0

0 - 7 No default defined. An
appropiate constant must be
defined to enable the TX port.

SER1_RXPORT,
SER2_RXPORT,
SER3_RXPORT

These are used to define the port for
receiving on serial channels 1, 2 and 3
respectively. Note, that we also have to
define a PortPin (see next line). It is
not necessary to define this, if we
want to receive only. Sample: #define
SER1_RXPORT PortA

PORTA
-
PORTx

No default defined. An
appropiate constant must be
defined to enable the TX port.

SER1_RXPIN,
SER2_RXPIN,
SER3_RXPIN

These are used to define the pin (the
corresponding bit) for receiving on
serial channels 1, 2 and 3 respectively.
It is not necessary to define this, if we
want to send only. Sample: #define
SER1_RXPIN 5

0 - 7 No default defined. An
appropiate constant must be
defined to enable the RX port.

SER1_BAUD,
SER2_BAUD,
SER3_BAUD

These are used to define the baudrate
for sending and receiving on serial
channels 1, 2 and 3 respectively. It is
not necessary to define this, if we
want to send only. Sample: #define
SER1_BAUD 19200

75 -
51200
0

No default defined. An
appropiate constant must be
defined to enable the RX port.

SER1_DATABITS,
SER2_DATABITS,
SER3_DATABITS

These are used to define the databits
for sending and receiving on serial
channels 1, 2 and 3 respectively.
Sample: #define SER1_DATABITS 7

5 - 8 Optional Default = 8

SER1_STOPBITS,
SER2_STOPBITS,
SER3_STOPBITS

These are used to define the stopbits
for sending and receiving on serial
channels 1, 2 and 3 respectively.
Sample: #define SER1_STOPBITS 2

1, 2 Optional Default = 1

588

Constant Name/s Controls Valid
Values

Default value

SER1_INVERT,
SER2_INVERT,
SER3_INVERT

These are used to define the polarity
for sending and receiving on serial
channels 1, 2 and 3 respectively. If it is
"On", then high bits will be changed to
low, and low to high. This is useful for
connection to a PCs native serial port
or USB-serial converters with
MAX232. Sample: #define
SER1_INVERT On

On,
Off

Optional Default = Off

SER1_RXNOWAIT,
SER2_RXNOWAIT,
SER3_RXNOWAIT

These are used to define, if
SerNReceive waits for the startbits
when receiving on serial channels 1, 2
and 3 respectively. If it is "On", then
SerNReceive does not wait for the
startbits edge, but directly reads the
serial data. Also the time for delaying
the startbit is shortened. This is useful
when calling SerNReceive from an
Interrupt-Service-Routine. Sample:
#define SER1_RXNOWAIT On

On,
Off

Optional Default = Off

SER1_TXDELAY,
SER2_TXDELAY,
SER3_TXDELAY

These are used to define, if SerNSend
waits for the defined milliseconds
after sending a byte of serial data. This
is useful when using SerNPrint or
SerNSend to a serial device that needs
processing time between bytes.

1..255 Optional Default =0

SER1_TXDELAYms,
SER2_TXDELAYms,
SER3_TXDELAYms

These are used to define, if SerNSend
waits for the defined milliseconds
after sending a byte of serial data. This
is useful when using SerNPrint or
SerNSend to a serial device that needs
processing time between bytes. Same
functionality as SERn_TXDELAY

1..255 Optional Default =0

SER1_TXDELAYus,
SER2_TXDELAYus,
SER3_TXDELAYus

These are used to define, if SerNSend
waits for the defined nanoseconds
after sending a byte of serial data. This
is useful when using SerNPrint or
SerNSend to a serial device that needs
processing time between bytes.

1..255 Optional Default =0

SerNSend

Ser1Send, Ser2Send, Ser3Send

589

Syntax:

 Ser1Send data
 Ser2Send data
 Ser3Send data

Command Availability:

Available on all microcontrollers.

Explanation:

This command will send a byte given by data using the channel referred to as Ser1.. , Ser2… , Ser3…
according to the rules set by the related defines.

Example:

 'This program will send one byte using PORTA.5

 ; ----- Configuration
 #chip 12F1501, 1

 ; ----- Include library
 #include <SoftSerial.h>

 ; ----- Config Serial UART for sending:
 #define SER1_BAUD 9600 ; baudrate must be defined
 #define SER1_TXPORT PORTA ; I/O port (without .bit) must be defined
 #define SER1_TXPIN 5 ; portbit must be defined

 ; ----- Main body of program commences here.
 Ser1Send 88 'send one byte (88 = X)

Exposed in SoftSerial.h authored by Frank Steinberg

SerNPrint

Ser1Print, Ser2Print, Ser3Print

Syntax:

 Ser1Print value
 Ser2Print value
 Ser3Print value

590

Command Availability:

Available on all microcontrollers.

Explanation:

This command will send a value using the channel referred to as Ser1.. , Ser2… , Ser3… according to the
rules set by the related defines. value can be a string, integer, long, word or byte.

Example:

 'This program will send text and an icrementing value using PORTB.1

 ; ----- Configuration
 #chip 16F886, 16
 #option Explicit

 ; ----- Include library
 #include <SoftSerial.h>

 ; ----- Config Serial UART :
 #define SER1_BAUD 115200 ; baudrate must be defined
 ; Config I/O ports for transmitting:
 #define SER1_TXPORT PORTB ; I/O port (without .bit) must be defined
 #define SER1_TXPIN 1 ; portbit must be defined

 ; ----- Variables
 Dim xx As Word
 xx = 1000

 ; ----- Main body of program commences here.
 Do Forever
 Wait 1 s 'time to enjoy the result
 Ser1Send 13 'new line in Terminal
 Ser1Send 10
 Ser1Print "Software-UART: " 'send a text
 Ser1Print xx 'send the value of xx
 xx += 1
 Loop

Exposed in SoftSerial.h authored by Frank Steinberg

SerNReceive

Ser1Receive, Ser2Receive, Ser3Receive

Syntax:

591

 bytevar = Ser1Receive
 bytevar = Ser2Receive
 bytevar = Ser3Receive

Command Availability:

Available on all microcontrollers.

Explanation:

This function will read a byte using the channel referred to as Ser1.. , Ser2… , Ser3… according to the
rules set by the related defines. The received byte is stored in the variable bytevar. By default the
function waits for the startbit impulse edge before executing the following commands. See the sample
files how to realize timeout-functionality or interrupt-driven receiving.

Example:

592

 'This program will receive bytes on PORTB.0 and send back using PORTB.1

 ; ----- Configuration
 #chip 16F886, 16
 #option Explicit

 ; ----- Include library
 #include <SoftSerial.h>

 ; ----- Config Serial UART :
 #define SER1_BAUD 115200 ; baudrate must be defined
 #define SER1_DATABITS 7 ; databits optional (default = 8)
 #define SER1_STOPBITS 2 ; stopbits optional (default = 1)
 #define SER1_INVERT Off ; inverted polarity optional (default = Off)
 ; Config I/O ports for transmitting:
 #define SER1_TXPORT PORTB ; I/O port (without .bit) must be defined
 #define SER1_TXPIN 1 ; portbit must be defined
 ; Config I/O ports for receiving:
 #define SER1_RXPORT PORTB ; I/O port (without .bit) must be defined
 #define SER1_RXPIN 0 ; portbit must be defined
 #define SER1_RXNOWAIT Off ; don't wait for stopbit optional (default = Off)

 ; ----- Variables
 Dim RecByte As Byte

 ; ----- Main body of program commences here.
 Wait 1 Ms 'delay to prevent garbage if sending too quick after init
 Ser1Send 10 'new line in Terminal
 Ser1Send 13 '
 Ser1Print "Please send a byte!"

 Do Forever
 RecByte = Ser1Receive 'receive one byte - wait until detecting startbit
 Ser1Send 13 'new line in Terminal
 Ser1Send 10 '
 Ser1Print "You sent: " 'send a text
 Ser1Send RecByte 'send the sign representing the byte
 Loop

Exposed in SoftSerial.h authored by Frank Steinberg

593

RS232 (hardware)

This is the RS232 (hardware) section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

RS232 Hardware Overview

Introduction

GCBASIC support programs to communicate easily using RS232.

GCBASIC included microcontroller hardware-based serial routines are intended for use on
microcontrollers with built in serial communications modules - normally referred to in datasheets as
USART or UART modules. Check the microcontroller data sheet for the defined transmit and receive
(TX/Rx) pins. Make sure your program sets the Tx pin direction to Out and the Rx pin direction to In
respectively. If the RS232 lines are connected elsewhere, or the microcontroller has no USART module,
then the GCBASIC software based RS232 routines must be used.

Initialization of the USART module is handled automatically from your program by defining the chip,
speed, and the baudrate. The baudrate generator values are calculated and set, usart is set to
asynchronous, usart is enabled , the receive and transmit are enabled. See the table below.

Example:

 #chip mega328p, 16
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

Command Availability:

Available on all microcontrollers with a USART or UART module.
Microchip PIC supports USART1 and 2.
Atmel AVR supports USART 1,2,3 and 4.

The following table explains the methods that can be implemented when using the GCBASIC serial
routines.

Commands:

Command Parameters Example

Serially print numbers (byte,
word, long) or strings.

594

Command Parameters Example

HSerPrint Number_constant or
number_variable or string
[,optional usart address] The
optional usart address is
microcontroller specific buy can
be 1, 2, 3 or 4.

This subroutine prints a variable
value to usart 1. No additional
parameter for the usart number
is used. HSerprint (mynum) To
print a variable value to usart 2.
Note the additional parameter
for the usart address. HSerprint (
mynum, 2)

Serially receive ascii number
characters and assign to a
word variable.

HSerGetNum Number_variable [,optional
usart address] The optional
usart address is microcontroller
specific buy can be 1, 2, 3 or 4.

This subroutine ensures that the
characters received are
numbers. When a carriage
return (CR or ASCII code 13) is
received this signifies the end of
the character stream. Defaults to
usart1. To receive number
characters use. HSerGetNum (
mynum) To receive number
characters via usart2 use.
HSerGetNum (mynum, 2)

Serially receive characters as
a string.

HSerGetString User_string_variable [,optional
usart address] The optional
usart address is microcontroller
specific buy can be 1, 2, 3 or 4.

This subroutine ensures that the
characters treated as a string.
When a carriage return (CR or
ASCII code 13) is received this
signifies the end of the character
stream. GCBASIC will determine
the default buffering size for
strings. See here for more help
on string sizes. Defaults to
usart1. To receive a string use.
HserGetString (mystring) To a
string via usart2 use.
HserGetString (mystring, 2)

Serially receive a character
using a subroutine.

595

Command Parameters Example

HSerReceive byte_variable This subroutine handles the
incoming characters as raw
ASCII values. The subroutine
receives a single byte value in
the range of 0 to 255. The
subroutine can receive a byte
from usart 1, 2, 3 or 4. The public
variable comport can be set
before the use of this method to
select the desired usart address.
If ‘#define USART_BLOCKING’ is
defined then this methods will
wait until it a byte is received. If
‘#define USART_BLOCKING’ is
NOT defined then the method
will returns ASCII value received
or the method will return the
value of 255 to indicate not
ASCII data was received. You
can change the value returned
by setting redefining ‘#define
DefaultUsartReturnValue = [0-
255]’. When ‘#define
USART_BLOCKING’ is NOT
defined this method becomes a
non- blocking method which
allows for the testing and
handling of incoming ASCII data
within the user program. To
receive an ASCII byte value in
blocking mode use. Defaults to
usart1 #define
USART_BLOCKING
…
…
HSerReceive (user_byte_variable)
To receive an ASCII byte value
via usart 3 using blocking mode
use #define USART_BLOCKING
…
…
Comport = 3
HSerReceive (user_byte_variable)
To receive an ASCII byte value
use in non-blocking mode use.
Ensure #define
USART_BLOCKING is NOT
defined. This method fefaults to
usart1 HSerReceive

596

Command Parameters Example

Serially receive a character
using a function specifically
via usart1.

HSerReceive1 none This function handles the
incoming characters as raw
ASCII values. The function
receives a single byte value in
the range of 0 to 255. The
function can return only a byte
value from usart 1. The blocking
and non-blocking mode and the
methods are the same as shown
in the previous method. To
receive an ASCII byte value via
usart 1 using blocking mode use
#define USART_BLOCKING
…
…
user_number_variable =
HSerReceive1 To receive an ASCII
byte value use in non-blocking
mode use. Ensure #define
USART_BLOCKING is NOT
defined. user_number_variable
= HSerReceive1

Serially receive a character
using a function specifically
via usart2

597

Command Parameters Example

HSerReceive2 none This function handles the
incoming characters as raw
ASCII values. The function
receives a single byte value in
the range of 0 to 255. The
function can receive only a byte
value from usart 2. The blocking
and non-blocking mode and the
methods are the same as shown
in the previous method. To
receive an ASCII byte value via
usart 2 using blocking mode use
#define USART_BLOCKING
…
…
user_byte_variable =
HSerReceive2 To receive an ASCII
byte value use in non-blocking
mode use. Ensure #define
USART_BLOCKING is NOT
defined. user_byte_variable =
HSerReceive2

Serially receive a character
using a function from either
usart ports using a parameter
to select the usart.

598

Command Parameters Example

HSerReceiveFrom Usart_number,
Default is 1

This function handles the
incoming characters as raw
ASCII values. The function
return a single byte value in the
range of 0 to 255. The function
can receive only a byte value
from usart 1 and usart 2 The
blocking and non-blocking mode
and the methods are the same as
shown in the previous method.
To receive an ASCII byte value
via usart 1 using blocking mode
use #define USART_BLOCKING
…
…
user_byte_variable =
HSerReceiveFrom To receive an
ASCII byte value use in non-
blocking mode use. Ensure
#define USART_BLOCKING is
NOT defined. 'Chosen_usart = 2
user_byte_variable =
HSerReceiveFrom (2)

Serially send a byte using any
of the usart ports.

HSerSend Byte or byte_variable [,optional
usart address] + The optional
usart address is microcontroller
specific buy can be 1, 2, 3 or 4.

This subroutine sends a byte
value to usart 1. No additional
parameter for the usart number
is used. HSerSend(user_byte) To
print a variable value to usart 2.
Note the additional parameter
for the usart address. HSerSend (
user_byte, 2)

Serially send a byte and a
CR&LF using any of the usart
ports

HSerPrintByteCRLF Byte or byte_variable +
[,optional usart address] The
optional usart address is
microcontroller specific buy can
be 1, 2, 3 or 4.

This subroutine sends a byte
value to usart 1. HserPrintCRLF
users_byte,2

Serially send CR&LF (can be
multiple) using any of the
usart ports

599

Command Parameters Example

HSerPrintCRLF Number of CR&LF to be sent +
[,optional usart address] The
optional usart address is
microcontroller specific buy can
be 1, 2, 3 or 4.

This subroutine sends a CR&LF
to port 2. HserPrintCRLF 1,2 '
Will send a CR & LF out of
comport 2 to the terminal

Constants These constants affect the operation of the hardware RS232 routines:

Constant
Name

Controls Default Value

USART_BAUD_RATE Baud rate (in bps) for the routines to
operate at.

No default, user must enter a baud.
Doesn’t have to be a standard baud.

USART_BLOCKING If defined, this constant will cause the
USART routines to wait until data can be
sent or received.

No parameter needed. Use “#defining” it
implement the action.

USART_TX_BLOCKI
NG

If defined, this constant will cause the
Transmit USART routines to wait until
Transmit register is empty before writing
the next byte which prevents over
running the register and losing data.

No parameter needed. Use “#defining” it
implement the action.

USART2_BAUD_RAT
E

Baud rate (in bps) for the routines to
operate at.

No default, user must enter a baud.
Doesn’t have to be a standard baud.

USART2_BLOCKING If defined, this constant will cause the
USART routines to wait until data can be
sent or received.

No parameter needed. Use “#defining” it
implement the action.

USART2_TX_BLOCK
ING

If defined, this constant will cause the
Transmit USART routines to wait until
Transmit register is empty before writing
the next byte which prevents over
running the register and losing data.

No parameter needed. Use “#defining” it
implement the action.

USART3_BAUD_RAT
E

Baud rate (in bps) for the routines to
operate at.

No default, user must enter a baud.
Doesn’t have to be a standard baud.

USART3_BLOCKING If defined, this constant will cause the
USART routines to wait until data can be
sent or received.

No parameter needed. Use “#defining” it
implement the action.

USART3_TX_BLOCK
ING

If defined, this constant will cause the
Transmit USART routines to wait until
Transmit register is empty before writing
the next byte which prevents over
running the register and losing data.

No parameter needed. Use “#defining” it
implement the action.

600

Constant
Name

Controls Default Value

USART4_BAUD_RAT
E

Baud rate (in bps) for the routines to
operate at.

No default, user must enter a baud.
Doesn’t have to be a standard baud.

USART4_BLOCKING If defined, this constant will cause the
USART routines to wait until data can be
sent or received.

No parameter needed. Use “#defining” it
implement the action.

USART4_TX_BLOCK
ING

If defined, this constant will cause the
Transmit USART routines to wait until
Transmit register is empty before writing
the next byte which prevents over
running the register and losing data.

No parameter needed. Use “#defining” it
implement the action.

USART_DELAY This is the delay between characters. 1 ms To disable this delay between
characters … Use #define USART_DELAY 0
MS, or, To disable this delay between
characters … Use #define USART_DELAY
OFF

USART_BLOCKING_
TIMEOUT

If defined, this constant will cause the RX
USART routines (all USARTs) cease
waiting after a specific timeout. PIC only.

#DEFINE USART_BLOCKING_TIMEOUT 125
(where 125 is the time in ms) when using
USART_BLOCKING; the timeout is only
operation when the constant
USART_BLOCKING_TIMEOUT is defined. The
objective is to have a very responsive
USART received loop by just timing the
loop instructions without using timed
waits; this sacrifices timing precision but
provides excellent communication
performance.

CHECK_USART_BAU
D_RATE

Instruct the compiler to show the real BPS
to be used

Not the default operation

ISSUE_CHECK_USA
RT_BAUD_RATE_WA
RNING

Instruct the compiler to show BPS
calculation errors

Not the default operation

SerPrintCR Causes a Carriage return to be sent after
every HserPrint automatically.

No parameter needed. User “#defining” it
implements the action

SerPrintLF Causes a LineFeed to be sent after every
HserPrint. Some communications require
both CR and LF

No parameter needed. User “#defining” it
implements the action

HSerGetNum

Syntax:

601

 HSerGetNum myNum ‘Gets a multi digit number from USART 1
 HSerGetNum myNum,1 ‘Get a multi digit number from USART 1
 HSerGetNum myNum,2 ‘Get a multi digit number from USART 2

When the variable type is a word the number range is 0 to 65535
When the variable type is a long the number range is 0 to 99999

Command Availability:

Available on all microcontrollers with a USART or UART module.

Microchip PIC supports USART1 and 2.
Atmel AVR supports USART 1,2,3 and 4.

Enabling Constants:

To enable the use of the USART these are the enabling constants. These constants are required. You
can change the USART_BAUD_RATE and to meet your needs. For addition USART ports use #define USART
n_BAUD_RATE 9600 where n` is the required port number.

 'USART settings for USART1
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING
 #define USART_DELAY OFF

Explanation:

This command will read a multi digit number received as ascii chars followed by a CR from an external
serial source using a hardware serial module. The command checks that only numbers are input
disregarding other characters while waiting for the ending <CR>. It can be used only as a subroutine.

Example:

602

 'This program receives a number and CR from a PC terminal and sends it back on both
usarts
 #chip 18f26k22, 16

 'Set the pin directions
 #define USART_BAUD_RATE 9600
 #define USART_BLOCKING
 #define USART2_BAUD_RATE 9600
 #define USART2_BLOCKING

 'Init pins
 #define SerInPort PORTc.7 'usart1 in
 #define SerOutPort PORTc.6 'usart2 out
 'Set pin directions
 Dir SerOutPort Out
 Dir SerInPort In
 Dir PORTB.6 Out 'USART2 out
 Dir PORTB.7 In 'USArt2 in
 Dir PORTB.0 Out 'leds for testing
 Dir PORTB.1 Out 'leds for testing
 Wait 100 Ms

 'Variables
 Dim myNum as Word
 'Main body of program commences here.
 'Message after reset
 HSerPrint "18F26k22"
 HSerPrintCRLF

 'Main routine
 Do forever
 'wait for char from UART
 'HSerReceive InChar
 HSerGetNum myNum,2 'from usart 2
 HSerPrint myNum,1 ' send out usart 1
 HSerPrint myNum,2 'send out usart 2
 HSerPrintCRLF 1,2 'send one CRLF out usart 2
 HserPrintCRLF 1,1 ‘send one CRLF out usart 1
 loop

Example: This program receives number on serial port 1 and displays. This example shows using a
Long as the input variable.

Therefore, the result is in the range of 0-99999. The example also shows how to detect a buffer
overrun by testing the HSerInByte variable.

603

 #chip mega328p, 16

 #define USART_BAUD_RATE 9600
 #define USART_BLOCKING

 Dim myNum as Long ' range 0 to 99999
 HSerPrint "Restarted"
 HSerPrintCRLF

 Do
 HSerGetNum myNum
 HSerPrint myNum

 if HSerInByte <> 13 then
 HSerSend 9
 HSerPrint "Error buffer overrun" 'You should handle error appropiately
 End if
 HSerPrintCRLF
 loop
 End

See also HSerReceive and HSerGetString

HSerGetString

Syntax:

 HSerGetString myString ‘Get a multi char string from USART 1
 HSerGetString myString,1 ‘Get a multi char string from USART 1
 HSerGetString myString,2 ‘Get a multi char string from USART 2

Variable type is string and the routine checks for numbers,letters, and puctuation.

Command Availability:

Available on all microcontrollers with a USART or UART module.

Microchip PIC supports USART1 and 2.
Atmel AVR supports USART 1,2,3 and 4.

Enabling Constants:

To enable the use of the USART these are the enabling constants. These constants are required. You
can change the USART_BAUD_RATE and to meet your needs. For addition USART ports use #define USART

604

n_BAUD_RATE 9600 where n` is the required port number.

 'USART settings for USART1
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING
 #define USART_DELAY OFF

Explanation:

This command will read a multi character string received as ascii input to the hardware serial module
followed by a CR from an external serial source. It can be used only as a subroutine. Variable type is
string and the routine checks for numbers,letters, and puctuation.

Example:

 'This program receives char string and CR from a PC terminal, sends back the string on
the serial port, and turns Led’s on off by command

 #chip 18f26k22, 16

 'Set the pin directions
 #define USART_BAUD_RATE 9600
 #define USART_BLOCKING
 #define USART2_BAUD_RATE 9600
 #define USART2_BLOCKING

 'InitUSART
 #define SerInPort PORTc.7 'USART 1 Rx Pin
 #define SerOutPort PORTc.6 'USART 1 Tx Pin

 'Set pin directions
 Dir SerOutPort Out
 Dir SerInPort In

 Dir PORTB.6 Out 'second USART Tx Pin
 Dir PORTB.7 In 'second USART Rx Pin

 Dir PORTB.0 Out ' LED hooked up for testing
 Dir PORTB.1 Out ' LED hooked up for testing

 Wait 100 Ms

 ; ----- Variables
 ' All byte variables are defined upon use.
 Dim myNum as Word

605

 Dim MyString as String

 ; ----- Main body of program commences here.
 'Message after reset
 HSerPrint "18F26k22"
 HSerPrintCRLF

 'Main routine

 Do Forever

 HSerGetString MyString
 HSerPrint MyString
 HSerSend(13)
 If MyString = "LED1 ON" Then
 Set PORTB.0 Off
 End If
 If MyString = "LED1 OFF" Then
 Set PORTB.0 On
 End If
 If MyString = "LED2 ON" Then
 Set PORTB.1 Off
 End If
 If MyString = "LED2 OFF" Then
 Set PORTB.1 On
 End If

 Loop

See also HSerReceive and HSerGetNum

HSerPrint

Syntax:

 HSerPrint user_value [,1|2|3|4] 'Choose comport with optional parameter
 'Default comport is 1

 'Send a series of ASCII characters using the buffer called SerialPacket
 Dim SerialPacket as Alloc
 SerialPacket = 66, 105, 108, 108, 38, 69, 118, 97, 110, 13, 10
 HserPrint (SerialPacket, 1) ’explicit to comport 1
 SerialPacket = 66,44,73,44,82,13,10
 HserPrint (SerialPacket) ’defaults to comport 1

Command Availability:

606

Available on all microcontrollers with a USART or UART module.

Microchip PIC supports USART1 and 2.
Atmel AVR supports USART 1,2,3 and 4.

Enabling Constants:

To enable the use of the USART these are the enabling constants. These constants are required. You
can change the USART_BAUD_RATE and to meet your needs. For addition USART ports use #define USART
n_BAUD_RATE 9600 where n` is the required port number.

 'USART settings for USART1
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING
 #define USART_DELAY OFF

Explanation:

HSerPrint is used to send a value over the serial connection. user_value can be a string, integer, long,
word or byte. HSerPrint is very similar to Print. The data will be sent out the hardware serial module.

HSerPrint will not send any new line characters. If the chip is sending to a terminal, these commands
should follow every HSerPrint :

 HSerPrint 13
 HSerPrint 10

Example:

 'This program will display any values received over the serial
 'connection. If "pot" is received, the value of the analog sensor
 'will be sent.
 'Note: This has been adapted from the SerPrint example.

 'Chip settings
 #chip 18F2525, 8

 'LCD settings
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RS PORTC.7
 #define LCD_RW PORTC.6
 #define LCD_Enable PORTC.5
 #define LCD_DB4 PORTC.4

607

 #define LCD_DB5 PORTC.3
 #define LCD_DB6 PORTC.2
 #define LCD_DB7 PORTC.1

 'USART settings
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING
 #define USART_DELAY OFF

 'Potentiometer
 #define POT_PORT PORTA.0
 #define POT_AN AN0

 'Set pin directions
 Dir POT_PORT In

 'Create buffer variables to store received messages
 Dim Buffer As String
 Dim OldBuffer As String
 BufferSize = 0

 'Show test messages
 Print "Serial Tester"
 Wait 1 s
 HSerPrint "GCBASIC RS232 Test"
 HSerSend 13
 HSerSend 10
 Wait 1 s

 'Main loop
 Do
 'Get a byte from the terminal
 HSerReceive Temp

 'If Enter key was pressed, deal with buffer contents
 If Temp = 13 Then
 Buffer(0) = BufferSize

 'Try to execute commands in buffer
 If Not ExecCommand (Buffer) Then
 'Show message on bottom line, last message on top.
 CLS
 Print OldBuffer
 Locate 1, 0
 Print Buffer
 'Store the message for next time
 OldBuffer = Buffer
 End If

608

 BufferSize = 0
 End If
 'Backspace code, delete last character in buffer
 If Temp = 8 Then
 If BufferSize > 0 Then BufferSize -= 1
 End If
 'Received ASCII code between 32 and 127, add to buffer
 If Temp >= 32 And Temp <= 127 Then
 BufferSize += 1
 Buffer(BufferSize) = Temp
 End If
 Loop

 'Takes a sensor reading and sends it to terminal
 Sub SendSensorReading
 HSerPrint "Sensor Reading: "
 HSerPrint ReadAD10(POT_AN)
 HSerSend 13
 HSerSend 10
 End Sub

 'Will check the buffer for a command
 'If command found, run it and return true
 'If not, return false
 Function ExecCommand (CmdIn As String)
 ExecCommand = False
 'If received command is "pot", show potentiometer value
 If CmdIn = "pot" Then
 SendSensorReading
 ExecCommand = True
 End If
 End Function

For more help, see also HserPrintByteCRLF, HserPrintStringCRLF and HserPrintCRLF

HSerPrintStringCRLF

Syntax:

 HSerPrintStringCRLF user_string [,1|2|3|4] 'Choose comport with optional parameter
 'Default comport is 1

Command Availability:

Available on all microcontrollers with a USART or UART module.

609

Microchip PIC supports USART1 and 2.
Atmel AVR supports USART 1,2,3 and 4.

Enabling Constants:

To enable the use of the USART these are the enabling constants. These constants are required. You
can change the USART_BAUD_RATE and to meet your needs. For addition USART ports use #define USART
n_BAUD_RATE 9600 where n` is the required port number.

 'USART settings for USART1
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING
 #define USART_DELAY OFF

Explanation:

HSerPrintStringCRLF is used to send a string over the serial connection. The parameter can only be a
string. HSerPrintStringCRLF is very similar to HserPrint but HserPrint can handle all types of variables.

The data will be sent out the hardware serial module.

HSerPrintStringCRLF will send new line characters:

Example:

 'This program will display string over the serial connection.

 'Chip settings
 #chip 18F2525, 8

 'USART settings
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Show string message
 HSerPrintStringCRLF "GCBASIC RS232 Test"
 Wait 1 s

For more help, see also HserPrint, HserPrintByteCRLF and HserPrintCRLF

HSerReceive

Syntax:

Used as subroutine:

610

 HSerReceive (user_byte_variable)

or, if other multiple comports are in use, set the comport before using HSerReceive.

 comport = 1 '(1|2|3|4|5)Not needed unless using multiple comports in use
 HSerReceive (_user_byte_variable_)

or, used as function.

 user_byte_variable = HSerReceive 'Supports only USART1
 user_byte_variable = HSerReceive1 'Supports only USART1
 user_byte_variable = HSerReceive2 'Supports only USART2

or, used to support assigning of received byte to word (or other multi-byte variables). Note the use of
casting to ensure the HSerReceive uses byte addressing.

 Dim dbAdr as Word

 HSerReceive [byte]dbAdr_H
 HSerReceive [byte]dbAdr

For other comports use Function HSerReceiveFrom

Command Availability:

Available on all microcontrollers with a USART or UART module.

Microchip PIC supports USART1,2,3,4 and 5.
Atmel AVR supports USART 1,2,3 and 4.

Enabling Constants:

To enable the use of the USART these are the enabling constants. These constants are required. You
can change the USART_BAUD_RATE and to meet your needs. For addition USART ports use #define USART
n_BAUD_RATE 9600 where n` is the required port number.

 'USART settings for USART1
 #define USART_BAUD_RATE 9600 'Set the baud rate
 #define USART_TX_BLOCKING 'Ensure the transmit buffer is empty
 #define USART_BLOCKING 'Ensures a data byte is in the receive buffer
 #define USART_DELAY OFF 'Disables USART delays

611

Explanation:

This command will read a byte from the hardware RS232 module. It can be used either as a subroutine
or as a function. If used as a subroutine, a variable must be supplied to store the received value in. If
used as a function, it will return the received value.

The subroutine HSerReceive can get a byte from any comport but must set the comport number
immediately before the call. If ”#define USART_BLOCKING” is defined then the HserReceive waits in a
loop until it receives a byte. If” #define USART_BLOCKING” is NOT defined then HserReceive returns
the new byte that was received OR returns 255 because of “DefaultUsartReturnValue = 255” was
defined. This is good because it don’t hold up your program from executing other commands and
your can check it for new data priodically.

Example:

 'This program will read a value from the USART, and send it to PORTB.

 #chip 16F877A, 20

 'USART settings
 #define USART_BAUD_RATE 9600 'sets up comport 1 for 9600 baud

 'Set PORTB to output
 Dir PORTB Out
 'Set USART receive pin to input
 Dir PORTC.7 In

 'Main loop
 Do
 'Get serial data and output value to PortB as 8 bit binary
 HSerReceive(InChar) 'Receive data as Subroutine from comport 1
 'InChar = HSerReceive 'Could also be written as Function
 If InChar <> 255 Then 'If value is 255 then it is old data
 PortB = InChar 'If new data then it goes to PortB
 End If
 Loop

Example 2:

612

 'If you choose no “Blocking” and comment both of them out.
 'USART settings
 #define USART_BAUD_RATE 9600
 '#define USART_BLOCKING ' just none OR one of the blocking
 '#define USART_TX_BLOCKING ' statements should be defined

 'Main loop
 Do
 'Get and display value
 'If there is no new data, HSerReceive will return default value.
 comport = 1
 HSerReceive tempvalue
 If tempvalue <> 255 Then ‘ don’t change PortB if it is default
 PortB = tempvalue
 End If

 Loop

Example 3:

613

 'If you choose no “Blocking” and comment both of them out.
 #chip mega328p, 16

 #define USART_BAUD_RATE 9600
 '#define USART_BLOCKING
 '#define USART_TX_BLOCKING

 'Don't forget to Set usart pin directions
 Dir PortD.1 Out 'com1 USART0
 Dir PortD.0 In

 Wait 1 s

 'Message after reset
 HSerPrint "ATmega328P com test"
 HSerPrintCRLF

 'Main routine hook up FTDI232 usb to serial and use terminal program to check
 Start:
 comport = 1
 HSerReceive(InChar) 'Subroutine needs the comport set
 'InChar = HSerReceive ' This function will get from comport 1
 If InChar <> 255 Then ' check if for received byte
 'return 255 if old data
 HSerSend InChar 'send back char to UART
 End If
 Goto Start

See also RS232 Hardware Overview

HSerReceiveFrom

Syntax:

 user_byte = HSerReceiveFrom [,1 | 2 | 3 | 4]
 user_byte = HSerReceiveFrom 'Defaults to USART1

 'other Receive functions
 user_byte = HSerReceive1 'from USART1
 user_byte = HSerReceive2 'from USART2

Command Availability:

Available on all microcontrollers with a USART or UART module.

614

Microchip PIC supports USART1 and 2.
Atmel AVR supports USART 1,2,3 and 4.

Enabling Constants:

To enable the use of the USART these are the enabling constants. These constants are required. You
can change the USART_BAUD_RATE and to meet your needs. For addition USART ports use #define USART
n_BAUD_RATE 9600 where n` is the required port number.

 'USART settings for USART1
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING
 #define USART_DELAY OFF

Explanation:

This command will read a byte from the hardware RS232 module. It can be only be used as a function.
It will return the received value.

Example:

 'This program will read a value from the USART, and display it on PORTB.

 #chip 16F877A, 20

 'USART settings
 #define USART_BAUD_RATE 9600
 #define USART_BLOCKING
 #define USART_TX_BLOCKING

 'Set PORTB to input
 Dir PORTB Out
 'Set USART receive pin to input
 Dir PORTC.7 In

 'Main loop
 Do
 'Get byte value
 bytein = HSerReceiveFrom (2)
 'do something useful
 Loop

See also HSerReceive

615

HSerSend

Syntax:

 HSerSend user_byte [,1|2|3|4] 'Choose comport with optional parameter
 'Default comport is 1

Command Availability:

Available on all microcontrollers with a USART or UART module.

Microchip PIC supports USART1 and 2.
Atmel AVR supports USART 1,2,3 and 4.

Enabling Constants:

To enable the use of the USART these are the enabling constants. These constants are required. You
can change the USART_BAUD_RATE and to meet your needs. For addition USART ports use #define USART
n_BAUD_RATE 9600 where n` is the required port number.

 'USART settings for USART1
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING
 #define USART_DELAY OFF

Explanation:

This command will send a byte given by user_byte using the hardware RS232 module.

Example:

616

 'This program will send the status of PORTB through the hardware
 'serial module.

 #chip 16F877A, 20

 'USART settings
 #define USART_BAUD_RATE 9600 'Initializes USART port with 9600 baud
 '#define USART_BLOCKING ' Both of these blocking statements will
 #define USART_TX_BLOCKING ' wait for tx register to be empty
 ' use only one of the two constants
 #define USART_DELAY OFF

 'Set PORTB to input
 Dir PORTB In
 'Set USART transmit pin to output
 Dir PORTC.6 Out

 'Main loop
 Do
 'Send PORTB value through USART
 HSerSend PORTB
 HSerSend(13) ' sends a CR
 'Short delay for receiver to process message
 Wait 10 ms 'probably not necessary with blocking statement
 Loop

HserPrintByteCRLF

Syntax:

 HserPrintByteCRLF user_data [, 1 | 2 | 3 | 4]

Command Availability:

Available on all microcontrollers with a USART or UART module.

Microchip PIC supports USART1 and 2.
Atmel AVR supports USART 1,2,3 and 4.

Enabling Constants:

To enable the use of the USART these are the enabling constants. These constants are required. You
can change the USART_BAUD_RATE and to meet your needs. For addition USART ports use #define USART
n_BAUD_RATE 9600 where n` is the required port number.

617

 'USART settings for USART1
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING
 #define USART_DELAY OFF

Explanation:

This command will send a byte given by user_data using the hardware USART module and then send
the ASCII codes 13 and 10. ASCII codes 13 and 10 equate to a carriage return and line feed.

Example:

 'This program will send the status of PORTB through the hardware serial module.

 HserPrintByteCRLF 65 ' Will print a single A on the terminal
 HserPrintByteCRLF "A" ' Will print a single A on the terminal

See also HserPrintCRLF

HserPrintCRLF

Syntax:

 HserPrintCRLF [optional BYTE] [, 1 | 2 | 3 | 4]

Command Availability:

Available on all microcontrollers with a USART or UART module.

Microchip PIC supports USART1 and 2.+ Atmel AVR supports USART 1,2,3 and 4.

Enabling Constants:

To enable the use of the USART these are the enabling constants. These constants are required. You
can change the USART_BAUD_RATE and to meet your needs. For addition USART ports use #define USART
n_BAUD_RATE 9600 where n` is the required port number.

 'USART settings for USART1
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING
 #define USART_DELAY OFF

Explanation:

618

This command will send ASCII codes 13 and 10 only using the hardware RS232 module. ASCII codes 13
and 10 equate to a carriage return and line feed.

Optionally, you can add a parameter. The number will determine the number of ASCII codes 13 and 10
set to the hardware RS232 module.

Also you can choose the comport with second optional parameter if it is not the default comport 1. If
there is no first optional parameter then you must have atleast acomma before it to indicate this is the
second parameter.

Examples:

 'This Line will send 1 CR and LF
 HserPrintCRLF ' Will send a CR & LF to the terminal

 'This Line will send 2 times (CR and LF)
 HserPrintCRLF 2 ' Will send 2 times (CR & LF) to the terminal
 'out of comport 1

 'This Line will send 1 CR and LF
 HserPrintCRLF 1,2 ' Will send a CR & LF out of
 'comport 2 to the terminal

See also HserPrintByteCRLF

619

PS/2
This is the PS/2 section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

PS/2 Overview

PS2 Overview

These routines make it easier to communicate with a PS/2 device, particularly an external keyboard.

Relevant Constants

These constants affect the operation of the PS/2 routines:

Constant
Name

Controls Default
Value

PS2Data Pin connected to PS/2 data line Must be
specified

PS2Clock Pin connected to PS/2 clock line. Must be
specified

PS2_DELAY This constant can be set to a delay, such as 10 ms. If set, a delay will be
added at the end of every byte sent or received.

Not set

Connections between the Keyboard and the Microcontroller The following diagram show a typical
connection between the keyboard and the microcontroller. The value of R1 and R2 is typically 4.7k for
a 5v system.

InKey

Syntax:

620

 output = InKey

Command Availability:

Available on all microcontrollers.

Explanation:

The InKey function will read the last pressed key from a PS/2 keyboard, and return an ASCII value
corresponding to the key. If no key is pressed, then InKey will return 0.

It will also monitor Caps Lock, Num Lock and Scroll Lock keys, and update the status LEDs as
appropriate.

Example:

 'A program to accept messages from a standard PS/2 keyboard
 'Any keys pressed will be shown on an LCD screen.

 'Hardware settings
 #chip 18F4620, 20

 'LCD connection settings
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_DB4 PORTD.4
 #define LCD_DB5 PORTD.5
 #define LCD_DB6 PORTD.6
 #define LCD_DB7 PORTD.7
 #define LCD_RS PORTD.0
 #define LCD_RW PORTD.1
 #define LCD_Enable PORTD.2

 'PS/2 connection settings
 #define PS2Clock PORTC.1
 #define PS2Data PORTC.0
 #define PS2_DELAY 10 ms

 'Set up key log
 Dim KeyLog(32)
 DataCount = 0
 KeyLog(1) = 32

 Main:
 'Read the last pressed key

621

 KeyIn = INKEY
 'If no key pressed, try reading again
 If KeyIn = 0 Then Goto Main

 'Escape pressed - clear message
 If KeyIn = 27 Then
 DataCount = 0
 For DataPos = 1 to 32
 KeyLog(DataPos) = 32
 Next
 Goto DisplayData
 End If

 'Backspace pressed - delete last character
 If KeyIn = 8 Then
 If DataCount = 0 Then Goto Main
 KeyLog(DataCount) = 32
 DataCount = DataCount - 1
 Goto DisplayData
 End If

 'Otherwise, add the character to the buffer
 If KeyIn >= 31 And KeyIn <= 127 Then
 DataCount = DataCount + 1
 KeyLog(DataCount) = KeyIn
 End If

 DisplayData:
 'Display key buffer
 'LCDWriteChar is used instead of Print for greater control
 CLS
 For DataPos = 1 to DataCount
 If DataPos = 17 then Locate 1, 0
 LCDWriteChar KeyLog(DataPos)
 Next

 Goto Main

PS2SetKBLeds

Syntax:

 PS2SetKBLeds (LedStatus)

Command Availability:

622

Available on all microcontrollers.

Explanation:

This routine will turn the status LEDs on a keyboard on or off. LedStatus is a variable, of which the
lower 3 bits correspond to the 3 LEDs. Bit 0 is for Scroll Lock, bit 1 controls Num Lock and bit 2 controls
Caps Lock.

Note that this routine does not alter the status variables within the INKEY routine - so even if the Caps
Lock LED is turned on, Caps Lock will stay off.

Example:

 'A spinning LED program for a keyboard
 'Will flash Num Lock, then Caps Lock, then Scroll Lock.

 'Hardware settings
 #chip 16F88, 8

 #define PS2Clock PORTB.2
 #define PS2Data PORTB.3
 #define PS2_DELAY 10 ms

 'Main Loop
 Do

 'Turn on only Num Lock (bit 1)
 PS2SetKBLeds b'00000010'
 Wait 250 ms

 'Turn on only Caps Lock (bit 2)
 PS2SetKBLeds b'00000100'
 Wait 250 ms

 'Turn on only Scroll Lock (bit 0)
 PS2SetKBLeds b'00000001'
 Wait 250 ms

 Loop

PS2ReadByte

Syntax:

 output = PS2ReadByte

623

Command Availability:

Available on all microcontrollers.

Explanation:

PS2ReadByte will read a byte from the PS/2 bus. It will return the byte, or 0 if no data was returned by
the PS/2 device.

The PS/2 bus will normally be held in the inhibit state. PS2ReadByte will uninhibit the bus for 25 ms. If a
response is received, it will be read. Then, the bus will be placed back in the inhibit state.

Example:

For an example, please refer to the InKey function. PS2 Inkey

PS2WriteByte

Syntax:

 PS2WriteByte user_data

Command Availability:

Available on all microcontrollers.

Explanation:

PS2WriteByte will send a byte to a PS/2 device. Once the byte has been written, the PS/2 bus will be
placed in the inhibit state.

Example:

For an example, please refer to the PS2SetKBLeds function.
PS2 Set Keyboard Leds

624

SPI
This is the Serial Peripheral Interface section of the Help file. Please refer the sub-sections for details
using the contents/folder view.

SPI Overview

Syntax:

The SPI interface allows for the transmission and receiption of data simultaneously on two lines (MOSI
and MISO).

The Clock polarity (CPOL) and clock phase (CPHA) are the main parameters that define a clock format
to be used by the SPI bus. Depending on CPOL parameter, SPI clock may be inverted or non-inverted.
CPHA parameter is used to shift the sampling phase. If CPHA=0 the data are sampled on the leading
(first) clock edge. If CPHA=1 the data are sampled on the trailing (second) clock edge, regardless of
whether that clock edge is rising or falling.

CPOL=0, CPHA=0

The data must be available before the first clock signal rising. The clock idle state is zero. The data on
MISO and MOSI lines must be stable while the clock is high and can be changed when the clock is low.
The data is captured on the clock’s low-to-high transition and propagated on high-to-low clock
transition.

CPOL=0, CPHA=1

625

The first clock signal rising can be used to prepare the data. The clock idle state is zero. The data on
MISO and MOSI lines must be stable while the clock is low and can be changed when the clock is high.
The data is captured on the clock’s high-to-low transition and propagated on low-to-high clock
transition.

CPOL=1, CPHA=0

The data must be available before the first clock signal falling. The clock idle state is one. The data on
MISO and MOSI lines must be stable while the clock is low and can be changed when the clock is high.
The data is captured on the clock’s high-to-low transition and propagated on low-to-high clock
transition.

CPOL=1, CPHA=1

The first clock signal falling can be used to prepare the data. The clock idle state is one. The data on
MISO and MOSI lines must be stable while the clock is high and can be changed when the clock is low.
The data is captured on the clock’s low-to-high transition and propagated on high-to-low clock
transition.

Key Commands

626

 // Set the mode
 SPIMode (_Mode_ [, SPIClockMode]) //Legacy SPI
 SPIMode (_Mode_ , SPIClockMode) //18FxxQxx, 18FxxK42 and 18xxFK83
microcontrollers

 // Send bytge and receive data byte
 SPITransfer (_OutByte_, _InByte_)

 // Send data byte
 FastHWSPITransfer(_OutByte_)

 // USe MASTERSLOW | MASTER | MASTERFAST | MASTERULTRAFAST for specific AVRs only |
MasterSSPADDMode for specific PICs SSPADD support

 // The system constant `HWSPIMode` defaults to MASTERFAST when microcontroller
frequency less or equal to 32 mhz
 // Defaults to MASTER when microcontroller frequency more than 32 mhz.
 // To change use the following method
 #define HWSPIMode MASTERULTRAFAST

The GCBASIC used the microcontrollers hardware module for SPI. The example below shows an
implementation of Hardware and Software SPI. Software SPI allows for a greater choice of ports to be
used to control the SPI operations.

To use a second SPI hardware module use the suffix 2, as follows:

 // Set the mode
 SPIMode2 (_Mode_ [, SPIClockMode]) //Legacy SPI
 SPIMode2 (_Mode_ , SPIClockMode) //18FxxQxx, 18FxxK42 and 18xxFK83
microcontrollers

 // Send bytge and receive data byte
 SPITransfer2 (_OutByte_, _InByte_)

 // Send data byte
 FastHWSPITransfer2(_OutByte_)

Example

This example demonstrates the SPI capabilities for the mega328p. The process is similar of any
microcontroller..

This example show using the hardware SPI option and a sofware SPI option.

Using hardware SPI mode - make sure the #define SPI_HardwareSPI is not commented out. Using

627

software SPI mode - comment out #define SPI_HardwareSPI. The example code will then use software
SPI.

Using multiple SPI devices

There will be use cases were you need to use more than one SPI target device at a time. In such cases
the device defined for SPI must be inserted in your program for each device.

As an example using e-Paper and SRAM at the same time, with an hardware SPI would require #define
SPISRAM_HARDWARESPI and #define EPD_HardwareSPI.

Obviously, when all SPI devices use the same SPI lines, you must select one device at a time by setting
SPI Chip Select line to OFF for the specific target SPI device, and you must set ON the SPI Chip Select line
for any other SPI device - this is a normal convention of SPI usage. This is not specific to GCBASIC..

Code overview

For more code examples see the demonstrations and the SPIMODE Help page.

In this example InitSPIMode calls SPIMode. If needed, when hardware mode, and set the
port directions.

The sub SendByteviaSPI is called to handle whether to call the Hardware or use Software
(bit-banging) SPI.

 #chip mega328p, 16
 #option explicit
 #include <UNO_mega328p.h >

 #define SPI_HardwareSPI 'comment this out to make into Software SPI but, you may
have to change clock lines

 'Pin mappings for SPI - this SPI driver supports Hardware SPI
 #define SPI_DC DIGITAL_8 ' Data command line
 #define SPI_CS DIGITAL_4 ' Chip select line
 #define SPI_RESET DIGITAL_9 ' Reset line

 #define SPI_DI DIGITAL_12 ' Data in | MISO
 #define SPI_DO DIGITAL_11 ' Data out | MOSI
 #define SPI_SCK DIGITAL_13 ' Clock Line

 dir SPI_DC out
 dir SPI_CS out

628

 dir SPI_RESET out
 dir SPI_DO Out
 dir SPI_DI In
 dir SPI_SCK Out

 'If DIGITAL_10 is NOT used as the SPI_CS (sometimes called SS) the port must and
output or set as input/pulled high with a 10k resistor.
 'As follows:
 'If CS is configured as an input, it must be held high to ensure Master SPI
operation.
 'If the CS pin is driven low by peripheral circuitry when the SPI is configured
as a Master with the SS pin defined as an input, the
 'SPI system interprets this as another master selecting the SPI as a slave and
starting to send data to it!
 'If CS is an output SPI communications will commence with no flow control.
 dir DIGITAL_10 Out

 DIM byte1 As byte
 DIM byte2 As byte
 DIM byte3 As byte

 byte1 = 100 ' temp values (will come from potentiometer later)
 byte2 = 150
 byte3 = 200

 InitSPIMode

 do forever
 set SPI_CS OFF;
 set SPI_DC OFF;
 SendByteviaSPI (byte1)
 set SPI_CS ON;
 set SPI_DC ON

 set SPI_CS OFF;
 set SPI_DC OFF;
 SendByteviaSPI (byte2)
 set SPI_CS ON;
 set SPI_DC ON

 set SPI_CS OFF;
 set SPI_DC OFF;
 SendByteviaSPI (byte3)
 set SPI_CS ON;
 set SPI_DC ON

 wait 10 ms

629

 loop

 sub InitSPIMode

 #ifdef SPI_HardwareSPI
 SPIMode (MasterFast, SPI_CPOL_0 + SPI_CPHA_0)
 #endif

 set SPI_DO OFF;
 set SPI_CS ON; therefore CPOL=0
 set SPI_DC ON; deselect

 End sub

 sub SendByteviaSPI(in SPISendByte as byte)

 set SPI_CS OFF
 set SPI_DC OFF;

 #ifdef SPI_HardwareSPI
 FastHWSPITransfer SPISendByte
 set SPI_CS ON;
 exit sub
 #endif

 #ifndef SPI_HardwareSPI
 repeat 8

 if SPISendByte.7 = ON then
 set SPI_DO ON;
 else
 set SPI_DO OFF;
 end if
 SET SPI_SCK On; ; therefore CPOL=0 ==ON, and, where CPOL=1==ON
 rotate SPISendByte left
 set SPI_SCK Off; ; therefore CPOL=0 =OFF, and, where CPOL=1==OFF

 end repeat
 set SPI_CS ON;
 set SPI_DO OFF;
 #endif

 end Sub

See also SPIMode,SPITransfer,FastHWSPITransfer

630

SPIMode

Syntax:

Legacy SPI Operations

 SPIMode (_Mode_ [, _SPIClockMode_])

 // Specfic the hardware SPI operating mode, can be MasterFast, Master, MasterSlow
 #DEFINE HWSPIMode MasterFast

 // You can use a shared constant to set a consant with the desired SPIClockMode
 #DEFINE HWSPIClockMode SPI_CPOL_0 + SPI_CPHA_0

AVRDX, 18FxxQxx, 18FxxK42 and 18xxFK83 microcontrollers

For HWSPI channel 0

 SPIMode (_Mode_ , _SPIClockMode_)

 // Specfic the hardware SPI operating mode, can be MasterUltraFast, MasterFast,
Master, MasterSlow
 #DEFINE HWSPIMode MasterUltraFast

 // You can use a shared constant to set a consant with the desired SPIClockMode
 #DEFINE HWSPIClockMode SPI_SS_0 + SPI_CPOL_0 + SPI_CPHA_0

 // Optionally change the SPI BAUD RATE from 4000
 #DEFINE SPI_BAUD_RATE 8000

 // Optionally update the SPI baud rate register with an explicit value
 // typical use is to entry a specific calculated value
 #DEFINE SPI_BAUD_RATE_REGISTER 55

Command Availability:

Available on Microchip PIC and AVR microcontrollers with Hardware SPI modules.

Explanation:

Mode sets the mode of the SPI module within the microcontroller. These are the possible SPI Modes:

Mode Name Description

Legacy SPI Operations

631

Mode Name Description

MasterSlow Master mode, SPI clock is 1/64 of the frequency of the microcontroller.

Master Master mode, SPI clock is 1/16 of the frequency of the microcontroller.

MasterFast Master mode, SPI clock is 1/4 of the frequency of the microcontroller.

AVRDX, 18FxxQxx, 18FxxK42 and 18xxFK83 microcontrollers

MasterSlow SPI clock baud rate is calculated INT(ChipMHz / INT(SPI_BAUD_RATE) / 16 * 1000) + 1.
Where SPI_BAUD_RATE defaults to 4000. Also, see SPI_BAUD_RATE and
SPI_BAUD_RATE_REGISTER for changing SPI Baud Rate and settting the SPI Baud Rate
register with an explicit value

Master SPI clock baud rate is calculated as INT(ChipMHz / INT(SPI_BAUD_RATE) / 4 * 1000) +
1. Where SPI_BAUD_RATE defaults to 4000. Also, see SPI_BAUD_RATE and
SPI_BAUD_RATE_REGISTER for changing SPI Baud Rate and settting the SPI Baud Rate
register with an explicit value

MasterFast SPI clock baud rate is calculated as INT(ChipMHz / INT(SPI_BAUD_RATE) / 2 * 1000) +
1. Where SPI_BAUD_RATE defaults to 4000. Also, see SPI_BAUD_RATE and
SPI_BAUD_RATE_REGISTER for changing SPI Baud Rate and settting the SPI Baud Rate
register with an explicit value

MasterUltraFa
st

SPI1BAUD is set to 0 and therefore the SPI clock baud rate to maximum

Slave Operations

Slave Slave mode

SlaveSS Slave mode, with the Slave Select pin enabled.

For Legacy microcontrollers SPI operations SPIClockMode is an optional parameter to set the mode
of the SPI clock mode. This optional parameter sets both the clock polarity and clock edge.

For Specific PICs microcontrollers SPI operations SPIClockMode is a mandated parameter to set the
mode of the SPI clock mode and the clock polarity bit. This parameter sets both the clock polarity and
clock edge. There is no verification by the compiler if you do use the _SPIClockMode for the 18FxxQxx,
18FxxK42 and 18xxFK83 microcontrollers - the compiler uses the default value of SPI_SS = 0 &

SPI_CPOL = 0 & SPI_CPHA = 0 The use of SPI_SS_n requires the PPS to be set. If PPS is not set then the
SPI_SS will use the default value specified in the specfic GCBASIC library.

For the _SPIClockMode_range, see the tables below:

SPIClockMode Description

Legacy SPI operations

0 SPI_CPOL = 0 & SPI_CPHA = 0

1 SPI_CPOL = 0 & SPI_CPHA = 1

632

SPIClockMode Description

2 SPI_CPOL = 1 & SPI_CPHA = 0

3 SPI_CPOL = 1 & SPI_CPHA = 1

18FxxQxx, 18FxxK42 and 18xxFK83 microcontrollers

0 SPI_SS = 0 & SPI_CPOL = 0 & SPI_CPHA = 0

2 SPI_SS = 0 & SPI_CPOL = 1 & SPI_CPHA = 0

5 SPI_SS = 1 & SPI_CPOL = 0 & SPI_CPHA = 1

7 SPI_SS = 1 & SPI_CPOL = 1 & SPI_CPHA = 1

You can use a constant value or alternatively you can use constants to set the SPIClockMode as follows:

 Legacy SPI microcontrollers
 SPIMode (MasterFast, SPI_CPOL_n + SPI_CPHA_n)

 18FxxQxx, 18FxxK42 and 18xxFK83 microcontrollers
 SPIMode (MasterFast, SPI_SS_n + SPI_CPOL_n + SPI_CPHA_n)

Where the following parameters can be used as a calculation to set the SPIClockMode.

Mode Name Description

Legacy SPI operations and AVRs

SPI_CPOL_0 CPOL = 0

SPI_CPOL_1 CPOL = 1

SPI_CPHA_0 CPHA = 0

SPI_CPHA_1 CPHA = 1

18FxxQxx, 18FxxK42 and 18xxFK83 microcontrollers

SPI_SS_0 SS = 0 Clear polarity bit

SPI_SS_1 SS = 1 Set polarity bit

Explicitly changing the SPI baud rate on 18FxxQxx, 18FxxK42 and 18xxFK83 microcontrollers

You can explicitly change the SPI baud rate by defining the SPI_BAUD_RATE constant as follows. This will
change the default SPI baud from 4000 to the specified numeric value.

 #DEFINE SPI_BAUD_RATE 8000

633

You can explicitly set the SPI baud rate register by defining the SPI_BAUD_RATE_REGISTER constant as
follows. This will write the explicit numeric value to the SPI baud register. This overwrites any
compiler calculated value.

 #DEFINE SPI_BAUD_RATE_REGISTER 55

Legacy SPI Summary:

When using SPI setting the clock frequency is completed using SPIMode, and the master must also
configure the clock polarity and phase with respect to the data. Using the two options as CPOL and
CPHA.

The timing diagram is shown below. The timing is further described and applies to both the master and
the slave device.

When CPOL=0 the base value of the clock is zero, i.e. the active state is 1 and idle state is 0.

• For CPHA=0, data are captured on the clock’s rising edge (low→high transition) and data is output
on a falling edge (high→low clock transition).

• For CPHA=1, data are captured on the clock’s falling edge and data is output on a rising edge.

When CPOL=1 the base value of the clock is one (inversion of CPOL=0), i.e. the active state is 0 and idle
state is 1.

• For CPHA=0, data are captured on clock’s falling edge and data is output on a rising edge.

• For CPHA=1, data are captured on clock’s rising edge and data is output on a falling edge.

When CPHA=0 means sampling on the first clock edge and , while CPHA=1 means sampling on the
second clock edge, regardless of whether that clock edge is rising or falling. Note that with CPHA=0,
the data must be stable for a half cycle before the first clock cycle.

In other words, CPHA=0 means transmitting data on the active to idle state and CPHA=1 means that
data is transmitted on the idle to active state edge. Note that if transmission happens on a particular
edge, then capturing will happen on the opposite edge(i.e. if transmission happens on falling, then
reception happens on rising and vice versa). The MOSI and MISO signals are usually stable (at their
reception points) for the half cycle until the next clock transition. SPI master and slave devices may
well sample data at different points in that half cycle.

This adds more flexibility to the communication channel between the master and slave.

634

Legacy Example:

This example demonstrates the SPI capabilities for the mega328p. The process is similar of any
microcontroller..

You must set the data line as inputs and outputs.

 #chip mega328p, 16
 #option explicit
 #include <UNO_mega328p.h >

 #define SPI_HardwareSPI 'comment this out to make into Software SPI but, you may
have to change clock lines

 'Pin mappings for SPI - this SPI driver supports Hardware SPI
 #define SPI_DC DIGITAL_8 ' Data command line
 #define SPI_CS DIGITAL_4 ' Chip select line
 #define SPI_RESET DIGITAL_9 ' Reset line

 #define SPI_DI DIGITAL_12 ' Data in | MISO
 #define SPI_DO DIGITAL_11 ' Data out | MOSI
 #define SPI_SCK DIGITAL_13 ' Clock Line

 dir SPI_DC out
 dir SPI_CS out
 dir SPI_RESET out
 dir SPI_DO Out
 dir SPI_DI In
 dir SPI_SCK Out

 'If DIGITAL_10 is NOT used as the SPI_CS (sometimes called SS) the port must and
output or set as input/pulled high with a 10k resistor.
 'As follows:
 'If CS is configured as an input, it must be held high to ensure Master SPI
operation.
 'If the CS pin is driven low by peripheral circuitry when the SPI is configured
as a Master with the SS pin defined as an input, the

635

 'SPI system interprets this as another master selecting the SPI as a slave and
starting to send data to it!
 'If CS is an output SPI communications will commence with no flow control.
 dir DIGITAL_10 Out

 dim outbyte, inbyte as byte

 #DEFINE HWSPICLOCKMODE SPI_CPOL_0 + SPI_CPHA_0
 SPIMode (MasterFast, HWSPICLOCKMODE)

 do
 set SPI_CS OFF// Select line
 set SPI_DC OFF// Send Data if off, or, Data if On
 SPITransfer (outbyte, inbyte)
 set SPI_CS ON// Deselect Line
 set SPI_DC ON
 wait 10 ms
 loop

18FxxQxx, 18FxxK42 and 18xxFK83 microcontrollers SPI Summary:

When using SPI setting the clock frequency is completed using SPIMode, and the master must also
configure the clock polarity and phase with respect to the data. Using the three options as CPOL,
CPHA and SS.

The timing diagram is as shown in the prevsious section that impacts CPOL and CPHA.

If you have set the PPS for SPI1SSPPS then control of the SPI SS (also know as CS / ChipSelect) is
automatically controlled by the SPI transmission.

• Example:*

636

 #CHIP 18F16Q41,64

 #STARTUP InitPPS, 85
 #DEFINE PPSToolPart 18F16Q41

 // Use PPS to assign SPI capabilities to specific ports
 SUB InitPPS
 SPI1SDIPPS = 0x000C
 RB6PPS = 0x001B
 SPI1SCKPPS = 0x000E
 RB5PPS = 0x001C
 RC6PPS = 0x001D
 SPI1SSPPS = 0x0016
 END SUB

 // Optionally change the SPI BAUD RATE from 4000
 // #DEFINE SPI_BAUD_RATE 8000

 // Optionally update the SPI baud rate register with an explicit value
 // typical use is to entry a specific calculated value
 // #DEFINE SPI_BAUD_RATE_REGISTER 1

 // Specfic the hardware SPI operating model
 // Can be MasterUltraFast, MasterFast, Master, MasterSlow
 #DEFINE HWSPIMode MasterUltraFast

 // You can use a shared constant to set a consant with the desired SPIClockMode
 #DEFINE HWSPIClockMode SPI_SS_0 + SPI_CPOL_0 + SPI_CPHA_0

 // Call SPIMode
 SPIMode (HWSPIMode, HWSPIClockMode)

 // Define the GCBASIC required SPI port constants.
 // Must match any PPS defined.
 #DEFINE SPI_SCK PORTB.6
 #DEFINE SPI_DO PORTB.5
 #DEFINE SPI_DI PORTB.4
 #DEFINE SPI_DC PortC.1
 #DEFINE SPI_CS PortC.6
 #DEFINE SPI_RESET PortC.2

 DO
 // Send 0x75 via SPI over and over again...
 FastHWSPITransfer 0x75
 LOOP

637

See also SPITransfer,FastHWSPITransfer

SPITransfer

Syntax:

 SPITransfer tx, rx

Command Availability:

Available on Microchip PIC microcontrollers with Hardware SPI modules.

Explanation:

This command simultaneously sends and receives a byte of data using the SPI protocol. It behaves
differently depending on whether the microcontroller has been set to act as a master or a slave. When
operating as a master, SPITransfer will initiate a transfer. The data in tx will be sent to the slave, whilst
the byte that is buffered in the slave will be read into rx. In slave mode, the SPITransfer command will
pause the program until a transfer is initiated by the master. At this point, it will send the data in tx
whilst reading the transmission from the master into the rx variable.

Example:

There are two example programs for this command - one to run on the slave microcontroller , and one
on the master. A reading is taken from a sensor on the slave, and sent across to the master which
shows the data on its LCD screen.

Slave Program:

638

 'Select chip model and configuration
 #chip 16F88, 20
 #config MCLR_OFF

 'Set directions of SPI pins
 dir PORTB.2 out
 dir PORTB.1 in
 dir PORTB.4 in
 'Set direction of analogue pin
 dir PORTA.0 in

 'Set SPI mode to slave
 SPIMode Slave

 'Allow other microcontroller to initialise LCD
 Wait 1 sec

 'Main loop - takes a reading, and then waits to send it across.
 do
 'Note that rx is 0 - this is because no data is to be received.
 SPITransfer ReadAD(AN0), 0
 loop

Master Program:

639

 'General hardware configuration
 #chip 16F877A, 20

 'LCD connection settings
 #define LCD_IO 8
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_DATA_PORT PORTC
 #define LCD_RS PORTD.0
 #define LCD_RW PORTD.1
 #define LCD_Enable PORTD.2

 'Set SPI pin directions
 dir PORTC.5 out
 dir PORTC.4 in
 dir PORTC.3 out

 'Set SPI Mode to master, with fast clock
 SPIMode MasterFast

 'Main Loop
 do
 'Read a byte from the slave
 'No data to send, so tx is 0
 SPITransfer 0, Temp

 'Display data
 if Temp > 0 then
 CLS
 Print "Light: "
 LCDInt Temp
 Temp = 0
 end if

 'Wait to allow time for the LCD to show the given value
 wait 100 ms
 loop

See also SPIMode,FastHWSPITransfer

FastHWSPITransfer

Syntax:

 FastHWSPITransfer tx

640

Command Availability:

Available on Microchip PIC microcontrollers with Hardware SPI modules.

Explanation:

This command only sends a byte of data using the SPI protocol. This command only supports master
mode.

As a master, FastHWSPITransfer will initiate a transfer. The data in tx will be sent to the slave.

Example:

This is an example for this command.

Master Program:

 'General hardware configuration
 #chip 16F877A, 20

 'Set SPI pin directions
 dir PORTC.5 out
 dir PORTC.4 in
 dir PORTC.3 out

 'Set SPI Mode to master, with fast clock
 SPIMode MasterFast

 'Main Loop
 do

 'Send the value of 0x55
 FastHWSPITransfer 0x55

 loop

See also SPITransfer,SPIMode

SPI2Mode

Syntax:

Legacy SPI Operations

641

 SPI2Mode (_Mode_ [, _SPIClockMode_])

 // Specfic the hardware SPI operating mode, can be MasterFast, Master, MasterSlow
 #DEFINE HWSPI2Mode MasterFast

 // You can use a shared constant to set a consant with the desired SPIClockMode
 #DEFINE HWSPI2ClockMode SPI_CPOL_0 + SPI_CPHA_0

AVRDX, 18FxxQxx, 18FxxK42 and 18xxFK83 microcontrollers

 SPI2Mode (_Mode_ , _SPIClockMode_)

 // Specfic the hardware SPI operating mode, can be MasterUltraFast, MasterFast,
Master, MasterSlow
 #DEFINE HWSPI2Mode MasterUltraFast

 // You can use a shared constant to set a consant with the desired SPIClockMode
 #DEFINE HWSPI2ClockMode SPI_SS_0 + SPI_CPOL_0 + SPI_CPHA_0

 // Optionally change the SPI BAUD RATE from 4000
 #DEFINE SPI2_BAUD_RATE 8000

 // Optionally update the SPI baud rate register with an explicit value
 // typical use is to entry a specific calculated value
 #DEFINE SPI2_BAUD_RATE_REGISTER 55

Command Availability:

Available on Microchip PIC and AVR microcontrollers with Hardware SPI modules.

Explanation:

Mode sets the mode of the SPI module within the microcontroller. These are the possible SPI Modes:

Mode Name Description

Legacy SPI Operations

MasterSlow Master mode, SPI clock is 1/64 of the frequency of the microcontroller.

Master Master mode, SPI clock is 1/16 of the frequency of the microcontroller.

MasterFast Master mode, SPI clock is 1/4 of the frequency of the microcontroller.

AVRDX, 18FxxQxx, 18FxxK42 and 18xxFK83 microcontrollers

642

Mode Name Description

MasterSlow SPI clock baud rate is calculated INT(ChipMHz / INT(SPI2_BAUD_RATE) / 16 * 1000) +
1. Where SPI2_BAUD_RATE defaults to 4000. Also, see SPI2_BAUD_RATE and
SPI2_BAUD_RATE_REGISTER for changing SPI Baud Rate and settting the SPI Baud Rate
register with an explicit value

Master SPI clock baud rate is calculated as INT(ChipMHz / INT(SPI2_BAUD_RATE) / 4 * 1000)
+ 1. Where SPI2_BAUD_RATE defaults to 4000. Also, see SPI2_BAUD_RATE and
SPI2_BAUD_RATE_REGISTER for changing SPI Baud Rate and settting the SPI Baud Rate
register with an explicit value

MasterFast SPI clock baud rate is calculated as INT(ChipMHz / INT(SPI2_BAUD_RATE) / 2 * 1000)
+ 1. Where SPI2_BAUD_RATE defaults to 4000. Also, see SPI2_BAUD_RATE and
SPI2_BAUD_RATE_REGISTER for changing SPI Baud Rate and settting the SPI Baud Rate
register with an explicit value

MasterUltraFa
st

SPI1BAUD is set to 0 and therefore the SPI clock baud rate to maximum

Slave Operations

Slave Slave mode

SlaveSS Slave mode, with the Slave Select pin enabled.

For Legacy microcontrollers SPI operations SPIClockMode is an optional parameter to set the mode
of the SPI clock mode. This optional parameter sets both the clock polarity and clock edge.

For Specific PICs microcontrollers SPI operations SPIClockMode is a mandated parameter to set the
mode of the SPI clock mode and the clock polarity bit. This parameter sets both the clock polarity and
clock edge. There is no verification by the compiler if you do use the _SPIClockMode for the 18FxxQxx,
18FxxK42 and 18xxFK83 microcontrollers - the compiler uses the default value of SPI_SS = 0 &

SPI_CPOL = 0 & SPI_CPHA = 0 The use of SPI_SS_n requires the PPS to be set. If PPS is not set then the
SPI_SS will use the default value specified in the specfic GCBASIC library.

For the _SPIClockMode_range, see the tables below:

SPIClockMode Description

Legacy SPI operations

0 SPI_CPOL = 0 & SPI_CPHA = 0

1 SPI_CPOL = 0 & SPI_CPHA = 1

2 SPI_CPOL = 1 & SPI_CPHA = 0

3 SPI_CPOL = 1 & SPI_CPHA = 1

18FxxQxx, 18FxxK42 and 18xxFK83 microcontrollers

0 SPI_SS = 0 & SPI_CPOL = 0 & SPI_CPHA = 0

643

SPIClockMode Description

2 SPI_SS = 0 & SPI_CPOL = 1 & SPI_CPHA = 0

5 SPI_SS = 1 & SPI_CPOL = 0 & SPI_CPHA = 1

7 SPI_SS = 1 & SPI_CPOL = 1 & SPI_CPHA = 1

You can use a constant value or alternatively you can use constants to set the SPIClockMode as follows:

 Legacy SPI microcontrollers
 SPIMode (MasterFast, SPI_CPOL_n + SPI_CPHA_n)

 18FxxQxx, 18FxxK42 and 18xxFK83 microcontrollers
 SPIMode (MasterFast, SPI_SS_n + SPI_CPOL_n + SPI_CPHA_n)

Where the following parameters can be used as a calculation to set the SPIClockMode.

Mode Name Description

Legacy SPI operations and AVRs

SPI_CPOL_0 CPOL = 0

SPI_CPOL_1 CPOL = 1

SPI_CPHA_0 CPHA = 0

SPI_CPHA_1 CPHA = 1

18FxxQxx, 18FxxK42 and 18xxFK83 microcontrollers

SPI_SS_0 SS = 0 Clear polarity bit

SPI_SS_1 SS = 1 Set polarity bit

Explicitly changing the SPI baud rate on 18FxxQxx, 18FxxK42 and 18xxFK83 microcontrollers

You can explicitly change the SPI baud rate by defining the SPI2_BAUD_RATE constant as follows. This
will change the default SPI baud from 4000 to the specified numeric value.

 #DEFINE SPI2_BAUD_RATE 8000

You can explicitly set the SPI baud rate register by defining the SPI2_BAUD_RATE_REGISTER constant as
follows. This will write the explicit numeric value to the SPI baud register. This overwrites any
compiler calculated value.

 #DEFINE SPI2_BAUD_RATE_REGISTER 55

644

Legacy SPI Summary:

When using SPI setting the clock frequency is completed using SPIMode, and the master must also
configure the clock polarity and phase with respect to the data. Using the two options as CPOL and
CPHA.

The timing diagram is shown below. The timing is further described and applies to both the master and
the slave device.

When CPOL=0 the base value of the clock is zero, i.e. the active state is 1 and idle state is 0.

• For CPHA=0, data are captured on the clock’s rising edge (low→high transition) and data is output
on a falling edge (high→low clock transition).

• For CPHA=1, data are captured on the clock’s falling edge and data is output on a rising edge.

When CPOL=1 the base value of the clock is one (inversion of CPOL=0), i.e. the active state is 0 and idle
state is 1.

• For CPHA=0, data are captured on clock’s falling edge and data is output on a rising edge.

• For CPHA=1, data are captured on clock’s rising edge and data is output on a falling edge.

When CPHA=0 means sampling on the first clock edge and , while CPHA=1 means sampling on the
second clock edge, regardless of whether that clock edge is rising or falling. Note that with CPHA=0,
the data must be stable for a half cycle before the first clock cycle.

In other words, CPHA=0 means transmitting data on the active to idle state and CPHA=1 means that
data is transmitted on the idle to active state edge. Note that if transmission happens on a particular
edge, then capturing will happen on the opposite edge(i.e. if transmission happens on falling, then
reception happens on rising and vice versa). The MOSI and MISO signals are usually stable (at their
reception points) for the half cycle until the next clock transition. SPI master and slave devices may
well sample data at different points in that half cycle.

This adds more flexibility to the communication channel between the master and slave.

Legacy Example:

This example demonstrates the SPI capabilities for the mega328p. The process is similar of any

645

microcontroller..

You must set the data line as inputs and outputs.

 #chip mega328p, 16
 #option explicit
 #include <UNO_mega328p.h >

 #define SPI2_HardwareSPI 'comment this out to make into Software SPI but, you
may have to change clock lines

 'Pin mappings for SPI - this SPI driver supports Hardware SPI
 #define SPI2_DC DIGITAL_8 ' Data command line
 #define SPI2_CS DIGITAL_4 ' Chip select line
 #define SPI2_RESET DIGITAL_9 ' Reset line

 #define SPI2_DI DIGITAL_12 ' Data in | MISO
 #define SPI2_DO DIGITAL_11 ' Data out | MOSI
 #define SPI2_SCK DIGITAL_13 ' Clock Line

 dir SPI_DC out
 dir SPI_CS out
 dir SPI_RESET out
 dir SPI_DO Out
 dir SPI_DI In
 dir SPI_SCK Out

 'If DIGITAL_10 is NOT used as the SPI2_CS (sometimes called SS) the port must and
output or set as input/pulled high with a 10k resistor.
 'As follows:
 'If CS is configured as an input, it must be held high to ensure Master SPI
operation.
 'If the CS pin is driven low by peripheral circuitry when the SPI is configured
as a Master with the SS pin defined as an input, the
 'SPI system interprets this as another master selecting the SPI as a slave and
starting to send data to it!
 'If CS is an output SPI communications will commence with no flow control.
 dir DIGITAL_10 Out

 dim outbyte, inbyte as byte

 #DEFINE HWSPICLOCKMODE SPI_CPOL_0 + SPI_CPHA_0
 SPIMode (MasterFast, HWSPICLOCKMODE)

646

 do
 set SPI_CS OFF// Select line
 set SPI_DC OFF// Send Data if off, or, Data if On
 SPITransfer (outbyte, inbyte)
 set SPI_CS ON// Deselect Line
 set SPI_DC ON
 wait 10 ms
 loop

18FxxQxx, 18FxxK42 and 18xxFK83 microcontrollers SPI Summary:

When using SPI setting the clock frequency is completed using SPIMode, and the master must also
configure the clock polarity and phase with respect to the data. Using the three options as CPOL,
CPHA and SS.

The timing diagram is as shown in the prevsious section that impacts CPOL and CPHA.

If you have set the PPS for SPI1SSPPS then control of the SPI SS (also know as CS / ChipSelect) is
automatically controlled by the SPI transmission.

• Example:*

647

 #CHIP 18F16Q41,64

 #STARTUP InitPPS, 85
 #DEFINE PPSToolPart 18F16Q41

 // Use PPS to assign SPI capabilities to specific ports
 SUB InitPPS
 SPI1SDIPPS = 0x000C
 RB6PPS = 0x001B
 SPI1SCKPPS = 0x000E
 RB5PPS = 0x001C
 RC6PPS = 0x001D
 SPI1SSPPS = 0x0016
 END SUB

 // Optionally change the SPI BAUD RATE from 4000
 // #DEFINE SPI2_BAUD_RATE 8000

 // Optionally update the SPI baud rate register with an explicit value
 // typical use is to entry a specific calculated value
 // #DEFINE SPI2_BAUD_RATE_REGISTER 1

 // Specfic the hardware SPI operating model
 // Can be MasterUltraFast, MasterFast, Master, MasterSlow
 #DEFINE HWSPIMode MasterUltraFast

 // You can use a shared constant to set a consant with the desired SPIClockMode
 #DEFINE HWSPIClockMode SPI_SS_0 + SPI_CPOL_0 + SPI_CPHA_0

 // Call SPIMode
 SPIMode (HWSPIMode, HWSPIClockMode)

 // Define the GCBASIC required SPI port constants.
 // Must match any PPS defined.
 #DEFINe SPI2_SCK PORTB.6
 #DEFINe SPI2_DO PORTB.5
 #DEFINe SPI2_DI PORTB.4
 #DEFINe SPI2_DC PortC.1
 #DEFINe SPI2_CS PortC.6
 #DEFINe SPI2_RESET PortC.2

 DO
 // Send 0x75 via SPI over and over again...
 FastHWSPITransfer 0x75
 LOOP

648

See also SPITransfer,FastHWSPITransfer

SPI2Transfer

Syntax:

 SPI2Transfer tx, rx

Command Availability:

Available on Microchip PIC microcontrollers with Hardware SPI modules.

Explanation:

This command simultaneously sends and receives a byte of data using the SPI protocol. It behaves
differently depending on whether the microcontroller has been set to act as a master or a slave. When
operating as a master, SPI2Transfer will initiate a transfer. The data in tx will be sent to the slave,
whilst the byte that is buffered in the slave will be read into rx. In slave mode, the SPI2Transfer
command will pause the program until a transfer is initiated by the master. At this point, it will send
the data in tx whilst reading the transmission from the master into the rx variable.

See also SPIMode,FastHWSPI2Transfer

FastHWSPI2Transfer

Syntax:

 FastHWSPI2Transfer tx

Command Availability:

Available on Microchip PIC microcontrollers with Hardware SPI modules.

Explanation:

This command only sends a byte of data using the SPI protocol. This command only supports master
mode.

As a master, FastHWSPI2Transfer will initiate a transfer. The data in tx will be sent to the slave.

See also SPITransfer,SPIMode

649

I2C Software
This is the I2C Software section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

I2C Overview

Introduction:

These software routines allow GCBASIC programs to send and receive I2C messages. They can be
configured to act as master or slave, and the speed can also be altered.

No hardware I2C module is required for these routines - all communication is handled in software.
However, these routines will not work on 12-bit instruction Microchip PIC microcontrollers (10F,
12F5xx and 16F5xx chips).

Relevant Constants:

These constants control the setup of the software I2C routines:

Constant Controls Default
Value

I2C_MODE Mode of I2C routines (Master or Slave) Master

I2C_DATA Pin on microcontroller connected to I2C data N/A

I2C_CLOCK Pin on microcontroller connected to I2C clock N/A

I2C_BIT_DELAY Time for a bit (used for acknowledge detection) 2 us

I2C_CLOCK_DELAY Time for clock pulse to remain high 1 us

I2C_END_DELAY Time between clock pulses 1 us

I2C_USE_TIMEOUT Set to true if the I2C routines should stop waiting for the I2c bus - the
routine will exit if a timeout occurs. Should be used when you need to
prevent system lockups on the I2C bus. Supports both software I2C
master and slave mode. Will return the variable I2CAck = FALSE when
a timeout has occurred.

Not Set

I2C_DISABLE_INTE
RRUPTS

Disable interrupts during I2C routines. Important when an i2C clock is
part of your solution

Not
defined.

Example: This example examines the IC2 devices and displays on a terminal. This code will require
adaption but the code shows an approach to discover the IC2 devices.

 ' I2C Overview - using the ChipIno board, see here for information
 #chip 16F886, 8
 #config MCLRE_ON

650

 ' Define I2C settings
 #define I2C_MODE Master
 #define I2C_DATA PORTC.4
 #define I2C_CLOCK PORTC.3
 #define I2C_DISABLE_INTERRUPTS ON

 'USART/SERIAL PORT via a MAX232 TO PC Terminal
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 Dir PORTc.6 Out
 #define USART_DELAY 0 ms

 HSerPrintCRLF 2
 HSerPrint "I2C Discover using the ChipIno"
 HSerPrintCRLF 2

 HSerPrint "Started: "
 HSerPrint "Searching I2C address space: v0.85"
 HSerPrintCRLF

 wait 100 ms
 dim DeviceID as byte
 for DeviceID = 0 to 255
 I2CStart
 I2CSend (deviceID)
 I2CSend (0)
 I2CSend (0)
 i2cstop

 if I2CSendState = True then

 HSerPrint "__"
 HSerPrint "ID: 0x"
 HSerPrint hex(deviceID)
 HSerPrint " (d"
 HSerPrint Str(deviceID)
 HSerPrint ")"
 HSerPrintCRLF
 end if
 next
 HSerPrint "End of Device Search": HSerPrintCRLF 2
 End

Supported in <I2C.H>

651

I2CAckPollState

Syntax:

 <test condition> I2CAckPollState

Command Availability:

Available on all microcontrollers except 12 bit instruction Microchip PIC microcontrollers (10F,
12F5xx, 16F5xx chips)

Explanation:

Should only be used when I2C routines are operating in Master mode, this command will return the
last state of the acknowledge response from a specific I2C device on the I2C bus.

I2CACKPOLL sets the state of variable I2CAckPollState. I2CAckPollState can only read - it cannot be set.

Example:

 ...
 ' ACK polling removes the need to for the 24xxxxx device to have a 5ms
 write time
 I2CACKPOLL(eeprom_device)
 ' You check the exit state,
 ' Use I2CAckPollState to check the state of a target device
 ...

Supported in <I2C.H>

I2CAckpoll

Syntax:

 I2CAckpoll (I2C_device_address)

Command Availability:

Available on all microcontrollers except 12 bit instruction Microchip PIC microcontrollers (10F,
12F5xx, 16F5xx chips)

Explanation:

Should only be used when I2C routines are operating in Master mode, this command will look for a

652

specific I2C device on the I2C bus.

This sets a global variable I2CAckPollState that can be inspected in your calling routine.

Example:

 ...
 ' ACK polling removes the need to for the 24xxxxx device to have a 5ms write time
 I2CACKPOLL(eeprom_device)
 ' You check the exit state, use I2CAckPollState to check the state of
 ' the acknowledge from the target device
 ...

Supported in <I2C.H>

I2CReceive

Syntax:

 I2CReceive data
 I2CReceive data, ack

Command Availability:

Available on all microcontrollers except 12 bit instruction Microchip PIC microcontrollers (10F,
12F5xx, 16F5xx chips)

Explanation:

The I2CReceive command will send data through the I2C connection. If ack is TRUE, or no value is given
for ack, then I2CReceive will send an ack.

If in master mode, I2CReceive will read the data immediately.

If in slave mode, I2CReceive will wait for the master to send the data before reading. When the method
I2CReceive is used in Slave mode the global variable I2CMatch will be set to true when the received
value is equal to the constant I2C_ADDRESS.

Example 1 - Master Mode:

653

 ' I2C Receive - using the ChipIno board, see here for information. ' This program reads
an I2C register and LED is set to on if the value is over 100.
 ' This program will read from address 83, register 1.

 #chip 16F886, 8
 #config MCLRE_ON

 'I2C settings
 #define I2C_MODE Master
 #define I2C_DATA PORTC.4
 #define I2C_CLOCK PORTC.3

 'Misc settings
 #define LED PORTB.5
 dir LED Out

 'Main loop
 Do
 'Send start
 I2CStart

 'Request value
 I2CSend 83
 I2CSend 1

 'Read value
 I2CReceive ValueIn

 'Send stop
 I2CStop

 'Turn on LED if received value > 100
 Set LED Off
 If ValueIn > 100 Then Set LED On

 'Delay
 Wait 20 ms

 Loop

Example 2 - Slave Mode:

See the I2C Overview for the Master mode device to control this Slave mode device.

 ' I2CReceive_Slave.gcb - using a 16F88.
 ' This program receives commands from a GCB Master. This Slave has three LEDs attached.

654

 ;----- Configuration

 #chip 16F88, 8
 #config MCLR_OFF

 #define I2C_MODE Slave ;this is a slave device now
 #define I2C_CLOCK portb.4 ;SCL on pin 10
 #define I2C_DATA portb.1 ;SDA on pin 7
 #define I2C_ADDRESS 0x60 ;address of the slave device

 ;----- Variables

 dim addr, reg, value as byte

 ;----- Program
 #define LED0 porta.2 ;pin 1
 #define LED1 porta.3 ;pin 2
 #define LED2 porta.4 ;pin 3

 dir LED0 out ;0, 1 and 2 are outputs (LEDs)
 dir LED1 out ;0, 1 and 2 are outputs (LEDs)
 dir LED2 out ;0, 1 and 2 are outputs (LEDs)

 do
 I2CStart ;wait for Start signal
 I2CReceive(addr) ;then wait for an address

 if I2CMatch = true then ;if it matches, proceed

 I2CReceive(regval, ACK) ;get the register number
 I2CReceive(value, ACK) ;and its value
 I2CStop ;release the bus from this end

 select case regval ;now turn proper LED on or off
 case 0:
 if value then
 set LED0 on
 else
 set LED0 off
 end if

 case 1:
 if value then
 set LED1 on
 else
 set LED1 off

655

 end if

 case 2:
 if value then
 set LED2 on
 else
 set LED2 off
 end if
 case else
 ;other register numbers are ignored
 end select
 else
 I2CStop ;release bus in any event
 end if

 loop

Supported in <I2C.H>

I2CReset

Syntax:

 I2CReset

Command Availability:

Available on all microcontrollers except 12 bit instruction Microchip PIC microcontrollers (10F,
12F5xx, 16F5xx chips)

Explanation:

This will attempt a reset of the I2C by changing the state of the I2C bus.

Example:

 ...
 I2CReset
 ...

Supported in <I2C.H>

I2CRestart

Syntax:

656

 I2CRestart

Command Availability:

Available on all microcontrollers except 12 bit instruction Microchip PIC microcontrollers (10F,
12F5xx, 16F5xx chips)

Explanation:

If the I2C routines are operating in Master mode, this command will send a start and restart condition
in a single command.

Example:

 ...
 I2CRESTART

Supported in <I2C.H>

I2CSend

Syntax:

 I2CSend data
 I2CSend data, ack

Command Availability:

Available on all microcontrollers except 12 bit instruction Microchip PIC microcontrollers (10F,
12F5xx, 16F5xx chips)

Explanation:

The I2CSend command will send data through the I2C connection. If ack is TRUE, or no value is given
for ack, then I2CSend will wait for an Ack from the receiver before continuing. If in master mode,
I2CSend will send the data immediately. If in slave mode, I2CSend will wait for the master to request the
data before sending.

Example 1:

 ' I2CSend - using the ChipIno board, see here for information.
 ' This program send commands to a GCB Slave with three LEDs attached.

657

 #chip 16F886, 8
 #config MCLRE_ON

 'I2C settings
 #define I2C_MODE Master
 #define I2C_DATA PORTC.4
 #define I2C_CLOCK PORTC.3
 #define I2C_BIT_DELAY 20 us
 #define I2C_CLOCK_DELAY 30 us

 #define I2C_ADDRESS 0x60 ;address of the slave device
 ;----- Variables

 dim reg as byte

 ;----- Program

 do

 for reg = 0 to 2 ;three LEDs to control
 I2CStart ;take control of the bus
 I2CSend I2C_ADDRESS ;address the device
 if I2CSendState = ACK then
 I2CSend reg ;address the particular register
 I2CSend ON ;command to turn on LED
 end if
 I2CStop ;relinquish the bus
 wait 100 ms
 next reg
 wait 1 S ;pause to show results

 for reg = 0 to 2 ;similarly, turn them off
 I2CStart ;take control of the bus
 I2CSend I2C_ADDRESS ;address the device
 if I2CSendState = ACK then
 I2CSend reg ;address the particular register
 I2CSend OFF ;command to turn off LED
 end if
 I2CStop ;relinquish the bus
 wait 100 ms
 next reg
 wait 1 S ;pause to show results

 loop

Example 2:

658

 'This program will act as an I2C analog to digital converter
 'When data is requested from address 83, registers 0 through
 '3, it will return the value of AN0 through AN3.

 'Chip model
 #chip 16F88, 8

 'I2C settings
 #define I2C_MODE Slave
 #define I2C_CLOCK PORTB.0
 #define I2C_DATA PORTB.1

 #define I2C_DISABLE_INTERRUPTS ON

 'Main loop
 Do
 'Wait for start condition
 I2CStart

 'Get address
 I2CReceive Address
 If Address = 83 Then
 'If address was this device's address, respond
 I2CReceive Register

 OutValue = ReadAD(Register)
 I2CSend OutValue
 End If

 I2CStop

 Wait 5 ms
 Loop

Specific control of I2CSend

The I2CSend method can be controller with command(s) the change the behaviour of method. The
behaviour can be changed as a Prefix or Suffix therefore the start or end of the method.

The two macros (defined constants) are I2CPreSendMacro and I2CPostSendMacro. The macros must
be a single line, with colon delimiters are permitted.

Examples

The following defined macros change the start and end behaviour.

659

 #define I2CPreSendMacro if LabI2CState <> True then exit Sub 'I2CPreSendMacro to
ensure GLCD operations only operate within specfic lab
 #define I2CPostSendMacro if LabI2CState = True then MSSP =1 'I2CPostSendMacro
to ensure GLCD operations only operate within specfic lab setting a specific variable.

The following defined macro changes- the start behaviour to call an alternative I2CSend method.

 #define I2CPreSendMacro myI2CSend: exit sub

 sub myI2CSend
 // your i2C handler
 end sub

The following defined macros changes- the start behaviour to call an alternative I2CSend method, then
jump to the I2CPostSendMacroLabel which is at the end of I2CSend method.

 #define I2CPreSendMacro myI2CSend: goto I2CPostSendMacroLabel
 #define I2CPostSendMacro NOP

 sub myI2CSend
 // your i2C handler
 end sub

This will generate the following ASM. The I2CPreSendMacro calls the MYI2CSEND() methhod, then
BRAnches to the label I2CPOSTSENDMACROLABEL as the end of the method.

660

 ;Source: i2c.h (339)
 I2CSEND
 ;I2CPreSendMacro
 rcall MYI2CSEND
 bra I2CPOSTSENDMACROLABEL
 ;I2C_CLOCK_LOW 'begin with SCL=0
 bcf TRISC,3,ACCESS
 bcf LATC,3,ACCESS
 ...
 lots of ASM
 ...
 ;wait I2C_BIT_DELAY 'wait the usual bit length
 nop
 nop
 I2CPOSTSENDMACROLABEL
 ;I2CPostSendMacro
 nop
 return

Supported in <I2C.H>

I2CStart

Syntax:

 I2CStart

Command Availability:

Available on all microcontrollers except 12 bit instruction Microchip PIC microcontrollers (10F,
12F5xx, 16F5xx chips)

Explanation:

If the I2C routines are operating in Master mode, this command will send a start condition. If routines
are in Slave mode, it will pause the program until a start condition is sent by the master. It should be
placed at the start of every I2C transmission.

If interrupt handling is enabled, this command will disable it.

Example:

Please see I2CSend and I2CReceive for an example.

Supported in <I2C.H>

661

I2CStartoccurred

Syntax:

 I2CStartoccurred

Command Availability:

Available on all microcontrollers except 12 bit instruction Microchip PIC microcontrollers (10F,
12F5xx, 16F5xx chips)

Explanation:

If the I2C routine IS operating in Slave mode, this function will check if a start condition has occurred
since the last run of this function. 	'Only used in slave mode

Example:

Please see I2CSend and I2CReceive for an example.

Supported in <I2C.H>

I2CStop

Syntax:

 I2CStop

Command Availability:

Available on all microcontrollers except 12 bit instruction microcontrollers (10F, 12F5xx, 16F5xx chips)

Explanation:

When in Master mode, this command will send an I2C stop condition, and re-enable interrupts if
I2CStart disabled them. In Slave mode, it will re- enable interrupts.

I2CStop should be called at the end of every I2C transmission.

Example:

Please see I2CSend and I2CReceive for an example.

Supported in <I2C.H>

662

I2C/TWI Hardware Module
This is the I2C/TWI section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

HI2C Overview

Introduction:

These methods allow GCBASIC programs to send and receive Inter- Integrated Circuit (I2C™) messages
via:

• Master Synchronous Serial Port (MSSP) module of the microcontroller for the Microchip PIC
architecture, or

• ATMEL 2-wire Serial Interface (TWI) for the Atmel AVR microcontroller architecture.

These methods are serial interfaces that are useful for communicating with other peripheral or
microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display
drivers, A/D converters, etc.

This method can operate in one of two operational modes:

• Master Mode, or

• Slave mode (with general address call)

These methods fully implement all the I2C master and slave functions (including general call support)
and supports interrupts on start and stop bits in hardware to determine a free bus (multi-master
function).

These methods implement the standard mode specifications as well as 7-bit and 10-bit addressing. A
“glitch” filter is built into the SCL and SDA pins when the pin is an input. This filter operates in both
the 100 KHz and 400 KHz modes. In the 100 KHz mode, when these pins are an output, there is a slew
rate control of the pin that is independent of device frequency.

A hardware I2C/TWI module within the microcontroller is required for these methods.

The driver supports two hardware I2C ports. The second port is addressed by the suffix HI2C2. All
HI2C commands are applicable to the second HI2C2 port.

For the Microchip I2C modules Specific for the 18F class including the K42, K83 and Q10, see the later
section regarding clock sources and I2C frequencies.

The method supports the following frequencies:

663

Frequenc
y

Description Support

Up to 400
kbits/s

I2C/TWI fast mode: Defined as transfer
rates up to 400 kbit/s.

Supported

Up to 100
kbit/s.

I2C/TWI standard mode: Defined as
transfer rates up to 100 kbit/s.

Supported

Up to 1
Mbit/s.

I2C fast-mode plus: Allowing up to 1
Mbit/s.

Supported on I2C Module Only Requires
alternative clock source to be set.

Up to 3.4
Mbit/s.

I2C high speed: Allowing up to 3.4 Mbit/s. Supported on I2C Module Only Requires
alternative clock source to be set.

Relevant Constants:

These constants control the setup of the hardware I2C methods:

Constant Controls Usage

Master Operational mode of the microcontroller HI2CMode (Master)

Slave Operational mode of the microcontroller HI2CMode (Slave)

HI2C_BAUD
_RATE

Operational speed of the microcontroller.
Defaults to 100 kbit/s

For Microchip SSP or MSSP modules and
AVR microcontrollers: #define
HI2C_BAUD_RATE 400 or
#define HI2C_BAUD_RATE 100.
Where #define HI2C_BAUD_RATE 100 is the
default value and therefore does need to be
specified. For Microchip I2C module: 'define
HI2C_BAUD_RATE 125' is the default KHz.
You can override this value if you set up an
alternative clock source. To change use:

HI2CITSCL
WaitPerio
d

Sets the TSCL period to Zero as the Stop
condition must be held for TSCL after Stop
transition. Default to 70, some solutions can
use this set to 0. The clock source and clock
method must be reviewed before changing
this setting. To change use: #define
HI2CITSCLWaitPeriod = 70

HI2CITSCLWaitPeriod = 70

HIC2Q2XB
UFFERSIZ
E

The 18FxxQ20 and 18FxxQ24 I2C buffer size.
These specific microcontrollers require an
I2C buffer to support I2C TX and RX
operations. To change use: #define
HIC2Q2XBUFFERSIZE = 16

HIC2Q2XBUFFERSIZE = 128

Port Settings:

664

The settings of the pin direction is critical to the operation of these methods.
For the Microchip SSP/MSSP modules both ports must be set as input.
For the Microchip I2C module both ports must be set as output. And, configure the pins as open-drain
and set the I2C levels - see example below for usage.
In all case the data and clock line *must * be pulled up with an appropriate resistor (typically 4.k @
5.0v for 100Mkz transmissions).

Constant Controls Default Value

HI2C_DATA Pin on microcontroller connected to I2C data Must be defined

HI2C_CLOCK Pin on microcontroller connected to I2C clock) Must be defined

Microchip I2C modules Specific Support - 18F class including the K42, k47, K83, Q43, Q40/Q41,
Q83/Q84, and Q71

Clock Sources: The Microchip I2C can select one of ten clocks sources as shown in the table below.
I2C1Clock_MFINTOSC is the default which supports 125KHz.

It is important to change the clock source from the default of 125KHz if you want faster I2C
communications. Change the following constant to change the clock source. Obviously, you setup the
clock source correctly for I2C to operate:

 #define I2C1CLOCKSOURCE I2C1CLOCK_MFINTOSC

Clock Constants that can be I2C clock sources are

Constant Clock
Source

Default Value

I2C1CLOCK_SMT1 SMT 0x09+ You MUST setup the SMT clock source.

I2C1CLOCK_TIMER6
PSO

Timer 6
Postscaler

0x08+ You MUST setup the timer6 clock source.

I2C1CLOCK_TIMER4
PSO

Timer 4
Postscaler

0x07+ You MUST setup the timer4 clock source.

I2C1CLOCK_TIMER2
PSO

Timer 2
Postscaler

0x06+ You MUST setup the timer3 clock source.

I2C1CLOCK_TIMER0
OVERFLOW

Timer 0
Overflow

0x05+ You MUST setup the timer0 clock source.

I2C1CLOCK_REFERE
NCEOUT

Reference
clock out

0x04+ You MUST ensure the clock source generates a within
specification clock source. Check the datasheet for more details.

665

Constant Clock
Source

Default Value

I2C1CLOCK_MFINTO
SC

MFINTOSC 0x03 (default)+ This is the default and will set the I2C clock to
125KHz

I2C1CLOCK_HFINTO
SC

HFINTOSC 0x02+ You MUST ensure the clock source generates a within
specification clock source. Check the datasheet for more details.

I2C1CLOCK_FOSC FOSC 0x01+ You MUST ensure the clock source generates a within
specification clock source. Check the datasheet for more details.

I2C1CLOCK_FOSC4 FOSC/4 0x00+ You MUST ensure the clock source generates a within
specification clock source. Check the datasheet for more details.

This an example of using a Clock Source. This example uses the SMTClock source as the clock source,
the following methods implement the SMT as the clock source. The defintion of the constant, the
include, setting of the SMT period, initialisation and starting of the clock source are ALL required.

 'Set the clock source constant
 #define I2C1CLOCKSOURCE I2C1CLOCK_SMT1

 'include the SMT capability
 #Include <SMT_Timers.h>

 'Setup the SMT
 '400 KHz @ 64MHZ
 Setsmt1Period (39)
 ' 100 KHz @ 64MHZ
 ' Setsmt1Period (158)
 'Initialise and start the SMT
 InitSMT1(SMT_FOSC,SMTPres_1)
 StartSMT1

For other clock sources refer to the appropriate datasheet.

Error Codes: This module has extensive error reporting. For the standard error report refer to the
appropriate datasheet. GCBASIC also exposes the following error messages to enable the user code to
handle the errors appropriately. These are exposed via the variable HI2C1lastError - the bits of the
HI2C1lastError are set as in the table shown below.

Constant Error Value/Bit

I2C1_GOOD 0

I2C1_FAIL_TIMEOUT 1

666

Constant Error Value/Bit

I2C1_TXBE_TIMEOUT 2

I2C1_START_TIMEOUT 4

I2C1_RESTART_TIMEOUT 8

I2C1_RXBF_TIMEOUT 16

I2C1_ACK_TIMEOUT 32

I2C1_MDR_TIMEOUT 64

I2C1_STOP_TIMEOUT 128

Shown below are two examples of using Hardware I2C with GCBASIC.

Example 1:
This example examines the IC2 modules using the Microchip SSP/MSSP module and the AVR
microcontrollers. This will display the result on a serial terminal. This code will require adaption but
the code shows an approach to discover the IC2 devices.

 #chip mega328p, 16
 #config MCLRE_ON

 ' Define I2C settings
 #define HI2C_BAUD_RATE 400
 #define HI2C_DATA PORTC.5
 #define HI2C_CLOCK PORTC.4
 'I2C pins need to be input for SSP module when used on Microchip PIC device
 Dir HI2C_DATA in
 Dir HI2C_CLOCK in

 'MASTER MODE
 HI2CMode Master

 'USART/SERIAL PORT WORKS WITH max232 THEN TO PC Terminal
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING
 Dir PORTc.6 Out
 #define USART_DELAY 0 ms

 HSerPrintCRLF 2
 HSerPrint "Hardware I2C Discover using the "
 HSerPrint CHipNameStr
 HSerPrintCRLF 2

667

 for deviceID = 0 to 255
 HI2CStart
 HI2CSend (deviceID)

 if HI2CAckPollState = false then

 if ((deviceID & 1) = 0) then
 HSerPrint "W"
 else
 HSerPrint "R"
 end if
 HSerSend 9
 HSerPrint "ID: 0x"
 HSerPrint hex(deviceID)
 HSerSend 9
 HSerPrint "(d)"+str(deviceID)
 HSerPrintCRLF
 HI2CSend (0)

 end if

 HI2CStop
 next
 HSerPrintCRLF
 HSerPrint "End of Device Search"
 HSerPrintCRLF 2

This example examines the IC2 devices and displays on a serial terminal for the I2C module only.
This code will require adaption but the code shows an approach to discover the IC2 devices.
This code will only operate on the Microchip I2C module.

 #chip 18f25k42, 16
 #option Explicit
 #config MCLRE_ON

 #startup InitPPS, 85

 Sub InitPPS

 RC4PPS = 0x22 'RC4->I2C1:SDA1
 RC3PPS = 0x21 'RC3->I2C1:SCL1
 I2C1SCLPPS = 0x13 'RC3->I2C1:SCL1
 I2C1SDAPPS = 0x14 'RC4->I2C1:SDA1

668

 'Module: UART1
 RC6PPS = 0x0013 'TX1 > RC6
 U1RXPPS = 0x0017 'RC7 > RX1

 End Sub

 'Template comment at the end of the config file

 'Setup Serial port
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 ' Define I2C settings
 #define HI2C_BAUD_RATE 125
 #define HI2C_DATA PORTC.4
 #define HI2C_CLOCK PORTC.3
 'Initialise I2C - note for the I2C module the ports need to be set to Output.
 Dir HI2C_DATA out
 Dir HI2C_CLOCK out
 RC3I2C.TH0=1 'Port specific controls may be required - see the datasheet
 RC4I2C.TH0=1 'Port specific controls may be required - see the datasheet

 'For this solution we can set the TSCL period to Zero as the Stop condition must be
held for TSCL after Stop transition
 #define HI2CITSCLWaitPeriod 0

'**

 'Main program commences here.. everything before this is setup for the board.

 dim DeviceID as byte
 Dim DISPLAYNEWLINE as Byte

 do

 HSerPrintCRLF
 HSerPrint "Hardware I2C "
 HSerPrintCRLF 2

 ' Now assumes Serial Terminal is operational
 HSerPrintCRLF
 HSerPrint " "
 'Create a horizontal row of numbers
 for DeviceID = 0 to 15
 HSerPrint hex(deviceID)

669

 HSerPrint " "
 next

 'Create a vertical column of numbers
 for DeviceID = 0 to 255
 DisplayNewLine = DeviceID % 16
 if DisplayNewLine = 0 Then
 HSerPrintCRLF
 HserPrint hex(DeviceID)
 if DisplayNewLine > 0 then
 HSerPrint " "
 end if
 end if
 HSerPrint " "

 'Do an initial Start
 HI2CStart
 if HI2CWaitMSSPTimeout <> True then

 'Send to address to device
 HI2CSend (deviceID)

 'Did device fail to respond?
 if HI2CAckPollState = false then
 HI2CSend (0)
 HSerPrint hex(deviceID)
 Else
 HSerPrint "--"
 end if
 'Do a stop.
 HI2CStop

 Else
 HSerPrint "! "
 end if

 next

 HSerPrintCRLF 2
 HSerPrint "End of Search"
 HSerPrintCRLF 2
 wait 1 s
 wait while SwitchIn = On
 loop

670

Supported in <HI2C.H>

HI2CAckPollState

Syntax:

 <test condition[s]> HI2CAckPollState

Command Availability:

Only available for microcontrollers with the hardware I2C or TWI module.

Explanation:

Should only be used when I2C routines are operating in Master mode, this command will return the
last state of the acknowledge response from a specific I2C device on the I2C bus.

HI2CSend sets the state of variable HI2CAckPollState.
HI2CAckPollState can only read - it cannot be set.

Note:

This command is also available on microcontrollers with a second hardware I2C port.

 <test condition[s]> HI2C2AckPollState

Example:

This example code would display the devices on the I2C bus.

 ...
 for deviceID = 0 to 255
 HI2CStart
 HI2CSend (deviceID)

 if HI2CAckPollState = false then
 HSerPrint "ID: 0x"
 HSerPrint hex(deviceID)
 HSerSend 9
 end if
 next
 ...

Supported in <HI2C.H>

671

HI2CReceive

Syntax:

 HI2CReceive data

 HI2CReceive data, ACK
 HI2CReceive data, NACK

Command Availability:

Only available for microcontrollers with the hardware I2C or TWI module.

Explanation:

The HI2CReceive command will send data through the I2C connection. If ack is TRUE, or no value is
given for ack, then HI2CReceive will send an ack to the I2C bus.

If in master mode, HI2CReceive will read the data immediately. If in slave mode, HI2CReceive will wait
for the master to send the data before reading.

Note:

This command is also available on microcontrollers with a second hardware I2C port.

 HI2C2Receive _data_

 HI2C2Receive _data_, ACK
 HI2C2Receive _data_, NACK

Example 1:

 'This program reads an I2C register and sets an LED if it is over 100.

 'It will read from I2C device with an address of 83, register 1.
 ' Change the processor
 #chip 16F1937, 32
 #config MCLRE_ON

 ' Define I2C settings
 #define HI2C_BAUD_RATE 400

 #define HI2C_DATA PORTC.4
 #define HI2C_CLOCK PORTC.3

672

 'I2C pins need to be input for SSP module
 Dir HI2C_DATA in
 Dir HI2C_CLOCK in

 'MASTER I2C Device
 HI2CMode Master

 'Misc settings
 #define LED PORTB.0

 'Main loop
 Do
 'Send start
 HI2CStart

 'Request value
 HI2CSend 83
 HI2CSend 1

 'Read value
 HI2CReceive ValueIn

 'Send stop
 HI2CStop

 'Turn on LED if received value > 100
 Set LED Off
 If ValueIn > 100 Then Set LED On

 'Delay
 Wait 20 ms

 Loop

Example 2:

See the I2C Overview for the Master mode device to control this Slave mode device.

 ' I2CHardwareReceive_Slave.gcb - using a 16F88.
 ' This program receives commands from a GCB Master. This Slave has three LEDs
attached.

 ; This Slave device responds to address 0x60 and may only be written to.
 ; Within it, there are three registers, 0,1 and 2 corresponding to the three LEDs.
Writing a zero
 ; turns the respective LED off. Writing anything else turns it on.

673

 #chip 16F88, 4
 #config MCLR_Off

 #define I2C_MODE Slave ;this is a slave device now
 #define I2C_CLOCK portb.4 ;SCL on pin 10
 #define I2C_DATA portb.1 ;SDA on pin 7
 #define I2C_ADDRESS 0x60 ;address of the slave device

 #define I2C_BIT_DELAY 20 us
 #define I2C_CLOCK_DELAY 10 us
 #define I2C_END_DELAY 10 us

 'Serial settings
 #define SerInPort PORTB.6
 #define SerOutPort PORTB.7

 #define SendAHigh Set SerOutPort OFF
 #define SendALow Set SerOutPort On
 'Set pin directions
 Dir SerOutPort Out
 Dir SerInPort In

 'Set up serial connection
 InitSer 1, r2400, 1 + WaitForStart, 8, 1, none, INVERT
 wait 1 s

 #define LED0 porta.2 ;pin 1
 #define LED1 porta.3 ;pin 2
 #define LED2 porta.4 ;pin 3

 ;----- Variables

 dim addr, reg, value,location as byte
 addr = 255
 reg = 255
 value = 255
 location = 0
 mempointer = 255

 ;----- Program

 dir LED0 out ;0, 1 and 2 are outputs (LEDs)
 dir LED1 out ;0, 1 and 2 are outputs (LEDs)
 dir LED2 out ;0, 1 and 2 are outputs (LEDs)

674

 set LED0 off
 set LED1 off
 set LED2 off

 #define SerialControlPort portb.3
 dir SerialControlPort in

 'Set up interrupt to process I2C

 dir I2C_CLOCK in ; required to input for MSSP module
 dir I2C_DATA in ; required to input for MSSP module
 SSPADD=I2C_ADDRESS ; Slave address
 SSPSTAT=b'00000000' ; configuration
 SSPCON=b'00110110' ; configuration
 PIE1.SSPIE=1 ; enable interrupt

 repeat 3 ;flash LEDs
 set LED0 on
 set LED1 on
 set LED2 on
 wait 50 ms
 set LED0 off
 set LED1 off
 set LED2 off
 wait 100 ms
 end Repeat

 oldvalue = 255 ; old value, set up value only
 oldreg = 255 ; old value, set up value only

 UpdateLEDS ; call method to set LEDs
 ; set up interrupt
 On Interrupt SSP1Ready call I2C_Interrupt

 do forever
 if reg <> oldreg then ; only process when the reg is a new value
 oldreg = reg ; retain old value
 show = 1 ; its time to show the LEDS!
 if value <> oldvalue then ; logic for tracking old values. You only want to
update terminal once per change
 oldvalue = value
 show = 1
 end if
 end if

 UpdateLEDS ; Update date LEDs

675

 ; update serial terminal
 if show = 1 and SerialControlPort = 1 then

 SerPrint 1, "0x"+hex(addr)
 SerSend 1,9

 SerPrint 1, STR(reg)
 SerSend 1,9

 SerPrint 1, STR(value)
 SerSend 1,10
 SerSend 1,13

 show = 0
 end if
 loop

 Sub I2C_Interrupt
 ' handle interrupt
 IF SSPIF=1 THEN ; its a valid interrupt

 IF SSPSTAT.D_A=0 THEN ; its an address coming in!
 addr=SSPBUF
 IF addr=I2C_ADDRESS THEN ; its our address

 mempointer = 0 ; set the memory pointer. This code emulates an
EEPROM!

 end if
 IF addr = (I2C_ADDRESS | 1) THEN ; its our write address
 CKP = 0 ; acknowledge command
 ; If the SDA line was low (ACK), the transmit data must be
loaded into
 ; the SSPBUF register which also loads the SSPSR
 ; register. Then, pin RB4/SCK/SCL should be enabled
 ; by setting bit CKP.

 mempointer = 10 ; set a pointer to track incoming write
reqests
 if I2C_DATA = 0 then
 SSPBUF = 0x22
 CKP = 1
 readpointer = 0x55
 end if
 end if

 else

676

 if SSPSTAT.P = 1 then ' Stop bit has been detected - out of
sequence
 ' handle event
 end if

 IF SSPSTAT.S = 1 THEN ' Start bit has been detected - out of
sequence
 ' handle event
 END IF

 IF SSPSTAT.R_W = 0 THEN ' Write operations requested

 SELECT CASE mempointer
 CASE 0
 reg = SSPBUF ' incoming value
 mempointer++ ' increment our counter
 CASE 1
 value = SSPBUF ' incoming value
 mempointer++ ' increment our counter
 CASE ELSE
 dummy = SSPBUF ' incoming value
 END SELECT

 ELSE ' Read operations
 SSPBUF = readpointer ' incoming value
 readpointer++ ' increment our counter

 END IF
 END IF
 CKP = 1 ' acknowledge command
 SSPOV = 0 ' acknowledge command
 END IF
 SSPIF=0
 END SUB

 sub UpdateLEDS

 select case reg ;now turn proper LED on or off
 case 0
 if value = 1 then
 set LED0 on
 else
 set LED0 off
 end if

677

 case 1
 if value = 1 then
 set LED1 on
 else
 set LED1 off
 end if

 case 2
 if value = 1 then
 set LED2 on
 else
 set LED2 off
 end if

 end select

 End Sub

Supported in <HI2C.H>

HI2CRestart

Syntax:

 HI2CRestart

Command Availability:

Only available for microcontrollers with the hardware I2C or TWI module.

Explanation:

If the HI2C routines are operating in Master mode, this command will send a start and restart
condition in a single command.

Note:

This command is also available on microcontrollers with a second hardware I2C port.

 HI2C2Restart

Example:

678

 do
 HI2CReStart ;generate a start signal
 HI2CSend(eepDev) ;inidcate a write
 loop While HI2CAckPollState

 HI2CSend(eepAddr_H) ;as two bytes
 HI2CSend(eepAddr)
 HI2CReStart
 HI2CSend(eepDev + 1) ;indicate a read

 eep_i = 0 ;loop consecutively
 do while (eep_i < eepLen) ;these many bytes
 eep_j = eep_i + 1 ;arrays begin at 1 not 0
 if (eep_i < (eepLen - 1)) then
 HI2CReceive(eepArray(eep_j), ACK) ;more data to get
 else
 HI2CReceive(eepArray(eep_j), NACK) ;send NACK on last byte
 end if
 eep_i++ ;get set for next
 loop
 HI2CStop

Supported in <HI2C.H>

==== HI2CSend

Syntax:

 HI2CSend data

Command Availability:

Only available for microcontrollers with the hardware I2C or TWI module.

Explanation:

The HI2CSend command will send data through the I2C connection. If in master mode, HI2CSend will
send the data immediately. If in slave mode, HI2CSend will wait for the master to request the data
before sending.

Note:

This command is also available on microcontrollers with a second hardware I2C port.

679

 HI2C2Send data

Example:

This example code retrieves multiple bytes from an EEPROM memory device.

 do
 HI2CReStart ;generate a start signal
 HI2CSend(eepDev) ;indicate a write
 loop While HI2CAckPollState

 HI2CSend(eepAddr_H) ;as two bytes
 HI2CSend(eepAddr)
 HI2CReStart
 HI2CSend(eepDev + 1) ;indicate a read

 eep_i = 0 ;loop consecutively
 do while (eep_i < eepLen) ;these many bytes
 eep_j = eep_i + 1 ;arrays begin at 1 not 0
 if (eep_i < (eepLen - 1)) then
 HI2CReceive(eepArray(eep_j), ACK) ;more data to get
 else
 HI2CReceive(eepArray(eep_j), NACK) ;send NACK on last byte
 end if
 eep_i++ ;get set for next
 loop
 HI2CStop

Supported in <HI2C.H>

HI2CStart

Syntax:

 HI2CStart

Command Availability:

Only available for microcontrollers with the hardware I2C or TWI module.

Explanation:

If the HI2C routines are operating in Master mode, this command will send a start condition. If
routines are in Slave mode, it will pause the program until a start condition is sent by the master. It

680

should be placed at the start of every I2C transmission.

Note:

This command is also available on microcontrollers with a second hardware I2C port.

 HI2C2Start

Example:

Please see HI2CSend and HI2CReceive for examples.

Supported in <HI2C.H>

HI2CStartOccurred

Syntax:

 HI2CStartOccurred

Command Availability:

Only available for microcontrollers with the hardware I2C or TWI module.

Explanation:

Check if a start condition has occurred since the last run of this function

Only used in slave mode.

Note:

This command is also available on microcontrollers with a second hardware I2C port.

 HI2C2StartOccurred

Supported in <HI2C.H>

HI2CMode

Syntax:

 HI2CMode Master | Slave

681

Command Availability:

Only available for microcontrollers with the hardware I2C or TWI module.

Explanation:

Sets the microcontroller to either a Master device or a Slave device.

Only used in slave mode

Note:

This command is also available on microcontrollers with a second hardware I2C port.

 HI2C2Mode Master | Slave

Supported in <HI2C.H>

HI2CSetAddress

Syntax:

 HI2CSetAddress address_number

Command Availability:

Only available for microcontrollers with the hardware I2C or TWI module.

Explanation:

Sets the microcontroller address number in Slave mode.

Only used in slave mode.

Note:

This command is also available on microcontrollers with a second hardware I2C port.

 HI2C2SetAddress address_number

Supported in <HI2C.H>

HI2CStop

Syntax:

682

 HI2CStop

Command Availability:

Only available for microcontrollers with the hardware I2C or TWI module.

Explanation:

HI2CStop should be called at the end of every I2C transmission.

Note:

This command is also available on microcontrollers with a second hardware I2C port.

 HI2C2Stop

Example:

Please see HI2CSend and HI2CReceive for an example.

Supported in <HI2C.H>

HI2CStopped

Syntax:

 HI2CStopped

Command Availability:

Only available for microcontrollers with the hardware I2C or TWI module.

Explanation:

In Slave mode only. Check if start condition received since last used of HI2CStopped.

Note:

This command is also available on microcontrollers with a second hardware I2C port.

 HI2C2Stopped

Supported in <HI2C.H>

683

HI2CWaitMSSP

Syntax:

 HI2CWaitMSSP

Command Availability:

Only available for microcontrollers with the hardware I2C or TWI module.

Explanation:

The methods sets the global byte variable HI2CWaitMSSPTimeout to 255 (or True) if the MSSP module
has timeout during operations.

HI2CWaitMSSPTimeout can tested for the status of the I2C bus.

Note:

This command is also available on microcontrollers with a second hardware I2C port.

 HI2C2WaitMSSP

Supported in <HI2C.H>

684

Sound
This is the Sound section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Sound Overview

Introduction:

These GCBASIC methods generate tones of a given frequency and duration.

Method Controls

Tone Generate a specified tone for a specified duration in terms of a frequency of a specified
Mhz and units of 10ms

ShortTon
e

Generate a specified tone for a specified duration in terms of a frequency of a 10Mhz and
units of 1ms

Play Play a tune string. The format of the string is the QBASIC play command.

PlayRTTT
L

Play a tune string. The format of the string is the Nokia cell phone RTTTL format.

Relevant Constants:

These constants are used to control settings for the tone generation routines. To set them, place a line
in the main program file that uses #define to assign a value to the particular constant.

Constant Name Controls Default Value

SoundOut The output pin to produce sound on N/A - Must be defined

Note: If an exact frequency is required, or a smaller program is needed, these routines should not be
used. Instead, you should use code like this:

 Repeat count
 PulseOut SoundOut, period us
 Wait period us
 End Repeat

Set count and period to the appropriate values as follows:

period to 1000000 / desired frequency / 2
count to desired duration / period.

685

Tone

Syntax:

 Tone Frequency, Duration

Command Availability:

Available on all microcontrollers.

Explanation:

This command will produce the specified tone for the specified duration. Frequency is measured in Hz,
and Duration is in 10 ms units.

Please note that this command may not produce the exact frequency specified. While it is accurate
enough for error beeps and small pieces of monophonic music, it should not be used for anything that
requires a highly precise frequency.

Example:

'Sample program to produce a constant A note (440 Hz)
'on PORTB bit 1.
#chip 16F877A, 20
#define SoundOut PORTB.1

Do
 Tone 440, 1000
Loop

For more help, see Sound Overview

ShortTone

Syntax:

 ShortTone Frequency, Duration

Command Availability:

Available on all microcontrollers.

Explanation:

This command will produce the specified tone for the specified duration. Frequency is measured in

686

units of 10 Hz, and Duration is in 1 ms units. Please note that this command may not produce the exact
frequency specified. While it is accurate enough for error beeps and small pieces of monophonic
music, it should not be used for anything that requires a highly precise frequency.

Example:

 'Sample program to produce a tone on PORTB bit 1, based on the
 'reading of an LDR on AN0 (usually PORTA bit 0).

 #chip 16F88, 20
 #define SoundOut PORTB.1

 Dir PORTA.0 In

 Do
 ShortTone ReadAD(AN0), 100
 Loop

For more help, see Sound Overview

Play

Syntax:

 Play SoundPlayDataString

You must specify the following include and the port of the sound device.

 #include <songplay.h>
 #define SOUNDOUT PORTN.N

Command Availability:: Available on all microcontrollers.

Explanation: This command will plays a QBASIC sequence of notes. The SoundPlayDataString is a
string representing a musical note or notes to play where Notes are A to G.

Comman
d

Description

A - G May be followed by length: 2 = half note, 4 = quarter, also may be followed by # or + (sharp)
or - (flat).

On Sets current octave. n is octave from 0 to 6

Pn Pause playing. n is length of rest

687

Comman
d

Description

Ln: Set default note length. n = 1 to 8.

< or > Change down or up an octave

Tn: Sets tempo in L4s/minute. n = 32 to 255, default 120.

Nn Play note n. n = 0 to 84, 0 = rest.

Unsupported QBASIC commands are

Comman
d

Description

M Play mode

. Changes note length

For more information on the QBASIC PLAY command set, see
https://en.wikibooks.org/wiki/QBasic/Appendix

Example:

 'Sample program to play a string
 'on PORTB bit 1.
 #chip 16F877A, 20
 #include <songplay.h>
 #define SoundOut PORTB.1

 play "C C# C C#"

For more help, see Sound Overview

Play RTTTL

Syntax:

 PlayRTTTL SoundPlayRTTTLDataString

You must specify the following include and the port of the sound device.

 #include <songplay.h>
 #define SOUNDOUT PORTN.N

688

https://en.wikibooks.org/wiki/QBasic/Appendix

Command Availability:: Available on all microcontrollers.

Explanation: This command will play a sequence of notes in the Nokia RTTTL string format.

The SoundPlayRTTTLDataString is a string representing a musical note or notes to play where Notes
are A to G. This format and information below is credited to WikiPedia, see here. To be recognized by
ringtone programs, an RTTTL/Nokring format ringtone must contain three specific elements: name,
settings, and notes. For example, here is the RTTTL ringtone for Haunted House:

HauntHouse: d=4,o=5,b=108: 2a4, 2e, 2d#, 2b4, 2a4, 2c, 2d, 2a#4, 2e., e, 1f4, 1a4, 1d#, 2e., d, 2c., b4, 1a4,
1p, 2a4, 2e, 2d#, 2b4, 2a4, 2c, 2d, 2a#4, 2e., e, 1f4, 1a4, 1d#, 2e., d, 2c., b4, 1a4

The three parts are separated by a colon.

• Part 1: name of the ringtone (here: "HauntHouse"), a string of characters represents the name of
the ringtone

• Part 2: settings (here: d=4,o=5,b=108), where "d=" is the default duration of a note. In this case, the
"4" means that each note with no duration specifier (see below) is by default considered a quarter
note. "8" would mean an eighth note, and so on. Accordingly, "o=" is the default octave. There are
four octaves in the Nokring/RTTTL format. And "b=" is the tempo, in "beats per minute".

• Part 3: the notes. Each note is separated by a comma and includes, in sequence: a duration
specifier, a standard music note, either a, b, c, d, e, f or g, and an octave specifier. If no duration or
octave specifier are present, the default applies.

Example 1:

 #chip 16f877a
 #include <songplay.h>

 #define SOUNDOUT PORTA.4
 PlayRTTTL "HauntHouse: d=4,o=5,b=108: 2a4, 2e, 2d#, 2b4, 2a4, 2c, 2d, 2a#4, 2e., e,
1f4, 1a4, 1d#, 2e., d, 2c., b4, 1a4, 1p, 2a4, 2e, 2d#, 2b4, 2a4, 2c, 2d, 2a#4, 2e., e,
1f4, 1a4, 1d#, 2e., d, 2c., b4, 1a4"

Example 2:

689

 #chip 16f877a
 #include <songplay.h>

 'Defines
 #define SoundOut PORTC.0

 Dir SoundOut Out
 Dim SoundPlayRTTTLDataString as String

 wait 1 s
 SoundPlayRTTTLDataString =
"Thegood,:d=4,o=6,b=63:32c,32f,32c,32f,c,8g_5,8a_5,f5,8p,32c,32f,32c,32f,c,8g_5,8a_5,d_"
 PlayRTTTL(SoundPlayRTTTLDataString)

 wait 1 s
 SoundPlayRTTTLDataString
="LedZeppel:d=4,o=6,b=80:8g,16p,8f_,16p,8f,16p,8e,16p,8d,8a5,8c,16p,8b5,16p,a_5,8a5,16f5,
16e5,16d5,8p,16p,16a_5,16a_5,16a_5,8p,16p,16b5,16b5,16b5,8p,16p,16b5,16b5,16b5,8p,16p,16c
,16c,16c,8p,16p,16c,16c,16c"
 PlayRTTTL(SoundPlayRTTTLDataString)

 Do Forever
 Loop
 End

For more help, see Sound Overview

690

Timers
This is the Timers section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Timer Overview

GCBASIC supports methods to set, clear, read, start and stop the microcontroller timers.

GCBASIC supports the following timers.

 Timer 0
 Timer 1
 Timer 2
 Timer 3
 Timer 4
 Timer 5
 Timer 6
 Timer 7
 Timer 8
 Timer 10
 Timer 12

Not all of these timers available on all microcontrollers. For example, if a microcontroller has three
timers, then typically only Timer0, Timer1 and Timer2 will be available.

Please refer to the datasheet for your microcontroller to determine the supported timers and if a
specific timer is 8-bit or 16-bit.

Calculating a Timer Prescaler:

To initialise and change the timers you may have to change the Prescaler.

A Prescaler is an electronic counting circuit used to reduce a high frequency electrical signal to a lower
frequency by integer division. The prescaler takes the basic timer clock frequency and divides it by
some value before being processed by the timer, according to how the Prescaler register(s) are
configured. The prescaler values that may be configured might be limited to a few fixed values, see the
timer specfic page in this Help file or refer to the datasheet.

To use a Prescaler some simple integer maths is required, however, when calculating the Prescaler
there is often be a tradeoff between resolution, where a high resolution requires a high clock
frequency and range where a high clock frequency willl cause the timer to overflow more quickly. For
example, achieving 1 us resolution and a 1 sec maximum period using a 16-bit timer may require some
clever thinking when using 8-bit timers. Please ask for advice via the GCBASIC forum, or, search for
some of the many great resources on the internet to calculate a Prescaler value.

691

Common Langauge:

Using timers has the following terms /common langauge. This following paragraph is intended to
explain the common language.

The Oscillator (OSC) is the system clock, this can be sourced from an internal or external source, OSC is
same the as microcontroller Mhz. This is called the the Frequency of the OSCillator (FOSC) or the
System Clock.

On a Microchip PIC microcontroller, one machine code instruction is executed for every four system
clock pulses.
This means that instructions are executed at a frequency of FOSC/4.
The Microchip PIC datasheets call this FOSC/4 or FOSC4.
All Microchip PIC timer prescales are based on the FOSC/4, not the FOSC or the System Clock.
As Prescale are based upon FOSC/4, you must use FOSC/4 in your timer calculations to get the results
you expect.
All Prescale and Postscale values are integer numbers.

On Atmel AVR microcontroller, most machine code instructions will execute in a single clock pulse.

Timer differences between Microchip PIC and Atmel AVR microcontrollers:

Initialising a timer for a Microchip PIC microcontroller may not operate as expected when using the
same code for an Atmel AVR microcontroller by simply changing the #chip definition. You must
recalculate the Prescaler of a timer when moving timer parameters between Microchip PIC and Atmel
AVR microcontrollers. And, of course, the same when moving timer parameters between Atmel AVR
and Microchip PIC microcontrollers.

Timer Best Practices:

Initialising microcontrollers with very limited RAM using GCBASIC needs carefull consideration. RAM
may be need to be optimised by using ASM to control the timers. You can use GCBASIC to create the
timer related GCBASIC ASM code then manually edit the GCBASIC ASM to optmise RAM usage. Add
your revised and optimised ASM back into your program and then remove the no longer required calls
the the GCBASIC methods. If you need advice on this subject please ask for advice via the GCBASIC
forum.

Using Timers 2/4/6/8 on Microchip PIC microcontrollers.

A Microchip PIC microcontroller can have one of two types of 8-bit timer 2/4/6/8.

The first type has only one clock source and that clock is the FOSC/4 source.

The second type is much more flexible and can have many different clock sources and supports more
prescale values.

The timer type for a Microchip PIC microcontroller can be determined by checking for the existence of
a T2CLKCON register, either in the Datasheet or in the GCBASIC "dat file" for the specific

692

microcontroller.

If the microcontroller DOES NOT have a T2CLKCON register then ALL Timer 2/4/6/8 timers on that chip
are the first type, and are configured using:

 InitTimer2 (PreScale, PostScale) 'Timer2 is example for timer 2/4/6 or 8

If the microcontroller DOES have a T2CLKCON register then ALL Timer 2/4/6/8 timers on that chip are
the second type and are configured using:

 InitTimer2 (Source, PreScale, PostScale) 'Timer2 is example for timer 2/4/6 or 8

The possible Source, PreScale and PostScale constants for each type are shown in the GCBASIC Help
file. See each timer for the constants.

The "Period" of these timers is determined by the system clock speed, the prescale value and 8-bit
value in the respective timer period register. The timer period registers are PR2, PR4, PR6 or PR8 for
timer2, timer4, timer6 and timer8 respectively. These registers are also called PRx and TMRx where
the x refers to specific timer number.

When a specific timer is enabled/started the TMRx timer register will increment until the TMRx
register matches the value in the PRx register. At this time the TMRx register is cleared to 0 and the
timer continues to increment until the next match of the PRx register, and so on until the timer is
stopped. The lower the value of the PRx register, the shorter the timer period will be. The default
value for the PRX register at power up is 255.

The timer interrupt flag (TMRxIF) is set based upon the number of match conditions as determine by
the postscaler. The postscaler does not actually change the timer period, it changes the time between
interrupt conditions.

ClearTimer

Syntax:

 ClearTimer TimerNo

Command Availability:

Available on all Microchip PIC and Atmel AVR microcontrollers with built in timer modules.

693

Explanation:

ClearTimer is used to clear the specified timer to a value of 0.

Cleartimer can be used on-the-fly if desired, so there is no requirement to stop the timer first.

Example:

 'Clear timer 1
 ClearTimer 1

See also, InitTimer1 article for an example.

InitTimer0

Syntax:

 InitTimer0 source, prescaler

Command Availability:

Available on all microcontrollers with a Timer 0 module.

See also see: InitTimer0 8bit/16bit for support for microcontrollers with a 8 bit/16 bit Timer 0 module.

Explanation:

InitTimer0 will set up timer 0.

Parameters are required as detailed in the table below:

Paramet
er

Description

source The clock source for this specific timer. Can be either Osc or Ext where`Osc` is an internal
oscillator and Ext is an external oscillator.

Osc - Selects the clock source in use, as set by the microcontroller specific configuration
(fuses or #config). This could be an internal clock or an external clock source (external
clock sources are typically attached to the XTAL pins). Ext - Selects the clock source
attached to a specific exernal interrupt input port. This allows a different clock frequency
than the main clock to be used, such as 32.768 kHz crystals commonly used for real time
circuits.

694

Paramet
er

Description

prescaler The value of the prescaler for this specific timer. See the tables below for permitted values
for Microchip PIC or the Atmel AVR microcontrollers.

When the timer overflows from 255 to 0, a Timer0Overflow interrupt will be generated. This can be
used in conjunction with On Interrupt to run a section of code when the overflow occurs.

Microchip PIC microcontrollers:

On Microchip PIC microcontrollers where the prescaler rate select bits are in the range of 2 to 256 you
should use one of the following constants. If the prescaler rate select bits are in the range of 1 to 32768
then see the subsequent table.

Prescaler Value Primary GCB Constant Constant Equates
to value

1:2 PS0_2 0

1:4 PS0_4 1

1:8 PS0_8 2

1:16 PS0_16 3

1:32 PS0_32 4

1:64 PS0_64 5

1:128 PS0_128 6

1:256 PS0_256 7

These correspond to a prescaler of between 1:2 and 1:256 of the oscillator speed where the oscillator
speed is (FOSC/4). The prescaler applies to both the internal oscillator or the external clock.

Atmel AVR microcontrollers:

On Atmel AVR microcontrollers prescaler must be one of the following constants:

The prescaler will only apply when the timer is driven from the Osc the internal oscillator - the
prescaler has no effect when the external clock source is specified.

695

Prescaler Value Primary GCB Constant Secondary GCB Constant Constant Equates
to value

1:1 PS_1 PS_0_1 1

1:8 PS_8 PS_0_8 2

1:64 PS_64 PS_0_64 3

1:256 PS_256 PS_0_256 4

1:1024 PS_1024 PS_0_1024 5

Example 1 for 8-bit timer 0:

This code uses Timer 0 and On Interrupt to generate a Pulse Width Modulation signal, that will allow
the speed of a motor to be easily controlled.

 #chip 16F88, 8

 #define MOTOR PORTB.0

 'Call the initialisation routine
 InitMotorControl

 'Main routine
 Do
 'Increase speed to full over 2.5 seconds
 For Speed = 0 to 100
 MotorSpeed = Speed
 Wait 25 ms
 Next
 'Hold speed
 Wait 1 s
 'Decrease speed to zero over 2.5 seconds
 For Speed = 100 to 0
 MotorSpeed = Speed
 Wait 25 ms
 Next
 'Hold speed
 Wait 1 s
 Loop

 'Setup routine
 Sub InitMotorControl
 'Clear variables

696

 MotorSpeed = 0
 PWMCounter = 0

 'Add a handler for the interrupt
 On Interrupt Timer0Overflow Call PWMHandler

 'Set up the timer using the internal oscillator with a prescaler of 1/2 (Equates
to 0)
 'Timer 0 starts automatically on a Microchip PIC microcontroller, therefore,
StartTimer is not required.
 InitTimer0 Osc, PS0_2

 End Sub

 'PWM sub
 'This will be called when Timer 0 overflows
 Sub PWMHandler
 If MotorSpeed > PWMCounter Then
 Set MOTOR On
 Else
 Set MOTOR Off
 End If
 PWMCounter += 1
 If PWMCounter = 100 Then PWMCounter = 0
 End Sub

Example 1 for 18-bit timer 0 operating an 8-bit timer:

The same example for a 16-bit timer 0 operating as an 8-bit timer.

#chip 16f18855,32
#option Explicit
'timer test Program

dim speed, MotorSpeed, PWMCounter as byte

#define MOTOR PORTb.0
dir MOTOR out

'Call the initialisation routine
InitMotorControl

'Main routine
Do
 'Increase speed to full over 2.5 seconds
 For Speed = 0 to 100
 MotorSpeed = Speed

697

 Wait 25 ms
 Next
 'Hold speed
 Wait 1 s
 'Decrease speed to zero over 2.5 seconds
 For Speed = 100 to 0
 MotorSpeed = Speed
 Wait 25 ms
 Next
 'Hold speed
 Wait 1 s
Loop

'Setup routine
Sub InitMotorControl
 'Clear variables
 MotorSpeed = 0
 PWMCounter = 0

 'Add a handler for the interrupt
 On Interrupt Timer0Overflow Call PWMHandler

 InitTimer0(Osc, TMR0_FOSC4 + PRE0_1 , POST0_1)
 StartTimer 0

End Sub

'PWM sub
'This will be called when Timer 0 overflows
Sub PWMHandler

 If MotorSpeed > PWMCounter Then
 Set MOTOR On
 Else
 Set MOTOR Off
 End If
 PWMCounter += 1
 If PWMCounter = 100 Then PWMCounter = 0

End Sub

Supported in <TIMER.H>

InitTimer0 8bit/16bit

Syntax:

698

 InitTimer0 source, prescaler + clocksource, postscaler

Timer are useful as timers can generate interrupts. Timers can be used in conjunction with On
Interrupt to run a section of code when a specific timer event occurs. Example events are when the
timer matches a specific value, or, the timer resets to a zero value. For more details on timer events see
On Interrupt.

Command Availability:

Available on microcontrollers with a Timer 0 where the timer has the capability of operating as an 8
bit or 16 bit timer. This type of Timer 0 can be found on Microchip PIC 18(L)F, as well as small
number of 18C and 16(L)F microcontrollers. These timers can be configured for either 8-bit or 16-bit
operation.

You may need to refer to the datasheet for your microcontroller to determine if it supports both 8-bit
and 16-bit operations.

Explanation for 8-bit timer:

The default operation is as an 8-bit timer. InitTimer0 will set up timer 0.

Parameters are required as shown in the table below:

Paramet
er

Description

source The clock source for this specific timer. Can be either Osc or Ext where`Osc` is an internal
oscillator and Ext is an external oscillator.

Osc - Selects the clock source in use, as set by the microcontroller specific configuration
(fuses or #config). This could be an internal clock or an external clock source (external
clock sources are typically attached to the XTAL pins). Ext - Selects the clock source
attached to a specific exernal interrupt input port. This allows a different clock frequency
than the main clock to be used, such as 32.768 kHz crystals commonly used for real time
circuits.

prescaler The value of the prescaler for this specific timer, and, the clocksource See the tables below
for permitted values for Microchip PIC or the Atmel AVR microcontrollers.

postscale
r

The value of the postscaler for this specific timer. See the tables below for permitted values
for Microchip PIC or the Atmel AVR microcontrollers.

8 bit Example:

The example show in the osc as an internal source, a prescaler value of 256 witht the HFINTOSC
clocksource and a postscaler value of 2

699

 InitTimer0 Osc, PRE0_256 + TMR0_HFINTOSC , POST0_2
 'also, note when in 8-bit mode you MUST set the 8bit timer value to the upper byte of
a WORD, when setting the `SetTimer`
 SetTimer 0, 0x5800 'Setting the HIGH byte!!!

16 bit Example:

To use the 16 bit timer you need to add the constant #define TMR0_16bit.

The example show in the osc as an internal source, a prescaler value of 256 witht the HFINTOSC
clocksource and a postscaler value of 2

 #define TMR0_16bit
 InitTimer0 Osc, PRE0_256 + TMR0_HFINTOSC , POST0_2

Differences in Timer0 Operations

The section refers to chips with a 8/16-bit Timer0.

When these chips are operating in 8-bit mode, Timer0 behaves much like Timers2/4/6. In 8-bit mode
the TMR0H register does not increment. It instead becomes the Period or Match register and is aliased
as "PR0" (Period Register 0).

In 8-bit mode, Timer0 does not technically overflow. Instead when TMR0L increments and matches the
value in the PR0 register, TMR0L is reset to 0. The interrupt flag bit (TMR0IF) bit is then set (based upon
Postscaler).

The default value in the PR0 "match register" is 255. This value can be set/changed in the user program
to set/change the timer period. This can be used to fine tune the timer period.

Timer 0 mandated constants:

Paramet
er

Description

source The clock source for this specific timer. Can be either Osc or Ext where Osc is an internal
oscillator and Ext is an external oscillator.

700

Paramet
er

Description

prescaler The value of the prescaler for this specific timer. See the tables below for permitted values
for Microchip PIC or the Atmel AVR microcontrollers. You may also be required to specify
one of the following clock sources.

TMR0_CLC1
TMR0_SOSC
TMR0_LFINTOSC
TMR0_HFINTOSC
TMR0_FOSC4
TMR0_T0CKIPPS_Inverted
TMR0_T0CKIPPS_True

You should use a simple addition to concatenate the prescaler with a specific clock source.
For example.

PRE0_16 + TMR0_HFINTOSC

postscale
r

See the tables below for permitted values for Microchip.
Also, refer to the specific datasheet postcaler values.

Microchip PIC microcontrollers where the prescaler rate select bits are in the range of 1 to 32768 you
should use one of the following constants.

Prescaler Value Primary GCB Constant Constant Equates
to value

1:1 PRE0_1 0

1:2 PRE0_2 1

1:4 PRE0_4 2

1:8 PRE0_8 3

1:16 PRE0_16 4

1:32 PRE0_32 5

1:64 PRE0_64 6

1:128 PRE0_128 7

1:256 PRE0_256 8

1:512 PRE0_512 9

1:1024 PRE0_1024 10

701

Prescaler Value Primary GCB Constant Constant Equates
to value

1:2048 PRE0_2048 11

1:4096 PRE0_4096 12

1:8192 PRE0_8192 13

1:16384 PRE0_16384 14

1:32768 PRE0_32768 15

These correspond to a prescaler of between 1:1 and 1:32768 of the oscillator speed where the oscillator
speed is (FOSC/4). The prescaler applies to both the internal oscillator or the external clock.

On Microchip PIC microcontrollers where the prescaler rate select bits are in the range of 2 to 256 you
should use one of the following constants. If the prescaler rate select bits are in the range of 1 to 32768
then see the subsequent table.

Prescaler Value Primary GCB Constant Constant Equates
to value

1:2 PS0_2 0

1:4 PS0_4 1

1:8 PS0_8 2

1:16 PS0_16 3

1:32 PS0_32 4

1:64 PS0_64 5

1:128 PS0_128 6

1:256 PS0_256 7

These correspond to a prescaler of between 1:2 and 1:256 of the oscillator speed where the oscillator
speed is (FOSC/4). The prescaler applies to both the internal oscillator or the external clock.

On Microchip PIC microcontroller that require postscaler is can be one of the following constants
where the Postscaler Rate Select bits are in the range of 1 to 16.

Postcaler Value Primary GCB Constant Use Numeric Constant

1:1 POST0_1 0

702

Postcaler Value Primary GCB Constant Use Numeric Constant

1:2 POST0_2 1

1:3 POST0_3 2

1:4 POST0_4 3

1:5 POST0_5 4

1:6 POST0_6 5

1:7 POST0_7 6

1:8 POST0_8 7

1:9 POST0_9 8

1:10 POST0_10 9

1:11 POST0_11 10

1:12 POST0_12 11

1:13 POST0_13 12

1:14 POST0_14 13

1:15 POST0_15 14

1:16 POST0_16 15

Example:

This code uses Timer 0 and On Interrupt to flash an LED.

703

/*

Remember four things to setup a timer.

1. InitTimer0 source, prescaler + clocksource, postscaler

2. SetTimer (byte_value, value), or
 SetTimer (word_value [where the High byte sets the timer], value)

3. StartTimer 0

 and, optionally use

4. ClearTimer 0

*/

 'Chip Settings.
 #CHIP 16f18313, 32

 Dir porta.1 Out

 'Setup the timer.
 ' Source, Prescaler + Clock Source , Postscaler
 InitTimer0 Osc, PRE0_16384 + TMR0_HFINTOSC , POST0_11

 ' Set the Timer start value. Use the HIGH byte of the word when using an 8/16bit
timer in 8 bit mode
 SetTimer (0, 0x5800)

 ' Start the Timer by writing to TMR0ON bit
 StartTimer 0

 Do
 Wait While TMR0IF = 0
 ' Clearing timer flag
 TMR0IF = 0
 porta.1 = ! porta.1

 Loop

Supported in <TIMER.H>

See also see: InitTimer0 for microcontroller with only an 8 bit Timer 0 module.

704

InitTimer1

Syntax:

 InitTimer1 source, prescaler

Command Availability:

Available on all microcontrollers with a Timer 1 module.

Explanation:

InitTimer1 will set up timer 1.

Parameters are required as detailed in the table below:

Paramet
er

Description

source The clock source for this specific timer. Can be either Osc, Ext or ExtOsc where:
Osc is an internal oscillator.
Ext is an external oscillator.

Osc - Selects the clock source in use, as set by the microcontroller specific configuration
(fuses or #config). This could be an internal clock or an external clock source (external
clock sources are typically attached to the XTAL pins). Ext - Selects the clock source
attached to a specific exernal interrupt input port. This allows a different clock frequency
than the main clock to be used, such as 32.768 kHz crystals commonly used for real time
circuits.

ExtOsc is an external oscillator and only available on a Microchip PIC microcontroller.
Enhanced Microchip PIC microcontrollers with a dedicated TMRxCLK register support
additional clock sources. This includes, but limited to, the following devices: 16F153xx,
16F16xx, 16F188xx and 18FxxK40 Microchip PIC microcontroller series. On these devices
the clock source can be one of the following: Osc is an internal oscillator which is the same
source as FOSC4.
Ext is an external oscillator which is the same source as TxXKIPPS.
ExtOsc is an external oscillator which is the same source as SOSC.
FOSC is an internal oscillator which is the Frequency of the OSCillator.
FOSC4 is an internal oscillator which is the Frequency of the OSCillator divided by 4.
SOSC is an external oscillator which is the same source as SOSC.
MFINTOSC is an internal 500KHz internal clock oscillator.
LFINTOSC is an internal 31Khz internal clock oscillator.
HFINTOSC is an oscillator as specified within the datasheet for each specific microcontroller.
TxCKIPPS is an oscillator input on TxCKIPPS Pin.

705

Paramet
er

Description

prescaler The value of the prescaler for this specific timer. See the tables below for permitted vales
for Microchip PIC or the Atmel AVR microcontrollers.

When the timer overflows an interrupt event will be generated. This interrupt event can be used in
conjunction with On Interrupt to run a section of code when the interrupt event occurs.

Microchip PIC microcontrollers:

On Microchip PIC microcontrollers prescaler must be one of the following constants:

Prescaler Value Primary GCB Constant Constant Equates
to value

1:1 PS1_1 0

1:2 PS1_2 16

1:4 PS1_4 32

1:8 PS1_8 48

These correspond to a prescaler of between 1:2 and 1:8 of the oscillator (FOSC/4) speed. The prescaler
will apply to either the oscillator or the external clock input.

Atmel AVR microcontrollers:

On the majority of Atmel AVR microcontrollers prescaler must be one of the following constants:

The prescaler will only apply when the timer is driven from the Osc the internal oscillator - the
prescaler has no effect when the external clock source is specified.

Prescaler Value Primary GCB Constant Secondary GCB Constant Constant Equates
to value

1:0 PS_0 PS_1_0 0

1:1 PS_1 PS_1_1 1

1:8 PS_8 PS_1_8 2

1:64 PS_64 PS_1_64 3

1:256 PS_256 PS1_256 4

706

Prescaler Value Primary GCB Constant Secondary GCB Constant Constant Equates
to value

1:1024 PS_1024 PS_1_1024 5

On Atmel AVR ATtiny15/25/45/85/216/461/861 microcontrollers prescaler must be one of the following
constants:

The prescaler will only apply when the timer is driven from the Osc the internal oscillator - the
prescaler has no effect when the external clock source is specified.

Prescaler Value Primary GCB Constant Constant Equates
to value

1:0 PS_1_0 0

1:1 PS_1_1 1

1:2 PS_1_2 2

1:4 PS_1_4 3

1:8 PS_1_8 4

1:16 PS_1_16 5

1:32 PS_1_32 6

1:64 PS_1_64 7

1:128 PS_1_128 8

1:256 PS_1_256 9

1:512 PS_1_512 10

1:1024 PS_1_1024 11

1:2048 PS_1_2048 12

1:4096 PS_1_4096 13

1:8192 PS_1_8192 14

1:16384 PS_1_16384 15

Example 1 (Microchip):

707

This example will measure that time that a switch is depressed (or on) and will write the results to the
EEPROM.

 #chip 16F819, 20
 #define Switch PORTA.0

 Dir Switch In
 DataCount = 0

 'Initilise Timer 1
 InitTimer1 Osc, PS1_8

 Dim TimerValue As Word

 Do
 ClearTimer 1
 Wait Until Switch = On
 StartTimer 1
 Wait Until Switch = Off
 StopTimer 1

 'Read the timer
 TimerValue = Timer1

 'Log the timer value
 EPWrite(DataCount, TimerValue_H)
 EPWrite(DataCount + 1, TimerValue)
 DataCount += 2
 Loop

Example 2 (Atmel AVR):

This example will flash the yellow LED on an Arduino Uno (R3) once every second.

#Chip mega328p, 16 'Using Arduino Uno R3

#define LED PORTB.5
Dir LED OUT

708

Inittimer1 OSC, PS_256
Starttimer 1
Settimer 1, 3200 ;Preload Timer

On Interrupt Timer1Overflow Call Flash_LED

Do
 'Wait for interrupt
loop

Sub Flash_LED
 Settimer 1, 3200 'Preload timer
 pulseout LED, 100 ms
End Sub

Supported in <TIMER.H>

InitTimer2

Syntax: (MicroChip PIC)

 InitTimer2 prescaler, postscaler

or, where you required to state the clock source, use the following

 InitTimer2 clocksource, prescaler, postscaler

Syntax: (Atmel AVR)

 InitTimer2 source, prescaler

Command Availability:

Available on all microcontrollers with a Timer 2 module. As shown above a Microchip microcontroller
can potentially support two types of methods for initialisation.

The first method is:

709

 InitTimer2 prescaler, postscaler

This the most common method to initialise a Microchip microcontroller timer. With this method the
timer has only one possible clock source, this mandated by the microcontrollers architecture, and that
clock source is the System Clock/4 also known as FOSC/4.

The second method is much more flexible in term of the clock source. Microcontrollers that support
this second method enable you to select different clock sources and to select more prescale values. The
method is shown below:

 InitTimer2 clocksource, prescaler, postscaler

How do you determine which method to use for your specific Microchip microcontroller ?

The timer type for a Microchip microcontroller can be determined by checking for the existance of a
T2CLKCON register, either in the Datasheet or in the GCBASIC "dat file" for the specific device.

If the Microchip microcontroller DOES NOT have a T2CLKCON register then timers 2/4/6/8 for that
specific microcontroller chip use the first method, and are configured using:

 InitTimer2 (PreScale, PostScale)

If the microcontroller DOES have a T2CLKCON register then ALL timers 2/4/6/8 for that specific
microcontroller chip use the second method, and are configured using:

 InitTimer2 (Source,PreScale,PostScale)

The possible Source, Prescale and Postscale constants for each type are shown in the tables
below. These table are summary tables from the Microchip datasheets.

Period of the Timers

The Period of the timer is determined by the system clock speed, the prescale value and 8-bit value in
the respective timer period register. The timer period for timer 2 is held in register PR2.

When the timer is enabled, by starting the timer, it will increment until the TMR2 register matches the
value in the PR2 register. At this time the TMR2 register is cleared to 0 and the timer continues to
increment until the next match, and so on.

The lower the value of the PR2 register, the shorter the timer period will be. The default value for the

710

PR2 register at power up is 255.

The timer interrupt flag (TMR2IF) is set based upon the number of match conditions as determine by
the postscaler. The postscaler does not actually change the timer period, it changes the time between
interrupt conditions.

Timer constants for the MicroChip microcontrollers

Parameters for this timer are detailed in the tables below:

Paramete
r

Description

clocksourc
e

This is an optional parameter. Please review the datasheet for specific usage.

Source can be one of the following numeric values:

1 equates to OSC (FOSC/4). The default clock source

6 equates to EXTOSC same as SOSC
5 equates to MFINTOSC
4 equates to LFINTOSC
3 equates to HFINTOSC
2 equates to FOSC
1 equates to FOSC/4 same as OSC
0 equates to TxCKIPPS same as EXTOSC and EXT (T1CKIPPS)
Other sources may be available but can vary from microcontroller to microcontroller and
these can be included manually per the specific microcontrollers datasheet.

prescaler The value of the prescaler for this specific timer. See the tables below for permitted
values.

postscaler The value of the postscaler for this specific timer. See the tables below for permitted
values.

Table 1 shown above

prescaler can be one of the following settings, if you MicroChip microcontroller has the T2CKPS4 bit
then refer to table 3:

Prescaler Value Primary GCB Constant Constant Equates
to value

1:1 PS2_1 0

1:4 PS2_4 1

1:16 PS2_16 2

711

Prescaler Value Primary GCB Constant Constant Equates
to value

1:64 PS2_64 3

Table 2 shown above

Note that a 1:64 prescale is only avaialable on certain midrange microcontrollers. Please refer to the
datasheet to determine if a 1:64 prescale is supported by a spectific microcontroller.

Prescaler Value Primary GCB Constant Constant Equates
to value

1:1 PS2_1 0

1:2 PS2_2 1

1:4 PS2_4 2

1:8 PS2_8 3

1:16 PS2_16 4

1:32 PS2_32 5

1:64 PS2_64 6

1:128 PS2_128 7

Table 3 shown above

postscaler slows the rate of the interrupt generation (or WDT reset) from a counter/timer by dividing it
down.

On Microchip PIC microcontroller one of the following constants where the Postscaler Rate Select bits
are in the range of 1 to 16.

Postcaler Value GCB Constant Eqautes to

1:1 Postscaler POST_1 0

1:2 Postscaler POST_2 1

1:3 Postscaler POST_3 2

1:4 Postscaler POST_4 3

1:5 Postscaler POST_5 4

1:6 Postscaler POST_6 5

712

Postcaler Value GCB Constant Eqautes to

1:7 Postscaler POST_7 6

1:8 Postscaler POST_8 7

1:9 Postscaler POST_9 8

1:10 Postscaler POST_10 9

1:11 Postscaler POST_11 10

1:12 Postscaler POST_12 11

1:13 Postscaler POST_13 12

1:14 Postscaler POST_14 13

1:15 Postscaler POST_15 14

1:16 Postscaler POST_16 15

Table 4 shown above

Explanation:(Atmel AVR)

InitTimer2 will set up timer 2, according to the settings given.

source can be one of the following settings: Parameters for this timer are detailed in the table below:

Paramet
er

Description

source The clock source for this specific timer. Can be either Osc or Ext where`Osc` is an internal
oscillator and Ext is an external oscillator.

Table 5 shown above

prescaler for Atmel AVR Timer 2 is chip specific and can be selected from one of the two tables shown
below. Please refer to the datasheet determine which table to use and which prescales within that
table are supported by a specific Atmel AVR microcontroller.

Table1: Prescaler Rate Select bits are in the range of 1 to 1024

713

Prescaler Value Primary GCB Constant Secondary GCB Constant Constant Equates
to value

1:0 PS_0 PS_2_0 1

1:1 PS_1 PS_2_1 1

1:8 PS_8 PS_2_8 2

1:64 PS_64 PS_2_64 3

1:256 PS_256 PS2_256 4

1:1024 PS_1024 PS_2_1024 5

Table 6 shown above

Prescaler Rate Select bits are in the range of 1 to 16384

Prescaler Value Primary GCB Constant Secondary GCB Constant Constant Equates
to value

1:1 PS_2_1 none 1

1:2 PS_2_2 none 2

1:4 PS_2_4 none 3

1:8 PS_2_8 none 4

1:16 PS_2_16 none 5

1:32 PS_2_32 none 6

1:64 PS_2_64 none 7

1:128 PS_2_128 none 8

1:256 PS_2_256 none 9

1:512 PS_2_512 none 10

1:1024 PS_2_1024 none 11

1:2048 PS_2_2048 none 12

1:4096 PS_2_4096 none 13

1:8192 PS_2_8192 none 14

1:16384 PS_2_16384 none 15

Table 7 shown above

714

Example:

This code uses Timer 2 and On Interrupt to flash an LED every 200 timer ticks.

 #chip 16F1788, 8

 #DEFINE LED PORTA.1
 DIR LED OUT

 #Define Match_Val PR2 'PR2 is the timer 2 match register
 Match_Val = 200 'Interrupt afer 200 timer ticks

 On interrupt timer2Match call FlashLED 'Interrupt on match
 Inittimer2 PS2_64, 15 'Prescale 1:64 /Postscale 1:16 (15)
 Starttimer 2

 Do
 ' Wating for interrupt on match val of 100
 Loop

 'This sub will be called when Timer 2 matches "Match_Val" (PR2)
 SUB FlashLED
 pulseout LED, 5 ms
 END SUB

InitTimer3

Syntax:

InitTimer3 source, prescaler

Command Availability:

Available on all microcontrollers with a Timer 3 module.

Explanation:

InitTimer3 will set up timer 3.

Parameters are required as detailed in the table below:

715

Paramet
er

Description

source The clock source for this specific timer. Can be either Osc, Ext or ExtOsc where:
Osc is an internal oscillator.
Ext is an external oscillator.

Osc - Selects the clock source in use, as set by the microcontroller specific configuration
(fuses or #config). This could be an internal clock or an external clock source (external
clock sources are typically attached to the XTAL pins). Ext - Selects the clock source
attached to a specific exernal interrupt input port. This allows a different clock frequency
than the main clock to be used, such as 32.768 kHz crystals commonly used for real time
circuits.

ExtOsc is an external oscillator and only available on a Microchip PIC microcontroller.
Enhanced Microchip PIC microcontrollers with a dedicated TMRxCLK register support
additional clock sources. This includes, but limited to, the following devices: 16F153xx,
16F16xx, 16F188xx and 18FxxK40 Microchip PIC microcontroller series On these devices
the clock source can be one of the following: Osc is an internal oscillator which is the same
source as FOSC4.
Ext is an external oscillator which is the same source as TxXKIPPS.
ExtOsc is an external oscillator which is the same source as SOSC.
FOSC is an internal oscillator which is the Frequency of the OSCillator.
FOSC4 is an internal oscillator which is the Frequency of the OSCillator divided by 4.
SOSC is an external oscillator which is the same source as SOSC.
MFINTOSC is an internal 500KHz internal clock oscillator.
LFINTOSC is an internal 31Khz internal clock oscillator.
HFINTOSC is an oscillator as specified within the datasheet for each specific microcontroller.
TxCKIPPS is an oscillator input on TxCKIPPS Pin.

prescaler The value of the prescaler for this specific timer. See the tables below for permitted vales
for Microchip PIC or the Atmel AVR microcontrollers.

When the timer overflows an interrupt event will be generated. This interrupt event can be used in
conjunction with On Interrupt to run a section of code when the interrupt event occurs.

Microchip PIC microcontrollers:

On Microchip PIC microcontrollers prescaler must be one of the following constants:

Prescaler Value Primary GCB Constant Constant Equates
to value

1:1 PS3_1 0

1:2 PS3_2 16

716

Prescaler Value Primary GCB Constant Constant Equates
to value

1:4 PS3_4 32

1:8 PS3_8 48

These correspond to a prescaler of between 1:2 and 1:8 of the oscillator (FOSC/4) speed. The prescaler
will apply to either the oscillator or the external clock input.

Atmel AVR microcontrollers:

On the majority of Atmel AVR microcontrollers prescaler must be one of the following constants:

The prescaler will only apply when the timer is driven from the Osc the internal oscillator - the
prescaler has no effect when the external clock source is specified.

Prescaler Value Primary GCB Constant Secondary GCB Constant Constant Equates
to value

1:0 PS_0 PS_3_0 1

1:1 PS_1 PS_3_1 1

1:8 PS_8 PS_3_8 2

1:64 PS_64 PS_3_64 3

1:256 PS_256 PS_3_256 4

1:1024 PS_1024 PS_3_1024 5

Supported in <TIMER.H>

InitTimer4

Syntax: (MicroChip PIC)

 InitTimer4 prescaler, postscaler

or, where you required to state the clock source, use the following

 InitTimer4 clocksource, prescaler, postscaler

Syntax: (Atmel AVR)

717

 InitTimer4 source, prescaler

Command Availability:

Available on all microcontrollers with a Timer 4 module. As shown above a Microchip microcontroller
can potentially support two types of methods for initialisation.

The first method is:

 InitTimer4 prescaler, postscaler

This the most common method to initialise a Microchip microcontroller timer. With this method the
timer has only one possible clock source, this mandated by the microcontrollers architecture, and that
clock source is the System Clock/4 also known as FOSC/4.

The second method is much more flexible in term of the clock source. Microcontrollers that support
this second method enable you to select different clock sources and to select more prescale values. The
method is shown below:

 InitTimer4 clocksource, prescaler, postscaler

How do you determine which method to use for your specific Microchip microcontroller ?

The timer type for a Microchip microcontroller can be determined by checking for the existance of a
T2CLKCON register, either in the Datasheet or in the GCBASIC "dat file" for the specific device.

If the Microchip microcontroller DOES NOT have a T4CLKCON register then timers 2/4/6/8 for that
specific microcontroller chip use the first method, and are configured using:

 InitTimer4 (PreScale, PostScale)

If the microcontroller DOES have a T2CLKCON register then ALL timers 2/4/6/8 for that specific
microcontroller chip use the second method, and are configured using:

 InitTimer4 (Source,PreScale,PostScale)

The possible Source, Prescale and Postscale constants for each type are shown in the tables
below. These table are summary tables from the Microchip datasheets.

718

Period of the Timers

The Period of the timer is determined by the system clock speed, the prescale value and 8-bit value in
the respective timer period register. The timer period for timer 4 is held in register PR4.

When the timer is enabled, by starting the timer, it will increment until the TMR4 register matches the
value in the PR4 register. At this time the TMR4 register is cleared to 0 and the timer continues to
increment until the next match, and so on.

The lower the value of the PR4 register, the shorter the timer period will be. The default value for the
PR4 register at power up is 255.

The timer interrupt flag (TMR4IF) is set based upon the number of match conditions as determine by
the postscaler. The postscaler does not actually change the timer period, it changes the time between
interrupt conditions.

Timer constants for the MicroChip microcontrollers

Parameters for this timer are detailed in the tables below:

Paramete
r

Description

clocksourc
e

If required by method select.
Source can be one of the following numeric values:

1 equates to OSC (FOSC/4). The default clock source

6 equates to EXTOSC same as SOSC
5 equates to MFINTOSC
4 equates to LFINTOSC
3 equates to HFINTOSC
2 equates to FOSC
1 equates to FOSC/4 same as OSC
0 equates to TxCKIPPS same as EXTOSC and EXT (T1CKIPPS)
Other sources may be available but can vary from microcontroller to microcontroller and
these can be included manually per the specific microcontrollers datasheet.

prescaler The value of the prescaler for this specific timer. See the tables below for permitted
values.

postscaler The value of the postscaler for this specific timer. See the tables below for permitted
values.

Table 1 shown above

719

prescaler can be one of the following settings, if you MicroChip microcontroller has the T4CKPS4 bit
then refer to table 2:

Prescaler Value Primary GCB Constant Constant Equates
to value

1:1 PS4_1 0

1:4 PS4_4 1

1:16 PS4_16 2

1:64 PS4_64 3

Table 2

Note that a 1:64 prescale is only avaialable on certain midrange microcontrollers. Please refer to the
datasheet to determine if a 1:64 prescale is supported by a spectific microcontroller.

Prescaler Value Primary GCB Constant Constant Equates
to value

1:1 PS4_1 0

1:2 PS4_2 1

1:4 PS4_4 2

1:8 PS4_8 3

1:16 PS4_16 4

1:32 PS4_32 5

1:64 PS4_64 6

1:128 PS4_128 7

Table 3

postscaler slows the rate of the interrupt generation (or WDT reset) from a counter/timer by dividing it
down.

On Microchip PIC microcontroller one of the following constants where the Postscaler Rate Select bits
are in the range of 1 to 16.

Postcaler Value Use Numeric Constant

1:1 Postscaler 0

720

Postcaler Value Use Numeric Constant

1:2 Postscaler 1

1:3 Postscaler 2

1:4 Postscaler 3

1:5 Postscaler 4

1:6 Postscaler 5

1:7 Postscaler 6

1:8 Postscaler 7

1:9 Postscaler 8

1:10 Postscaler 9

1:11 Postscaler 10

1:12 Postscaler 11

1:13 Postscaler 12

1:14 Postscaler 13

1:15 Postscaler 14

1:16 Postscaler 15

Explanation:(Atmel AVR)

InitTimer4 will set up timer 4, according to the settings given.

source can be one of the following settings: Parameters for this timer are detailed in the table below:

Paramet
er

Description

source The clock source for this specific timer. Can be either Osc or Ext where`Osc` is an internal
oscillator and Ext is an external oscillator.

prescaler for Atmel AVR Timer 4 can be selected from the table below.

Prescaler Rate Select bits are in the range of 1 to 1024

721

Prescaler Value Primary GCB Constant Secondary GCB Constant Constant Equates
to value

1:0 PS_0 PS_4_0 1

1:1 PS_1 PS_4_1 1

1:8 PS_8 PS_4_8 2

1:64 PS_64 PS_4_64 3

1:256 PS_256 PS4_256 4

1:1024 PS_1024 PS_4_1024 5

Example:

This code uses Timer 4 and On Interrupt to generate a 1ms pulse 20 ms.

 #chip 18F25K80, 8

 #DEFINE PIN3 PORTA.1
 DIR PIN3 OUT

 #Define Match_Val PR4 'PR4 is the timer 2 match register
 Match_Val = 154 'Interrupt afer 154 Timer ticks (~20ms)

 On interrupt timer4Match call PulsePin3 'Interrupt on match
 Inittimer4 PS4_16, 15 'Prescale 1:64 /Postscale 1:16 (15)
 Starttimer 4

 Do
 'Waiting for interrupt on match val of 154
 Loop

 Sub PulsePin3
 pulseout Pin3, 1 ms
 End Sub

InitTimer5

Syntax:

722

InitTimer5 source, prescaler

Command Availability:

Available on all microcontrollers with a Timer 5 module.

Explanation:

InitTimer5 will set up timer 5.

Parameters are required as detailed in the table below:

Paramet
er

Description

source The clock source for this specific timer. Can be either Osc, Ext or ExtOsc where:
Osc is an internal oscillator.
Ext is an external oscillator.

Osc - Selects the clock source in use, as set by the microcontroller specific configuration
(fuses or #config). This could be an internal clock or an external clock source (external
clock sources are typically attached to the XTAL pins). Ext - Selects the clock source
attached to a specific exernal interrupt input port. This allows a different clock frequency
than the main clock to be used, such as 32.768 kHz crystals commonly used for real time
circuits.

ExtOsc is an external oscillator and only available on a Microchip PIC microcontroller.
Enhanced Microchip PIC microcontrollers with a dedicated TMRxCLK register support
additional clock sources. This includes, but limited to, the following devices: 16F153xx,
16F16xx, 16F188xx and 18FxxK40 Microchip PIC microcontroller series On these devices
the clock source can be one of the following: Osc is an internal oscillator which is the same
source as FOSC4.
Ext is an external oscillator which is the same source as TxXKIPPS.
ExtOsc is an external oscillator which is the same source as SOSC.
FOSC is an internal oscillator which is the Frequency of the OSCillator.
FOSC4 is an internal oscillator which is the Frequency of the OSCillator divided by 4.
SOSC is an external oscillator which is the same source as SOSC.
MFINTOSC is an internal 500KHz internal clock oscillator.
LFINTOSC is an internal 31Khz internal clock oscillator.
HFINTOSC is an oscillator as specified within the datasheet for each specific microcontroller.
TxCKIPPS is an oscillator input on TxCKIPPS Pin.

prescaler The value of the prescaler for this specific timer. See the tables below for permitted vales
for Microchip PIC or the Atmel AVR microcontrollers.

When the timer overflows an interrupt event will be generated. This interrupt event can be used in
conjunction with On Interrupt to run a section of code when the interrupt event occurs.

723

Microchip PIC microcontrollers:

On Microchip PIC microcontrollers prescaler must be one of the following constants:

Prescaler Value Primary GCB Constant Constant Equates
to value

1:1 PS5_1 0

1:2 PS5_2 16

1:4 PS5_4 32

1:8 PS5_8 48

These correspond to a prescaler of between 1:2 and 1:8 of the oscillator (FOSC/4) speed. The prescaler
will apply to either the oscillator or the external clock input.

Atmel AVR microcontrollers:

On the majority of Atmel AVR microcontrollers prescaler must be one of the following constants:

The prescaler will only apply when the timer is driven from the Osc the internal oscillator - the
prescaler has no effect when the external clock source is specified.

Prescaler Value Primary GCB Constant Secondary GCB Constant Constant Equates
to value

1:0 PS_0 PS_5_0 0

1:1 PS_1 PS_5_1 1

1:8 PS_8 PS_5_8 2

1:64 PS_64 PS_5_64 3

1:256 PS_256 PS_5_256 4

1:1024 PS_1024 PS_5_1024 5

Supported in <TIMER.H>

InitTimer6

Syntax: (MicroChip PIC)

724

 InitTimer6 prescaler, postscaler

or, where you required to state the clock source, use the following

 InitTimer6 clocksource, prescaler, postscaler

Syntax: (Atmel AVR)

 InitTimer6 source, prescaler

Command Availability:

Available on all microcontrollers with a Timer 6 module. As shown above a Microchip microcontroller
can potentially support two types of methods for initialisation.

The first method is:

 InitTimer6 prescaler, postscaler

This the most common method to initialise a Microchip microcontroller timer. With this method the
timer has only one possible clock source, this mandated by the microcontrollers architecture, and that
clock source is the System Clock/4 also known as FOSC/4.

The second method is much more flexible in term of the clock source. Microcontrollers that support
this second method enable you to select different clock sources and to select more prescale values. The
method is shown below:

 InitTimer6 clocksource, prescaler, postscaler

How do you determine which method to use for your specific Microchip microcontroller ?

The timer type for a Microchip microcontroller can be determined by checking for the existance of a
T2CLKCON register, either in the Datasheet or in the GCBASIC "dat file" for the specific device.

If the Microchip microcontroller DOES NOT have a T2CLKCON register then timers 2/4/6/8 for that
specific microcontroller chip use the first method, and are configured using:

 InitTimer6 (PreScale, PostScale)

725

If the microcontroller DOES have a T2CLKCON register then ALL timers 2/4/6/8 for that specific
microcontroller chip use the second method, and are configured using:

 InitTimer6 (Source,PreScale,PostScale)

The possible Source, Prescale and Postscale constants for each type are shown in the tables
below. These table are summary tables from the Microchip datasheets.

Period of the Timers

The Period of the timer is determined by the system clock speed, the prescale value and 8-bit value in
the respective timer period register. The timer period for timer 6 is held in register PR6.

When the timer is enabled, by starting the timer, it will increment until the TMR6 register matches the
value in the PR6 register. At this time the TMR6 register is cleared to 0 and the timer continues to
increment until the next match, and so on.

The lower the value of the PR6 register, the shorter the timer period will be. The default value for the
PR6 register at power up is 255.

The timer interrupt flag (TMR6IF) is set based upon the number of match conditions as determine by
the postscaler. The postscaler does not actually change the timer period, it changes the time between
interrupt conditions.

Timer constants for the MicroChip microcontrollers

Parameters for this timer are detailed in the tables below:

726

Paramete
r

Description

clocksourc
e

This is an optional parameter. Please review the datasheet for specific usage.

Source can be one of the following numeric values:

1 equates to OSC (FOSC/4). The default clock source

6 equates to EXTOSC same as SOSC
5 equates to MFINTOSC
4 equates to LFINTOSC
3 equates to HFINTOSC
2 equates to FOSC
1 equates to FOSC/4 same as OSC
0 equates to TxCKIPPS same as EXTOSC and EXT (T1CKIPPS)
Other sources may be available but can vary from microcontroller to microcontroller and
these can be included manually per the specific microcontrollers datasheet.

prescaler The value of the prescaler for this specific timer. See the tables below for permitted
values.

postscaler The value of the postscaler for this specific timer. See the tables below for permitted
values.

Table 1 shown above

prescaler can be one of the following settings, if you MicroChip microcontroller has the T6CKPS4 bit
then refer to table 3:

Prescaler Value Primary GCB Constant Constant Equates
to value

1:1 PS6_1 0

1:4 PS6_4 1

1:16 PS6_16 2

1:64 PS6_64 3

Table 2

Note that a 1:64 prescale is only avaialable on certain midrange microcontrollers. Please refer to the
datasheet to determine if a 1:64 prescale is supported by a spectific microcontroller.

727

Prescaler Value Primary GCB Constant Constant Equates
to value

1:1 PS6_1 0

1:2 PS6_2 1

1:4 PS6_4 2

1:8 PS6_8 3

1:16 PS6_16 4

1:32 PS6_32 5

1:64 PS6_64 6

1:128 PS6_128 7

Table 3

postscaler slows the rate of the interrupt generation (or WDT reset) from a counter/timer by dividing it
down.

On Microchip PIC microcontroller one of the following constants where the Postscaler Rate Select bits
are in the range of 1 to 16.

Postcaler Value Use Numeric Constant

1:1 Postscaler 0

1:2 Postscaler 1

1:3 Postscaler 2

1:4 Postscaler 3

1:5 Postscaler 4

1:6 Postscaler 5

1:7 Postscaler 6

1:8 Postscaler 7

1:9 Postscaler 8

1:10 Postscaler 9

1:11 Postscaler 10

1:12 Postscaler 11

1:13 Postscaler 12

728

Postcaler Value Use Numeric Constant

1:14 Postscaler 13

1:15 Postscaler 14

1:16 Postscaler 15

InitTimer7

Syntax:

InitTimer7 source, prescaler

Command Availability:

Available on Microchip microcontrollers with a Timer 7 module.

Explanation:

InitTimer7 will set up timer 7.

Parameters are required as detailed in the table below:

729

Paramet
er

Description

source The clock source for this specific timer. Can be either Osc, Ext or ExtOsc where:
Osc is an internal oscillator.
Ext is an external oscillator.

Osc - Selects the clock source in use, as set by the microcontroller specific configuration
(fuses or #config). This could be an internal clock or an external clock source (external
clock sources are typically attached to the XTAL pins). Ext - Selects the clock source
attached to a specific exernal interrupt input port. This allows a different clock frequency
than the main clock to be used, such as 32.768 kHz crystals commonly used for real time
circuits.

ExtOsc is an external oscillator and only available on a Microchip PIC microcontroller.
Enhanced Microchip PIC microcontrollers with a dedicated TMRxCLK register support
additional clock sources. This includes, but limited to, the following devices: 16F153xx,
16F16xx, 16F188xx and 18FxxK40 Microchip PIC microcontroller series. On these devices
the clock source can be one of the following: Osc is an internal oscillator which is the same
source as FOSC4.
Ext is an external oscillator which is the same source as TxXKIPPS.
ExtOsc is an external oscillator which is the same source as SOSC.
FOSC is an internal oscillator which is the Frequency of the OSCillator.
FOSC4 is an internal oscillator which is the Frequency of the OSCillator divided by 4.
SOSC is an external oscillator which is the same source as SOSC.
MFINTOSC is an internal 500KHz internal clock oscillator.
LFINTOSC is an internal 31Khz internal clock oscillator.
HFINTOSC is an oscillator as specified within the datasheet for each specific microcontroller.
TxCKIPPS is an oscillator input on TxCKIPPS Pin.

prescaler The value of the prescaler for this specific timer. See the tables below for permitted vales
for Microchip PIC or the Atmel AVR microcontrollers.

When the timer overflows an interrupt event will be generated. This interrupt event can be used in
conjunction with On Interrupt to run a section of code when the interrupt event occurs.

Microchip PIC microcontrollers:

On Microchip PIC microcontrollers prescaler must be one of the following constants:

Prescaler Value Primary GCB Constant Constant Equates
to value

1:1 PS7_1 0

1:2 PS7_2 16

730

Prescaler Value Primary GCB Constant Constant Equates
to value

1:4 PS7_4 32

1:8 PS7_8 48

These correspond to a prescaler of between 1:2 and 1:8 of the oscillator (FOSC/4) speed. The prescaler
will apply to either the oscillator or the external clock input.

Supported in <TIMER.H>

InitTimer8

Syntax: (MicroChip PIC)

 InitTimer8 prescaler, postscaler

or, where you required to state the clock source, use the following

 InitTimer8 clocksource, prescaler, postscaler

Syntax: (Atmel AVR)

 InitTimer8 source, prescaler

Command Availability:

Available on all microcontrollers with a Timer 8 module. As shown above a Microchip microcontroller
can potentially support two types of methods for initialisation.

The first method is:

 InitTimer8 prescaler, postscaler

This the most common method to initialise a Microchip microcontroller timer. With this method the
timer has only one possible clock source, this mandated by the microcontrollers architecture, and that
clock source is the System Clock/4 also known as FOSC/4.

The second method is much more flexible in term of the clock source. Microcontrollers that support

731

this second method enable you to select different clock sources and to select more prescale values. The
method is shown below:

 InitTimer8 clocksource, prescaler, postscaler

How do you determine which method to use for your specific Microchip microcontroller ?

The timer type for a Microchip microcontroller can be determined by checking for the existance of a
T2CLKCON register, either in the Datasheet or in the GCBASIC "dat file" for the specific device.

If the Microchip microcontroller DOES NOT have a T2CLKCON register then timers 2/4/6/8 for that
specific microcontroller chip use the first method, and are configured using:

 InitTimer8 (PreScale, PostScale)

If the microcontroller DOES have a T2CLKCON register then ALL timers 2/4/6/8 for that specific
microcontroller chip use the second method, and are configured using:

 InitTimer8 (Source,PreScale,PostScale)

The possible Source, Prescale and Postscale constants for each type are shown in the tables
below. These table are summary tables from the Microchip datasheets.

Period of the Timers

The Period of the timer is determined by the system clock speed, the prescale value and 8-bit value in
the respective timer period register. The timer period for timer 8 is held in register PR8.

When the timer is enabled, by starting the timer, it will increment until the TMR8 register matches the
value in the PR8 register. At this time the TMR8 register is cleared to 0 and the timer continues to
increment until the next match, and so on.

The lower the value of the PR8 register, the shorter the timer period will be. The default value for the
PR8 register at power up is 255.

The timer interrupt flag (TMR8IF) is set based upon the number of match conditions as determine by
the postscaler. The postscaler does not actually change the timer period, it changes the time between
interrupt conditions.

Timer constants for the MicroChip microcontrollers

Parameters for this timer are detailed in the tables below:

732

Paramete
r

Description

clocksourc
e

This is an optional parameter. Please review the datasheet for specific usage.

Source can be one of the following numeric values:

1 equates to OSC (FOSC/4). The default clock source

6 equates to EXTOSC same as SOSC
5 equates to MFINTOSC
4 equates to LFINTOSC
3 equates to HFINTOSC
2 equates to FOSC
1 equates to FOSC/4 same as OSC
0 equates to TxCKIPPS same as EXTOSC and EXT (T1CKIPPS)
Other sources may be available but can vary from microcontroller to microcontroller and
these can be included manually per the specific microcontrollers datasheet.

prescaler The value of the prescaler for this specific timer. See the tables below for permitted
values.

postscaler The value of the postscaler for this specific timer. See the tables below for permitted
values.

Table 1 shown above

prescaler can be one of the following settings:

Prescaler Value Primary GCB Constant Constant Equates
to value

1:1 PS8_1 0

1:4 PS8_4 1

1:16 PS8_16 2

1:64 PS8_64 3

Note that a 1:64 prescale is only avaialable on certain midrange microcontrollers. Please refer to the
datasheet to determine if a 1:64 prescale is supported by a spectific microcontroller.

postscaler slows the rate of the interrupt generation (or WDT reset) from a counter/timer by dividing it
down.

733

On Microchip PIC microcontroller one of the following constants where the Postscaler Rate Select bits
are in the range of 1 to 16.

Postcaler Value Use Numeric Constant

1:1 Postscaler 0

1:2 Postscaler 1

1:3 Postscaler 2

1:4 Postscaler 3

1:5 Postscaler 4

1:6 Postscaler 5

1:7 Postscaler 6

1:8 Postscaler 7

1:9 Postscaler 8

1:10 Postscaler 9

1:11 Postscaler 10

1:12 Postscaler 11

1:13 Postscaler 12

1:14 Postscaler 13

1:15 Postscaler 14

1:16 Postscaler 15

InitTimer10

Syntax:

InitTimer10 prescaler, postscaler

Command Availability:

Available on Microchip microcontrollers with a Timer 10 module.

Explanation:

Parameters for this timer are detailed in the table below:

734

Paramete
r

Description

prescaler The value of the prescaler for this specific timer. See the tables below for permitted
values.

postscaler The value of the postscaler for this specific timer. See the tables below for permitted
values.

prescaler can be one of the following settings:

Prescaler Value Primary GCB Constant Constant Equates
to value

1:1 PS10_1 0

1:4 PS10_4 1

1:16 PS10_16 2

1:64 PS10_64 3

Note that a 1:64 prescale is only avaialable on certain midrange microcontrollers. Please refer to the
datasheet to determine if a 1:64 prescale is supported by a spectific microcontroller.

postscaler slows the rate of the interrupt generation (or WDT reset) from a counter/timer by dividing it
down.

On Microchip PIC microcontroller one of the following constants where the Postscaler Rate Select bits
are in the range of 1 to 16.

Postcaler Value Use Numeric Constant

1:1 Postscaler 0

1:2 Postscaler 1

1:3 Postscaler 2

1:4 Postscaler 3

1:5 Postscaler 4

1:6 Postscaler 5

1:7 Postscaler 6

735

Postcaler Value Use Numeric Constant

1:8 Postscaler 7

1:9 Postscaler 8

1:10 Postscaler 9

1:11 Postscaler 10

1:12 Postscaler 11

1:13 Postscaler 12

1:14 Postscaler 13

1:15 Postscaler 14

1:16 Postscaler 15

InitTimer12

Syntax:

InitTimer12 prescaler, postscaler

Command Availability:

Available on Microchip microcontrollers with a Timer 12 module.

Explanation:

Parameters for this timer are detailed in the table below:

Paramete
r

Description

prescaler The value of the prescaler for this specific timer. See the tables below for permitted
values.

postscaler The value of the postscaler for this specific timer. See the tables below for permitted
values.

prescaler can be one of the following settings:

736

Prescaler Value Primary GCB Constant Constant Equates
to value

1:1 PS12_1 0

1:4 PS12_4 1

1:16 PS12_16 2

1:64 PS12_64 3

Note that a 1:64 prescale is only avaialable on certain midrange microcontrollers. Please refer to the
datasheet to determine if a 1:64 prescale is supported by a spectific microcontroller.

postscaler slows the rate of the interrupt generation (or WDT reset) from a counter/timer by dividing it
down.

On Microchip PIC microcontroller one of the following constants where the Postscaler Rate Select bits
are in the range of 1 to 16.

Postcaler Value Use Numeric Constant

1:1 Postscaler 0

1:2 Postscaler 1

1:3 Postscaler 2

1:4 Postscaler 3

1:5 Postscaler 4

1:6 Postscaler 5

1:7 Postscaler 6

1:8 Postscaler 7

1:9 Postscaler 8

1:10 Postscaler 9

1:11 Postscaler 10

1:12 Postscaler 11

1:13 Postscaler 12

1:14 Postscaler 13

1:15 Postscaler 14

737

Postcaler Value Use Numeric Constant

1:16 Postscaler 15

Settimer

Syntax:

 Settimer timernumber, byte_value

 Settimer timernumber, word_value

Command Availability:

Available on all microcontrollers with a Timer modules.

Explanation:

Settimer will set the value of the specified timer with either byte value or a word value. 8-bit timers use
a byte value. 16-bit timers use a word value.

Settimer can be used on-the-fly, so there is no requirement to stop the timer first.

Refer to the datasheet for timer specific information.

Example:

This example shows the operation of setting two timers - is not intended as a meaningful solution.

738

 #chip 16f877a, 4
 On Interrupt Timer1Overflow call Overflowed
 Set PORTB.0 On

 InitTimer1 Osc, PS1_8
 SetTimer 1, 1
 StartTimer 1

 InitTimer2 PS2_16, PS2_16
 SetTimer 2, 255
 StartTimer 2

 'Manually set Timer2Overflow to create a second event
 'this will event will be handled by the Interrupt sub routine
 TMR2IE = 1
 end

 Sub Interrupt
 Set PORTB.2 On
 TMR2IF = 0
 End Sub

 Sub Overflowed
 Set PORTB.1 On
 TMR1IF = 0
 End Sub

Supported in <TIMER.H>

StartTimer

Syntax:

 StartTimer TimerNo

Command Availability:

Available on all microcontrollers with a Timer module.

Explanation:

StartTimer is used to start the specified timer.

Timer 0:

Please refer to the datasheet to determine if Timer 0 on specific Microchip PIC microcontroller can be

739

started and stopped with starttimer and stoptimer. If the Microchip PIC microcontroller has a register
named "T0CON" then it supports stoptimer and starttimer.

On Microchip PIC 18(L)Fxxx microcontrollers Timer 0 can be started with starttimer.
On Microchip PIC baseline and midrange microcontrollers starttimer (and stoptimer) has no effect
upon Timer 0.

Example:

This example will measure that time that a switch is depressed (or on) and will write the results to the
EEPROM.

 #chip 16F819, 20
 #define Switch PORTA.0

 Dir Switch In
 DataCount = 0

 'Initilise Timer 1
 InitTimer1 Osc, PS1_8

 Dim TimerValue As Word

 Do
 ClearTimer 1
 Wait Until Switch = On
 StartTimer 1
 Wait Until Switch = Off
 StopTimer 1

 'Read the timer
 TimerValue = Timer1

 'Log the timer value
 EPWrite(DataCount, TimerValue_H)
 EPWrite(DataCount + 1, TimerValue)
 DataCount += 2
 Loop

Supported in <TIMER.H>

740

StopTimer

Syntax:

 StopTimer TimerNo

Command Availability:

Available on all microcontrollers with a Timer modules. Explanation:

On the Microchip PIC 18(L)Fxxx microcontrollers Timer 0 can be stopped with stopttimer.
With respect to Timer 0 on the Microchip PIC baseline and midrage range of microcontrollers
stoptimer (and starttimer) has no effect as Timer 0.

Example:

This example will measure that time that a switch is depressed (or on) and will write the results to the
EEPROM.
The example shows how to stop a timer when not in use.

741

 #chip 16F819, 20
 #define Switch PORTA.0

 Dir Switch In
 DataCount = 0

 'Initilise Timer 1
 InitTimer1 Osc, PS1_8

 Dim TimerValue As Word

 Do
 ClearTimer 1
 Wait Until Switch = On
 StartTimer 1
 Wait Until Switch = Off
 StopTimer 1

 'Read the timer
 TimerValue = Timer1

 'Log the timer value
 EPWrite(DataCount, TimerValue_H)
 EPWrite(DataCount + 1, TimerValue)
 DataCount += 2
 Loop

Supported in <TIMER.H>

Reading Timers

GCBASIC has the following functions to read the current timer value. They are:

 Timer0()
 Timer1()
 Timer2()
 Timer3()
 Timer4()
 Timer5()
 Timer6()
 Timer7()
 Timer8()
 Timer10()
 Timer12()

742

Note that these functions should only be used to read the timer value. To write the timer value,
settimer should be used.

Not all of these functions are available on all microcontrollers. For example, if a microcontrollers has
three timers, then typically only Timer0, Timer1 and Timer2 will be available.

Please refer to the datasheet for your microcontroller to determine the supported timer numbers, and
if a specific timer is 8-bit or 16-bit.

SMT Timers

The Signal Measurement Timer (SMT) capability is a 24-bit counter with advanced clocking and gating
logic, which can be configured for measuring a variety of digital signal parameters such as pulse
width, frequency and duty cycle, and the time difference between edges on two signals.

Syntax:

 SETSMT1PERIOD (4045000) ' 1.000s period
 ' a perfect internal clock would be 4000000

 SETSMT2PERIOD (9322401) ' 4.600s period

 InitSMT1(SMT_FOSC,SMTPres_1)
 InitSMT2(SMT_FOSC4,SMTPres_8)

 On Interrupt SMT1Overflow Call yourSMT1InterruptHandler
 On interrupt SMT2Overflow Call yourSMT1InterruptHandler

 StartSMT1
 StartSMT2

Command Availability:

Available on Microchip microcontrollers with the SMT timer module.

This command set supports the use of the SMT as a 24-bit timer only.

Microchip PIC Microcontrollers have either 1 or 2 Signal Measurement Timers (SMT). A 24-bit timer
allows for very long timer periods/high resolution and can be quite useful for certain applications.
 SMT timers support multiple clock sources and prescales. Interrupt on overflow/match is also
supported.

SMT timers will "overflow" when the 24-bit timer value "matches" the 24-bit period registers.

The timer period can be precisely adjusted/set by writing a period value to the respective period
register for eact timer.

743

The maximum period is achieved by a period register value of 16,777,215. 16,777,215 is the default
value at POR. The timer period is also affected by the ChipMhz, TimerSource and Timer Prescale.

The library supports "normal" timer operation of SMT1/SMT2. The library does not support the
advanced signal measurement features.

Explanation:

Commands are detailed in the table below:

Command Description Example

InitSMT1(
Source,Presscaler
)

Source can be one of the below:
SMT_AT1_perclk equates to 6
SMT_MFINTOSC equates to 5 (500KHz)
SMT_MFINTOSC_16 equates to 4 (500Khz / 16)
SMT_LFINTOSC equates to 3 (32Khz)
SMT_HFINTOSC equates to 2
SMT_FOSC4 equates to 1 (FOSC/4)
SMT_FOSC equates to 0

Prescaler can be one of the following:
SMTPres_1 equates to 1:1
SMTPres_2 equates to 1:2
SMTPres_4 equates to 1:4
SMTPres_8 equates to 1:8

InitSMT1(SMT_FOSC,
SMTPres_1)

InitSMT2(
Source,Presscaler
)

Source can be one of the below:
SMT_AT1_perclk equates to 6
SMT_MFINTOSC equates to 5 (500KHz)
SMT_MFINTOSC_16 equates to 4 (500Khz / 16)
SMT_LFINTOSC equates to 3 (32Khz)
SMT_HFINTOSC equates to 2
SMT_FOSC4 equates to 1 (FOSC/4)
SMT_FOSC equates to 0

Prescaler can be one of the following:
SMTPres_1 equates to 1:1
SMTPres_2 equates to 1:2
SMTPres_4 equates to 1:4
SMTPres_8 equates to 1:8

InitSMT2(SMT_FOSC4
,SMTPres_8)

ClearSMT1 Clears the timer. No parameter required. ClearSMT1

ClearSMT Clears the timer. No parameter required. ClearSMT2

SetSMT1(
TimerValue)

Sets the timer to the specific value. The value can be 1 to
16777215

SETSMT1(4045000)

744

Command Description Example

SetSMT2(
TimerValue)

Sets the timer to the specific value. The value can be 1 to
16777215

SETSMT2(4045000)

StopSMT1 Stops the timer. No parameter required. StopSMT2

StopSMT2 Stops the timer. No parameter required.

StartSMT1 Starts the timer. No parameter required. StartSMT1

StartSMT2 Starts the timer. No parameter required. StartSMT2

SetSMT1Period (
PeriodValue)

Sets the timer period to the specific value. The value can be 1
to 16777215

SETSMT1PERIOD(4045
000)

SetSMT2Period (
PeriodValue)

Sets the timer period to the specific value. The value can be 1
to 16777215

SETSMT1PERIOD(9322
401)

Example 1 (Microchip Only):

This example will ..

 #Chip 16F18855, 32

 #option explicit
 #Include <SMT_Timers.h>
 #config CLKOUTEN_ON

 '' -------------------LATA-----------------
 '' Bit#: -7---6---5---4---3---2---1---0---
 '' LED: ---------------|D5 |D4 |D3 |D1 |-
 ''---
 ''
 #define LEDD2 PORTA.0
 #define LEDD3 PORTA.1
 #define LEDD4 PORTA.2
 #define LEDD5 PORTA.3
 #define Potentiometer PORTA.4

 Dir LEDD2 OUT
 Dir LEDD3 OUT
 Dir LEDD4 OUT
 Dir LEDD5 OUT
 DIR Potentiometer In

745

 SETSMT1PERIOD (4045000) ' 1.000s periodwith the parameters of SMT_FOSC and
SMTPres_1 within the clock variance of the interclock
 ' a perfect internal clock would be 4000000

 SETSMT1PERIOD (9322401) ' 4.600s period with the parameters of SMT_FOSC4
and SMTPres_8

 InitSMT1(SMT_FOSC,SMTPres_1)
 InitSMT2(SMT_FOSC4,SMTPres_8)

 On Interrupt SMT1Overflow Call BlinkLEDD2
 On interrupt SMT2Overflow Call BlinkLEDD3

 StartSMT1
 StartSMT2

 Do
 '// Waiting for interrupts

 LOOP

 Sub BlinkLEDD2
 LEDD2 = !LEDD2
 End SUB

 Sub BlinkLEDD3
 LEDD3 = !LEDD3
 End SUB

Supported in <SMT_Timers.h>

746

Variables Operations
This is the Variables Operations section of the Help file. Please refer the sub-sections for details using
the contents/folder view.

Using Variables

Explaination

Using and accessing bytes within word and long numbers etc may be required when you are creating
your solution. This can be done with some ease.

Example 1:

You can access the bytes within word and longs variables using the following as a guide using the
Suffixes _H, _U and _E

 Dim workvariable as word
 workvariable = 21845
 Dim lowb as byte
 Dim highb as byte
 Dim upperb as byte
 Dim lastb as byte

 lowb = workvariable
 highb = workvariable_H
 upperb = workvariable_U
 lastb = workvariable_E

To further explain, where

 Dim rB as Byte
 Dim sW as Word

To extract the bytes from a WORD of 16 bits use the Suffix _H

 'To use the bits 7-0 [lower byte] in the Word variable sW
 rB = sW

 'For bits 15-8 [upper byte] in the Word variable sW, use sw_H
 rB = sW_H

747

To extract the bytes from a LONG of 32 bits use the Suffixes _H, _U and _E, where

 Dim rB as Byte
 Dim tL as Long

 ‘ For bits 7-0 [lowest byte #0] in Long variable tL
 rB = tL

 ‘ For bits 15-8 [lower middle byte #1] in Long variable tL
 rB = tL_H

 ‘ For bits 23-16 [upper middle byte #2] in Long variable tL
 rB = tL_U

 ‘ For bits 31-24 [highest byte #3] in Long variable tL
 rB = tL_E

To extract nibbles from the variable rB

 lower_nibble = rB & 0x0F
 upper_nibble = (rB & 0xF0) / 16

Example 2:

Assigning values to Word and Long variables via the the Byte variable (the Least Significant Byte [.lsb])
of the same Word and Long variable.

Because a Long (or Word) variable and the Least Significant Byte, of the variable, have the same
variable assignments to specific byte elements (_e, _u and _h) assignment must be appropriate to the
element.

The code below uses a Long variable but the same principle is used for a Word.

Assigning two values, a byte and a word constant value, to the variable tL to compare resulting impact
on Long variable.

748

 Dim tL as Long

 tL = 255 'All bits of the value 255 will reside in the lowest byte of the Long
variable tL
 tL = 286 'This assignment will flow into tL_H where tL_H =1 and tl=30.

Assigning values to specific elements of a Long variable.

 'Assign value to specific elements
 tL_E = 0xF7
 tL_U = 0xC5
 tL_H = 0xE3

 'is same as the following assignment, we show the use of casting for clarification
only.
 [Long] tL = 0xF7C5E300 The lower byte (tL) is empty (zero).

 'or, treat the Long as a byte and assign a byte.
 [byte]tL = [byte]0xA4

Assigning values to the byte element of a long variable.

 'This will assign the lowest byte with 0xA4 but this assignment will also clear the
upper 3 byte elements of the long variable.
 tL = 0xA4

 'To assign the lowest byte
 tL = (tL and 0xffffff00) + 0xA4 'Wwill preserve the upper bytes and ensure the
lowest byte is assigned correctly.

A method to check a variable is assigned as expected is to use HserPrint and HserPrint hex(), as
follows:

 ' HserPrint hex() only prints one byte so we need to handle the four elements
 HserPrint " Print tL _E, tL_U, tL_H & tL as hex"
 HserPrint hex (tL_E)
 HserPrint hex (tL_U)
 HserPrint hex (tL_H)
 HserPrint hex (tL)
 HserPrintCRLF
 HserPrint "Variable tL = "
 HserPrint tL

749

The user code above will result in an output as follows:

 Print tL _E, tL_U, tL_H & tL as hexF7C5E3A4
 Variable tL = 4156941220

More on setting Variables and Constants

Explanation

Within GCBASIC you can use regular variable assignments. But, you can also use C like maths
assignments.

The following methods are also supported.

 GLCDPrintLoc += 6
 CharCode -= 15
 CharCode++
 CharCode---

Within GCBASIC you can define binary, hexidecimal and decimal constants, see Constants. Please note
what is and what is not support with respect to assigning numbers to constants. An example program
examines what is supported.

750

 #chip 16F88, 4
 #config Osc = MCLRE_OFF

 ' All these work
 #define Test1 0b11111111
 #define Test2 0B11111111
 #define Test3 255
 #define Test4 0xFF
 #define Test5 0xff
 #define Test6 0Xff

 # Proof - select each option one in turn
 dir porta Out

 porta = test1
 porta = test2
 porta = test3
 porta = test4
 porta = test5
 porta = test6

You can assigned values/numbers with all the methods shown above (for constants and variables) but
please be aware that you must Use '0' not '00'. One zero equates to zero and two zeros will give you an
unassigned variable.

Constants:

A few critical constants are defined within GCBASIC , you can re-use these constants. They include:

 #define ON 1 ' These are defined in System.h
 #define OFF 0
 #define TRUE 255
 #define FALSE 0

 #define OSC = 1 ' These are defined in TIMER.H
 #define EXT = 2 ' and, are used by InitTimer0 command
 #define EXTOSC = 3

Setting Variables

Syntax:

751

 Variable = data

Explanation:
Variable will be set to data.
data can be either a fixed value (such as 157), another variable, or a sum.
All unknown byte variables are assigned Zero. A variable with the name of Forever is not defined by
GCBASIC and therefore defaults to the value of zero.
If data is a fixed value, it must be an integer between 0 and 255 inclusive.
If data is a calculation, then it may have any of the following operands:

 + (add)
 - (subtract, or negate if there is no value before it)
 * (multiply)
 / (divide)
 % (modulo)
 & (and)
 | (or)
 # (xor)
 ! (not)
 = (equal)
 <> (not equal)
 < (less than)
 > (greater than)
 <= (less than or equal)
 >= (more than or equal)

The final six operands are for checking conditions. They will return FALSE (0) if the condition is false,
or TRUE (255) if the condition is true.
The And, Or, Xor and Not operators function both as bitwise and logical operators.
GCBASIC understands order of operations. If multiple operands are present, they will be processed in
this order:

 Brackets
 Unary operations (not and negate)
 Multiply/Divide/Modulo
 Add/Subtract
 Conditional operators
 And/Or/Xor

752

There are several modes in which variables can be set. GCBASIC will automatically use a different
mode for each calculation, depending on the type of variable being set. If a byte variable is being set,
byte mode will be used; if a word variable is being set, word mode will be used. If a byte is being set
but the calculation involves numbers larger than 255, word mode can be used by adding [WORD] to
the start of one of the values in the calculation. This is known as casting - refer to the Variables article
for more information.

And with other operations

The order of operations, comparison operations have a higher precedence than boolean
operations. GCBASIC behaves the same way as most other languages. Source code like this (randomly
taken from glcd_ili9326.h) works.

if GLCDfntDefaultSize = 2 and CurrCharRow = 7 then

It is an easy mistake to compare values and get the precendent incorrect. Generally, if you can use an
individual bit check, that is generally the best way to go. These are a lot simpler for the compiler to
deal with and result in much nicer assembly.

This works using the correct order of precendence.

 if (H_Byte & 0x10) = 0x10 Then ...

 'or, using the individual bit check to do the same
 if H_Byte.4 Then

This will fail as the order of precendence as shown below.

 if H_Byte & 0x10 = 0x10 Then ...

 'the code above equates. This is not achieve the testing of the H_byte.4
 if H_Byte & (0x10 = 0x10) Then ...

Divide or division

GCBASIC support division.

When using division you will get accurate results, within the limitations of integer numbers, by
completing any multiplication first and the division last. But, you may have issues with variables
overflowing - ensure your variable type are correct for the calculation type.

If you that calculation a division, the compiler will use the long division routine, if the value may

753

overflow, and then fit the result into a word. This code provides the correct result, again within the
limitations of integer numbers:

 dim L1s as word
 dim L1p as word
 L1s = 6547200 / L1p

Division also sets the global system variable SysCalcTempX to the remainder of the division. However
the following simple rules apply.

• If both of the parameters of the division are constants, the compiler will do the calculation itself
and use the result rather than making the microcontroller work out the same thing every time. So,
if there are two constants used, the microcontroller division routine does not get used, and
SysCalcTempX does not get set.

• If either of the parameters of the division are variables, the compiler will ensure the
microcontroller does the calculation as the result could be different every time. So, in the this case
the microcontroller division routine does get used, and SysCalcTempX is set.

If you prefer, you can add Let to the start of the line. It will not alter the execution of the program, but
is included for those who are used to including it in other BASIC dialects.

Example:

 'This program is to illustrate the setting of variables.
 Chipmunk = 46 'Sets the variable Chipmunk to 46
 Animal = Chipmunk 'Sets the variable Animal to the value of the variable Chipmunk
 Bear = 2 + 3 * 5 'Sets the variable Bear to the result of 2 + 3 * 5, 17.
 Sheep = (2 + 3) * 5 'Sets the variable Sheep to the result of (2 + 3) * 5, 25.
 Animal = 2 * Bear 'Sets the variable Animal to twice the value of Bear.

 LargeVar = 321 'LargeVar must be set as a word - see DIM.
 Temp = LargeVar / [WORD]5 'Note the use of [WORD] to ensure that the calculation is
performed correctly

Setting Explicit Bits of a Variable/Register:

GCBASIC supports the method setting a specific bit of a variable or register. Use the following method:

754

 'variable.bit method
 myByteVariable.0 = 1 'will set bit 0 to 1
 myByteVariable.1 = 0 'will set bit 1 to 0
 myByteVariable.2 = 1 'will set bit 2 to 1

To set more than one bit in one command GCBASIC supports the bits method.

GCBASIC also supports setting specific bits of a variable or register. Use the following method:

 'variable.bitS method
 SPLLEN, IRCF3, IRCF2, IRCF1, IRCF0 = b'01111'
 ' would generate ASM [for your specific microcontroller like the following.
 ' bcf OSCTUNE,PLLEN,ACCESS
 ' bsf OSCCON,IRCF2,ACCESS
 ' bsf OSCCON,IRCF1,ACCESS
 ' bsf OSCCON,IRCF0,ACCESS

This method is limited to literal values. You cannot use value from another variable as the setting
value (at v0.98.00).

Setting Explicit Bits of a Variable/Register with Error Handling

To set more than one bit in one command GCBASIC supports the bits method.

GCBASIC also supports setting specific bits of a variable or register with error handling. Use this
method to prevent errors when a specified bit does not exist.

The [canskip] prefix will handle the error condition when a specific bit or specific bits do not exist.
The following example shows the usage.

 [canskip] SPLLEN, IRCF3, IRCF2, IRCF1, IRCF0 = b'01111'

This method is limited to literal values. You cannot use value from another variable as the setting
value (at v0.98.00).

This example shows how the error handler compares to not have the [canskip] prefix

755

 ' Of these two lines, only the first compiles:
 [canskip] SPLLEN, IRCF3, IRCF2, IRCF1, IRCF0 = b'01111' 'first line with error
handler
 SPLLEN, IRCF3, IRCF2, IRCF1, IRCF0 = b'01111' 'second line with no
error handler

 'Second line produces this message:
 'samevar.gcb (16): Error: Bit IRCF3 is not a valid bit and cannot be set

Setting a String - set a string with Escape characters

An example showing how to set a string to an escape sequence for an ANSI terminal. You can
`Dim`ension a string and then assign the elements similar to setting array elements.

 dim line2 as string
 line2 = 27, "[", "2", "H", 27, "[","K"
 HSerPrint line2

Will send the following to the terminal. <esc>[2H<esc>[K

For more help, see: Variables

Variable Lifecycle

Explanation

Within GCBASIC you can use variables. This section details the Variable Lifecycle when using variables.

Variable rules - with #Option Explicit

As shown below in the rule without #Option Explicit but ALL variables MUST be defined including
bytes variables.

Variable rules - without #Option Explicit

Scope - every variable is global from an addressing/usage point of view.

Once a variable is defined, and then the variable it is used the variable persists.

Aliasing - You can reduce memory usage by Aliasing. Remember all variables are global so you must
be careful.

756

If there are two variables with the same name, they will be placed in the same memory location. You
can reuse the same variable name in two subs/functions, and you can make the variables different
types, but writing to the variable in one sub will overwrite the value from the other sub, see the
example below.

As a general guide define any shared variables near the start of the program for easier readability.

All variables should be initialised with a desired initialisation value. Do not assume the initialisation
value is Zero.

Variables local to particular subroutines are not implemented.

Specific rules to spefic variable types

All variables are global. Bit variables defined in subs/function are global.

Byte variables do not need to be defined using the DIM statement. See #Option Explicit above. Just to
clarify byte is default type, this means:

 Dim MainVar As Byte is unnecessary.
 MainVar = 128 automatic defines the MainVar variable

Bit, Word, Longs, Integers and Strings variables must be defined.

All variables are global, but, if they are defined inside a particular subroutine then their type is not, see
the example below:

Example code:

757

 Dim MainVar As Byte
 Dim OtherVar As Word

 MainVar = 128
 OtherVar = 514

 DemoSub
 'At this point:
 'MainVar is a byte, value 128
 'OtherVar is a word, value 514
 'Counter is a byte, value 2
 '(Byte is default type, but location shared with that of Counter in DemoSub. High
byte ignored)

 Sub DemoSub
 Dim Counter As Word
 Counter = 2050
 'At this point:
 'MainVar and OtherVar as byte and word, as in main routine
 'Counter is a word, value 2050
 End Sub

In DemoSub, Counter is a word. But anywhere else in the program it is a byte unless otherwise
specified. If the variable is used/read in the main routine, it will be treated as a byte, and only the low
8 bits will be returned. In this example the low 8 bits of 2050 are 2.

The main reason for keeping the type inside the subroutine was for the following scenario: A
subroutine uses a temporary variable of type byte, and relies on it overflowing.

Another subroutine uses a temporary variable of the same name, but of word type.

If the first subroutine is already in the program, and then the second one is added, the behaviour of the
first one will not change at all due to the addition of the second one.

The handling of variable types using this method minimises the size of the generated assembly code.

For more help, see Option Explicit

Dim

Syntax:

758

 For Variables > 1 byte:
 Dim variable[, variable2 [, variable3]] [As type] [Alias othervar [, othervar2]]

 'or

 Dim variable[, variable2 [, variable3]] [As type] [At location]

 For Arrays:
 Dim array(size) [As type] [At location]

 For String:
 Dim string [* _size] [At location]

Explanation:

Dim has two uses: It can be used to define 1) variables of many types and 2) arrays.

Command Availability:

Available on all microcontrollers.

The Dim variable command is used to instruct GCBASIC to allocate variables or to create alternate
names for existing variables (using Alias) or to create variables at a specific memory location (using
At).

The Dim array command also sets up array variables. The maximum array size is determined by the
parameter size is dynamically allocated by the compiler and depends on the specific chip used, as well
as the complexity of the program.

The limit on array size varies dependent on the chip type. See the Maximum Array Size section in
Arrays for more information.

type specifies the type of variable that is to be created. Different variable types can hold values over
different ranges, and use different amounts of RAM. See the Variables Types article for more
information.

When multiple variables are included on the one line, GCBASIC will set them all to the type that is
specified at the end of the line. If there is no type specified, then GCBASIC will make the variable a byte.

Alias creates a variable using the same memory location as one or more other variables. It is mainly
used internally in GCBASIC to treat system variables as a word. For example, this command is used to
create a word variable, made up from the two memory locations used to store the result of an A/D
conversion. `Alias` is mutually exclusive to At and therefore Alias and At on the same declaration line
will cause an compiler error.

759

Alias does not support BIT variable. For the correct method to address `BIT`s in a psuedo alias
method see the example program #2 below.

AT a variable can be placed at a specific location in the data memory of the chip using the At option.
 `location` will be used whether it is a valid location or not, but a warning will be generated if
GCBASIC has already allocated the memory, or if the memory does not appear to be valid. This can be
used for peripherals that have multi byte buffers in RAM. `At` is mutually exclusive to Alias and
therefore At and Alias on the same declaration line will cause an compiler error.

A String declared with a fixed size (numeric constant that can be evaluated at compile time) is a fixed
length string. It has no descriptor and it is not resized to fit its contents. If data overflows the size of the
string, the memory may be overwrtten. Fixed length strings are not NULL terminated, and they use
size + 1 bytes of space. String variable names need not end in a dollar sign $ as in other dialects of
BASIC.

 Dim ADResult As Word Alias ADRESH, ADRESL

Example 1:

 'This program will set up a array of ten bytes and a word variable

 dim DataList(10)
 dim Reading as word

 Reading = 21978
 DataList(1) = 15

 dim stringvariable as string

Example 2:

Use a constant, or a number of constants, to refer to specific BIT`s of an exist `BYTE variable. A
psuedo ALIAS for BIT variables.

760

 // Thank you Ccin E Crout from the GCBASIC forum!!

 #Option Explicit
 #Chip 16F1825, 32

 Dim SerialByte As Byte
 #Define StatusReady SerialByte.0
 #Define StatusError SerialByte.1
 #Define StatusMotor SerialByte.2
 #Define StatusOkBut SerialByte.3
 #Define StatusUpBut SerialByte.4
 #Define StatusDnBut SerialByte.5
 #Define StatusLeBut SerialByte.6
 #Define StatusRiBut SerialByte.7

 SerialByte = 0 // This will address the specific byte

 Do
 SerialByte = SerialByte + 1
 If StatusReady = 1 Then // This will address the specific bit
 StatusError = 0 // This will address the specific bit
 End If
 If StatusError = 1 Then // This will address the specific bit
 StatusMotor = 0 // This will address the specific bit
 End If
 If StatusMotor = 1 Then // This will address the specific bit
 StatusOkBut = 0 // This will address the specific bit
 End If
 If StatusOkBut = 1 Then // This will address the specific bit
 StatusUpBut = 0 // This will address the specific bit
 End If
 If StatusUpBut = 1 Then // This will address the specific bit
 StatusDnBut = 0 // This will address the specific bit
 End If
 If StatusDnBut = 1 Then // This will address the specific bit
 StatusLeBut = 0 // This will address the specific bit
 End If
 If StatusLeBut = 1 Then // This will address the specific bit
 StatusReady = 0 // This will address the specific bit
 End If
 Loop

For more help, see: SerPrint articles as these articales show how to use Dim to create string variables
and Variables for more details in creating and managing strings lengths.

761

Alloc

About Alloc

Alloc creates a special type of variable - an array variant. This array variant can store values. The
values stored in this array variant must be of the same type.

Essentially, ALLOCate will reserve a memory range as described by the given layout that can be used as
a RAM buffer or as an array variant.

Layout:

 Dim variable_name as ALLOC * memory_size at memory_location

The allocated block of memory will not be initialized.

Example Usage:

 Dim my256bytebuffer as alloc * 256 at 0x2400

There is a pointer to allocated memory. Use @variable_name.

Example Pointer

 HSerPrint @my256bytebuffer

Extents

This method can be unsafe because undefined behaviour can result if the caller does not ensure that
buffer extents are not maintained. Buffer extents are 0 (zero) to the memory_size - 1

Example Extents:

 my256bytebuffer(0) = some_variable. Will address location 0x2400
 my256bytebuffer(255) = some_variable. Will address location 0x24FF ' the 256th byte
of the allocated memory

Implementers of ALLOC must ensure memory constraints remain true.

Safety

This method is unsafe because undefined behaviour can result if the caller does not ensure that buffer
extents are not maintained. If buffer extents are exceeded the program may address areas of

762

memory that have adverse impact on the operation of the microcontroller.

Examples of unsafe usage:

 my256bytebuffer(256) = some_variable. Will address location 0x2500 ' this is the
first byte of BUFFER RAM on the 18FxxQ43 chips... bad things may happen
 my256bytebuffer(65535) = some_variable. Will address location 0x123FF ' this is the
beyond the memory limit and the operation will write an SFR.

Example Program

The following example program shows the ALLOCation of a 256 byte buffer at a specific address. The
array variant is then populated with data and then shown on a serial terminal.

 ' Chip Settings and preamble
 #CHIP 18F27Q43
 #OPTION EXPLICIT

 'Generated by PIC PPS Tool for GCBASIC - this explicit to a specific chip
 #startup InitPPS, 85
 #define PPSToolPart 18f27q43

 Sub InitPPS

 'Module: UART pin directions
 Dir PORTC.6 Out ' Make TX1 pin an output
 'Module: UART1
 RC6PPS = 0x0020 'TX1 > RC6

 End Sub
 'Template comment at the end of the config file

 ' USART settings for USART1
 #DEFINE USART_BAUD_RATE 9600
 #DEFINE USART_TX_BLOCKING
 #DEFINE USART_DELAY 0

 '---------------------------
 ' Main Program

 #DEFINE BUFFERSIZE 256 ' gives range of 0 to 255

 'DIMension an ArrayVariant using ALLOC to create an ArrayVariant with the size of
BUFFERSIZE.
 'This array is created at memory location 0x2400.

763

 'This memory location is specific to this chip (you must ensure other
microcontrollers address are valid).

 Dim mybuffer1 as ALLOC * BUFFERSIZE at 0x2400

 'A data table
 Table myDataTable
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 0,1,2,3,4,5,6,7,8,9,0x0A,0X0B,0X0C,0X0D,0X0E,0X0F
 End Table

 Dim iLoop, tableDataValue, memoryDataValue as byte

 'These varaibles are ONLY used to demonstrate the showing of the allocated memory
address
 Dim mybuffer1startaddress, mybuffer1endaddress as word

 mybuffer1startaddress = @mybuffer1
 mybuffer1endaddress = mybuffer1startaddress + BUFFERSIZE - 1

 HSerPrintCRLF 2
 HSerPrint "Buffer test - 256 bytes "
 HSerPrint " at address: 0x"
 HSerPrint hex(mybuffer1startaddress_h)
 HSerPrint hex(mybuffer1startaddress)
 HSerPrint " to 0x"
 HSerPrint hex(mybuffer1endaddress_h)
 HSerPrint hex(mybuffer1endaddress)
 HSerPrintCRLF 2

 'Load buffer with table data
 for iLoop = 0 to 255
 ReadTable myDataTable, [word]iLoop+1, tableDataValue

764

 mybuffer1(iLoop) = tableDataValue
 next

 wait 100 ms

 HserPrint "Print dataDump array to serial terminal"
 HSerPrintCRLF
 for iLoop = 0 to 255
 HSerPrint leftpad(str(myBuffer1(iLoop)),3)
 If iLoop % 16 = 15 Then HSerPrintCRLF
 next

 Wait 100 ms
 HSerPrintCRLF
 HserPrint "Print memory to serial terminal using PEEK to get the memory location
byte value"
 HSerPrintCRLF
 for iLoop = 0 to 255
 memoryDataValue = PEEK (@myBuffer1+iLoop)
 HSerPrint leftpad(str(memoryDataValue) ,3)
 If iLoop % 16 = 15 Then HSerPrintCRLF
 next
 HSerPrintCRLF
 Wait 100 ms

For more help, see Declaring arrays with DIM

BcdToDec_GCB

Syntax:

 BcdToDec_GCB (ByteVariable)

Command Availability:

Available on all microcontrollers.

Support Bytes only.

Explanation:

Converts numbers from Binary Coded Decimal format to decimal.

You can add this function. Just add this to your GCBASIC program and then call it when you need it.

Example:

765

 Function BcdToDec(va) as byte
 BcdToDec=(va/16)*10+va%16
 End Function

Also see DecToBcd_GCB

DecToBcd_GCB

Syntax:

 DectoBcd(ByteVariable)

Command Availability:

Available on all microcontrollers.

Explanation:

Converts numbers from Decimal to Binary Coded Decimal format. Support Bytes only.

You can add this function. Just add this to your GCBASIC program and then call it when you need it.

Example:

 Function DecToBcd(va) as Byte
 DecToBcd=(va/10)*16+va%10
 End Function

Also see BcdToDec_GCB

Rotate

Syntax:

 Rotate variable {Left | Right} [Simple]

Command Availability:

Available on all microcontrollers.

Explanation:

The Rotate command will rotate variable one bit in a specified direction. The bit shifted will be placed

766

in the Carry bit of the Status register (STATUS.C). STATUS.C acts as a ninth bit of the variable that is being
rotated.

variable supports Bytes, Word and Long variables.

When a variable is rotated right, the bit in the STATUS.C location is placed into the MSB of the variable
being rotated, and the LSB of the variable is placed into STATUS.C location.

When rotated left the opposite occurs. The MSB of the variable is shifted to the STATUS.C bit and the
LSB of the variable will contain what was previously in the STATUS.C bit location.

This table shows the operation of the Rotate Left command

Command variable STATUS.C

Values at start: b'01110011' 0

Rotate Left b'11100110' 0

Rotate Left again b'11001100' 1

Rotate Left third time b'10011001' 1

As you may notice the STATUS.C bit added a 0 to the rotation. So this will take 9 shifts left to get back to
the original value.

Simple option

Many times you want to rotate the variable around like the STATUS.C bit wasn’t there so the MSB of the
variable fills the LSB of the variable on Rotate Left or the LSB fills the MSB on Rotate Right. That is
where the SIMPLE option comes in. It adds a hidden step that shifts the STATUS.C bit twice so the bit
moves from one end of the variable to the other.

Command variable STATUS.C

Values at start: b'01110011' 0

Rotate Left b'11100110' 0

Rotate Left again b'11001101' 1

Rotate Left third time b'10011011' 1

Notes: The carry is also called SREG bit C, or simply C flag on AVR.

In some cases the Status.C or C flag may already be set because of prior operations in your program.
Therefore, it may be necessary to clear the C flag before using Rotate. Use Set C Off before using the
Rotate command to clear the flag.

Example:

767

 'This program will use Rotate to show a chasing LED.
 '8 LEDs should be connected to PORTB, one on each pin.

 #chip 16F819, 8

 'Set port direction
 Dir PORTB Out

 'Set initial state of port (bits 0 and 4 on)
 PORTB = b'00010001'

 'Chase
 C = 0
 Do
 Rotate PORTB Right Simple
 Wait 250 ms
 Loop

Set

Syntax:

 Set variable.bit {On | Off}

Command Availability:

Available on all microcontrollers.

Explanation:

The purpose of the Set command is to turn individuals bits on and off.

The Set command is most useful for controlling output ports, but can also be used to set variables.

Often when controlling output ports, Set is used in conjunction with constants. This makes it easier to
adapt the program for a new circuit later.

Example:

768

 'Blink LED sample program for GCBASIC
 'Controls an LED on PORTB bit 0.

 'Set chip model and config options
 #chip 16F84A, 20

 'Set a constant to represent the output port
 #define LED PORTB.0

 'Set pin direction
 Dir LED Out

 'Main routine
 Do
 Set LED On
 Wait 1 sec
 Set LED OFF
 Wait 1 sec
 Loop

SWAP4

Syntax:

 SWAP4(VariableA)

Command Availability:

Available on all microcontrollers.

Support Bytes only.

Explanation:

A function that swaps (or exchanges) nibbles (or the 8 bits of a byte in nibbles).

Example:

769

 dim ByteVariable as Byte

 ' Set variable to 0x12
 ByteVariable = 0x12

 ByteVariable = Swap4(ByteVariable)

 HSerPrint hex(ByteVariable)

 ' Would return 0x21

SWAP

Syntax:

 SWAP(VariableA, VariableB)

Command Availability:

Available on all microcontrollers.

Support Bytes and Words only.

Explanation:

A function that swaps (or exchanges) one byte or word for another. SWAP support the use of byte and
word variables.

770

String Manipulation
This is the String Manipulation section of the Help file. Please refer the sub-sections for details using
the contents/folder view.

Asc

Syntax:

 bytevar= ASC(string, [position])

Command Availability:

Available on all microcontrollers

Explanation:

Returns the character code of the character at the specified position in a string.

ASC returns the character code of a particular character in the string. If the string is an ANSI string, the
returned value will be in the range of 0 to 255. This function DOES NOT support UNICODE.

The optional position parameter determines which character is to be checked. The first character is
one, the second two, etc. If the position parameter is missing, the first character is presumed.

CHR is the natural complement of ASC. CHR produces a one-character string corresponding to its ASCII.

Note:

If the string passed is null (zero-length) or the position is zero or greater than the length of the string
the returned value will be 0.

Example:

 charpos = ASC("ABCD") ' Returns 65

 charpos = ASC("ABCD", 2) ' Returns 66

For more help, see Chr

ByteToBin

Syntax:

771

 stringvar = ByteToBin(bytevar)

Command Availability:

Available on all microcontrollers

Explanation:

The ByteToBin function creates a string of a ANSI (8-byte) characters. The function converts a number
to a string consisting of ones and zeros that represents the binary value.

Note: Supports BYTE variables only. For WORD variables use WordToBin

Example:

 string = ByteToBin(1) ' Returns "00000001"

 string = ByteToBin(254) ' Returns "11111110"

For more help, see WordToBin

ByteToHex

Syntax:

 stringvar = ByteToHex(number)

Command Availability:

Available on all microcontrollers

Explanation:

The Hex function will convert a byte number into hexadecimal format. The input number should be a
byte variable, or a fixed number between 0 and 255 inclusive. After running the function, the string
variable stringvar will contain a 2 digit hexadecimal number.

Example:

772

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Send EEPROM data over serial connection
 'Uses Hex to display as hexadecimal
 For CurrentLocation = 0 to 255
 'Send location
 HSerPrint ByteToHex(CurrentLocation)
 HSerPrint ":"
 'Read byte and send
 EPRead CurrentLocation, CurrByte
 HSerPrint Hex(CurrByte)
 'Send carriage return/line feed
 HSerPrintCRLF
 Next

See Also WordToHex,LongToHex, IntegerToHex, SingleToHex

ByteToString

Syntax:

 stringvar = ByteToString(byte_variable) 'supports byte.

Command Availability:

Available on all microcontrollers

Explanation:

The ByteToString function will convert a number into a string. number can be any byte variable, or a
fixed number constant between 0 and 255 inclusive. For Word number use WordToString(), Long
numbers use LongToString(), for Integer numbers use IntegerToString() and for Single numbers use
SingleToString()

The string variable stringvar will contain the same number, represented as a string. The length of the
string returned is 5 characters.

This function is especially useful if a number needs to added to the end of a string, or if a custom data
sending routine has been created but only supports the output of string variables.

773

These methods will not support conversion of hexadecimal number strings.

Example1:

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 Dim SensorReading as Byte

 'Take an A/D reading
 SensorReading = ReadAD(AN0)

 'Create a string variable
 Dim OutVar As String

 'Fill string with sensor reading
 OutVar = ByteToString(SensorReading)

 'Send
 HSerPrint OutVar
 HSerPrintCRLF

 When using the functions ByteToString() do not leave space between the function
 call and the left brace. You will get a compiler error that is
 meaningless.

 ' use this, note this is no space between the ByteToString() and the left brace!
 ByteToString(number_variable)
 ' do not use, note the space!
 ByteToString (number_variable)

Example2:

 '''
 '''
 '''
 '''
 '''**

774

 '''
 ''' PIC: 16F18855
 ''' Compiler: GCB
 ''' IDE: GCode
 '''
 ''' Board: Xpress Evaluation Board
 ''' Date: June 2021
 '''
 ' ----- Configuration
 'Chip Settings.
 #chip 16f18855,32
 #Config CLRE_ON
 #option Explicit

 ; ----- Define Hardware settings

 'Set the PPS of the RS232 ports.
 UNLOCKPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;
 LOCKPPS

 ; ----- Constants
 #define USART_BAUD_RATE 19200
 #define USART_TX_BLOCKING

 ; ----- Variables
 dim bytevar as Byte

 ; ----- Main body of program commences here.
 bytevar = 0xff

 do
 wait 100 ms

 HSerPrint ByteToString(bytevar)
 HSerPrintCRLF
 wait 1 s
 loop
 end

; ----- Support methods. Subroutines and Functions

See Also WordToString, LongToString, IntegerToString, SingleToString, ByteToHex

775

Chr

Syntax:

 stringvar = CHR(bytevar)

Command Availability:

Available on all microcontrollers

Explanation:

The CHR function creates a string of a ANSI (1-byte) character.

ASC is the natural complement of CHR.

Example:

 string = CHR(65) ' Returns "A"

 string = CHR(66) ' Returns "B"

For more help, see Asc

Fill

Syntax:

 stringvar = Fill (byte_value_of_the_new_length , pad_character)

Command Availability:

Available on all microcontrollers

Explanation:

The Fill function is used to create string to a specific length that is of a specific character.

The length of the string is specified by the first parameter. The character used to pad the string is
specified by the second parameter, this parameter is optional as the " "(space) character is assumed.

A typical use is to fill a string to be displayed on an LCD or serial terminal.

Example:

776

 'Set chip model
 #chip 16F886

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 HserPrint Fill (16, "") ;will print a string of '*'
 HSerPrintCRLF

For more help, see Asc

IntegerToBin

Syntax:

 stringvar = IntegerToBin(integervar)

Command Availability:

Available on all microcontrollers

Explanation:

The IntegerToBin function creates a string of a ANSI (signed 15 digit string) characters. The function
converts a number to a string consisting of ones and zeros that represents the binary value.

Note: Supports Integer variables only. For BYTE variables use VarToBin, for Word variables use
WordToBin and for LONG variables use LongToBin

Example:

 string = IntegerToBin(1) ' Returns "+000000000000001"
 string = IntegerToBin(-1) ' Returns "-000000000000001"

For more help, see ByteToBin, WordToBin, LongToBin

IntegerToHex

Syntax:

777

 stringvar = IntegerToHex(number)

Command Availability:

Available on all microcontrollers

Explanation:

The Hex function will convert a Integer number into hexadecimal format. The input number should be a
Integer variable, or a fixed number between -32767 and -32767 inclusive. After running the function,
the string variable stringvar will contain an 4 digit hexadecimal number.

Example:

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Send EEPROM data over serial connection
 'Uses Hex to display as hexadecimal
 For CurrentLocation = 0 to 65535
 'Send location
 HSerPrint IntegerToHex(CurrentLocation)
 HSerPrint ":"
 'Read Integer and send
 EPRead CurrentLocation, CurrInteger
 HSerPrint Hex(CurrInteger)
 'Send carriage return/line feed
 HSerPrintCRLF
 Next

See Also ByteToHex,WordToHex, LongToHex, SingleToHex

IntegerToString

Syntax:

 stringvar = IntegerToString(Integer_variable) 'supports Integer.

Command Availability:

778

Available on all microcontrollers

Explanation:

The IntegerToString function will convert a number into a string. number can be any Integer variable, or
a fixed number constant between 0 and 4294967295 inclusive. For Byte number use ByteToString(),
Word numbers use WordToString(), for Integer numbers use IntegerToString() and for Single numbers
use SingleToString()

The string variable stringvar will contain the same number, represented as a string. The length of the
string returned is 9 characters.

This function is especially useful if a number needs to added to the end of a string, or if a custom data
sending routine has been created but only supports the output of string variables.

These methods will not support conversion of hexadecimal number strings.

Example1:

779

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 Dim SensorReading as Integer

 'Take an A/D reading
 SensorReading = ReadAD10(AN0)

 'Create a string variable
 Dim OutVar As String

 'Fill string with sensor reading
 OutVar = IntegerToString(SensorReading)

 'Send
 HSerPrint OutVar
 HSerPrintCRLF

 When using the functions IntegerToString() do not leave space between the function
 call and the left brace. You will get a compiler error that is
 meaningless.

 ' use this, note this is no space between the IntegerToString() and the left brace!
 IntegerToString(number_variable)
 ' do not use, note the space!
 IntegerToString (number_variable)

Example2:

 '''
 '''
 '''
 '''
 '''**
 '''
 ''' PIC: 16F18855
 ''' Compiler: GCB
 ''' IDE: GCode
 '''
 ''' Board: Xpress Evaluation Board

780

 ''' Date: June 2021
 '''
 ' ----- Configuration
 'Chip Settings.
 #chip 16f18855,32
 #Config CLRE_ON
 #option Explicit

 ; ----- Define Hardware settings

 'Set the PPS of the RS232 ports.
 UNLOCKPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;
 LOCKPPS

 ; ----- Constants
 #define USART_BAUD_RATE 19200
 #define USART_TX_BLOCKING

 ; ----- Variables
 dim Integervar as Integer

 ; ----- Main body of program commences here.
 Integervar = -10

 do
 wait 100 ms

 HSerPrint IntegerToString(Integervar)
 HSerPrintCRLF
 wait 1 s
 loop
 end

; ----- Support methods. Subroutines and Functions

See Also ByteToString, WordToString, LongToString, SingleToString, ByteToHex

Instr

Syntax:

 location = Instr(source, find)

781

Command Availability:

Available on all microcontrollers

Explanation:

The Instr function will search one string to find the location of another string within it. source is the
string to search inside, and find is the string to find. The function will return the location of find within
source, or 0 if source does not contain find.

Example:

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Fill a string with a message
 Dim TestData As String
 TestData = "Hello, world!"

 'Display the location of "world" within the string
 'Will return 8, because "w" in world is the 8th character
 'of "Hello, world!"
 HSerPrint Instr(TestData, "world")
 HSerPrintCRLF

 'Display the location of "planet" within the string
 'Will display 0, because "planet" does not occur inside
 'the string "Hello, world!"
 HSerPrint Instr(TestData, "planet")
 HSerPrintCRLF

LCase

Syntax:

 output = LCase(source)

Command Availability:

Available on all microcontrollers

782

Explanation:

The LCase function will convert all of the letters in the string source to lower case, and return the result.

Example:

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Fill a string with a message
 Dim TestData As String
 TestData = "Hello, world!"

 'Display the string in lower case
 'Will display "hello, world!"
 HSerPrint LCase(TestData)
 HSerPrintCRLF

See Also UCase

Left

Syntax:

 output = Left(source, count)

Command Availability:

Available on all microcontrollers

Explanation:

The Left function will extract the leftmost count characters from the input string source, and return
them in a new string.

Example:

783

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Fill a string with a message
 Dim TestData As String
 TestData = "Hello, world!"

 'Display the leftmost 5 characters
 'Will display "Hello"
 HSerPrint Left(TestData, 5)
 HSerPrintCRLF

See Also Mid, Right

LeftPad

Syntax:

 LeftPad(string_variable,byte_value_of_the_new_length,pad_character)

Command Availability:

Available on all microcontrollers

Explanation:

The LeftPad function is used to create string to a specific length that is extended with a specific
character to the left hand side of the string.

The length of the string is specified by the second parameter.

The character used to pad the string is specified by the third parameter.

A typical use is to pad a string to be displayed on a serial terminal or LCD.

Example:

 'Set chip model
 'Set chip model
 #chip 16f877a

784

 DIR PORTA 0x03

 ' make port C as output
 Dir PortC 0x0

 'Defines (Constants)
 #define LCD_SPEED slow
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_NO_RW
 #define LCD_Enable PORTc.0
 #define LCD_RS PORTc.1
 #define LCD_DB4 PORTa.5
 #define LCD_DB5 PORTa.4
 #define LCD_DB6 PORTa.3
 #define LCD_DB7 PORTa.2
 '''--
 '''-------End of board-specific settings-------
 '''--

 '''DEMO for padding strings left with
 '''1st character of a given string.
 '''if no string is given, blanks are used

 ; ---- variables
 DIM inString as string * 5
 DIM outString1 as String
 DIM outString2 as String

 ; ---- main body of program begins here

 inString = "12345"

 outString1 = leftpad(inString, 9, "*")
 outString2 = leftpad(inString, 9)

 'show results on LCD-Display
 cls

 print instring
 print " "

785

 print outstring1
 locate 1,0
 print instring
 print " "
 print outstring2

 end

Len

Syntax:

 output= Len(string)

Command Availability:

Available on all microcontrollers

Explanation:

The Len function returns an byte value which is the length of a phrase or a sentence, including the
empty spaces. The format is:

 target_byte_variable = Len("Phrase")

or another example. This code will loop through the for-next loop 12 times as determined by the length
of the string:

 ' create a test string of 12 characters
 dim teststring as string * 12

 teststring = "0123456789AB"
 for loopthrustring = 1 to len(teststring)
 hserprint mid(teststring, loopthrustring , 1)
 next

LongToBin

Syntax:

 stringvar = LongToBin(longvar)

786

Command Availability:

Available on all microcontrollers

Explanation:

The LongToBin function creates a string of a ANSI (32) characters. The function converts a number to a
string consisting of ones and zeros that represents the binary value.

Note: Supports LONG variables only. For BYTE variables use VarToBin, for WORD variables use
VarWToBinand for INTEGER variables use VarIntegerToBin

Example:

 string = LongToBin(1) ' Returns "0000000000000001"

 string = LongToBin(254) ' Returns "0000000011111110"

For more help, see VarToBin, VarWToBin, VarIntegerToBin

LongToHex

Syntax:

 stringvar = LongToHex(number)

Command Availability:

Available on all microcontrollers

Explanation:

The Hex function will convert a Long number into hexadecimal format. The input number should be a
Long variable, or a fixed number between 0 and 4294967295 inclusive. After running the function, the
string variable stringvar will contain an 8 digit hexadecimal number.

Example:

787

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Send EEPROM data over serial connection
 'Uses Hex to display as hexadecimal
 For CurrentLocation = 0 to 65535
 'Send location
 HSerPrint LongToHex(CurrentLocation)
 HSerPrint ":"
 'Read Long and send
 EPRead CurrentLocation, CurrLong
 HSerPrint Hex(CurrLong)
 'Send carriage return/line feed
 HSerPrintCRLF
 Next

See Also ByteToHex,WordToHex, IntegerToHex, SingleToHex

LongToString

Syntax:

 stringvar = LongToString(Long_variable) 'supports Long.

Command Availability:

Available on all microcontrollers

Explanation:

The LongToString function will convert a number into a string. number can be any Long variable, or a
fixed number constant between 0 and 4294967295 inclusive. For Byte number use ByteToString(),
Word numbers use WordToString(), for Integer numbers use IntegerToString() and for Single numbers
use SingleToString()

The string variable stringvar will contain the same number, represented as a string. The length of the
string returned is 10 characters.

This function is especially useful if a number needs to added to the end of a string, or if a custom data
sending routine has been created but only supports the output of string variables.

788

These methods will not support conversion of hexadecimal number strings.

Example1:

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 Dim SensorReading as Long

 'Take an A/D reading
 SensorReading = ReadAD12(AN0)

 'Create a string variable
 Dim OutVar As String

 'Fill string with sensor reading
 OutVar = LongToString(SensorReading)

 'Send
 HSerPrint OutVar
 HSerPrintCRLF

 When using the functions LongToString() do not leave space between the function
 call and the left brace. You will get a compiler error that is
 meaningless.

 ' use this, note this is no space between the LongToString() and the left brace!
 LongToString(number_variable)
 ' do not use, note the space!
 LongToString (number_variable)

Example2:

 '''
 '''
 '''
 '''
 '''**

789

 '''
 ''' PIC: 16F18855
 ''' Compiler: GCB
 ''' IDE: GCode
 '''
 ''' Board: Xpress Evaluation Board
 ''' Date: June 2021
 '''
 ' ----- Configuration
 'Chip Settings.
 #chip 16f18855,32
 #Config CLRE_ON
 #option Explicit

 ; ----- Define Hardware settings

 'Set the PPS of the RS232 ports.
 UNLOCKPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;
 LOCKPPS

 ; ----- Constants
 #define USART_BAUD_RATE 19200
 #define USART_TX_BLOCKING

 ; ----- Variables
 dim Longvar as Long

 ; ----- Main body of program commences here.
 Longvar = 0xffffffff

 do
 wait 100 ms

 HSerPrint LongToString(Longvar)
 HSerPrintCRLF
 wait 1 s
 loop
 end

; ----- Support methods. Subroutines and Functions

See Also ByteToString, WordToString, IntegerToString, SingleToString, ByteToHex

790

Ltrim

Syntax:

 stringvar = LTRIM(stringvar)

Command Availability:

Available on all microcontrollers

Explanation:

The Ltrim function will trim the 7-bit ASCII space character (value 32) from the LEFT hand side of a
string.

Use Ltrim on text that you have received from another source that may have irregular spacing at the
left hand end of the string.

See Also Trim, Rtrim

Mid

Syntax:

 output = Mid(source, start[, count])

Command Availability:

Available on all microcontrollers

Explanation:

The Mid function returns a string variable containing a specified number of characters from a source
string.

source is the variable to extract from. If source is a zero length string - a zero length string is returned
equating to "".
start is the position of the first character to extract. If start is greater than the number of characters in
string, Mid returns a zero-length string equating to "".
count is the number of characters to extract. If count is not specified, all characters from start to the
end of the source string will be returned.

Example:

791

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Fill a string with a message
 Dim TestData As String
 TestData = "The cat sat on the mat"

 'Extract "cat". The c is at position 5, and 3 letters are needed
 HSerPrint "The animal is a "
 HSerPrint Mid(TestData, 5, 3)

 'Extract the action. "sat" starts at position 9.
 HSerPrint "The animal "
 HSerPrint Mid(TestData, 9)
 HSerPrintCRLF

See Also Left, Right

Pad

Syntax:

 out_string = Pad(string_variable, byte_value_of_the_new_length, pad_character)

Command Availability:

Available on all microcontrollers

Explanation:

The Pad function is used to create string to a specific length that is extended with a specific character.

The length of the string is specified by the second parameter. The character used to pad the string is
specified by the third parameter.

A typical use is to pad a string to be displayed on a LCD display.

Example:

792

 'Set chip model
 #chip 16f877a

 DIR PORTA 0x03

 ' make port C as output
 Dir PortC 0x0

 'Defines (Constants)
 #define LCD_SPEED slow
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_NO_RW
 #define LCD_Enable PORTc.0
 #define LCD_RS PORTc.1
 #define LCD_DB4 PORTa.5
 #define LCD_DB5 PORTa.4
 #define LCD_DB6 PORTa.3
 #define LCD_DB7 PORTa.2
 '''--
 '''-------End of board-specific settings-------
 '''--

 '''DEMO for pad strings to a length
 '''1st character of a given string.
 '''if no string is given, blanks are used

 ; ---- variables
 'Define the string
 Dim TestData As String * 16
 TestData = "Location"

 'show results on LCD-Display
 cls
 Print Pad (TestData, 16, "*")
 Locate 1,0
 Print Pad (TestData, 16,)

 end

793

Right

Syntax:

 output = Right(source, count)

Command Availability:

Available on all microcontrollers

Explanation:

The Right function will extract the rightmost count characters from the input string source, and return
them in a new string.

Example:

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_BLOCKING

 'Fill a string with a message
 Dim TestData As String
 TestData = "Hello, world!"

 'Display the rightmost 6 characters
 'Will display "world!"
 HSerPrint Right(TestData, 6)
 HSerPrintCRLF

Rtrim

Syntax:

 stringvar = Rtrim(stringvar)

Command Availability:

Available on all microcontrollers

Explanation:

794

The Rtrim function will trim the 7-bit ASCII space character (value 32) from the RIGHT hand side of a
string.

Use Rtrim on text that you have received from another source that may have irregular spacing at the
right hand end of the string.

See Also Trim, Ltrim

Trim

Syntax:

 stringvar = Trim(stringvar)

Command Availability:

Available on all microcontrollers

Explanation:

The Trim function will trim the 7-bit ASCII space character (value 32) from text.

Trim removes all spaces from text except for single spaces between words. Use Trim on text that you
have received from another source that may have irregular spacing at the left or right hand ends of the
string.

See Also Ltrim, Rtrim

UCase

Syntax:

 output = UCase(source)

Command Availability:

Available on all microcontrollers

Explanation:

The UCase function will convert all of the letters in the string source to upper case, and return the
result.

Example:

795

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Fill a string with a message
 Dim TestData As String
 TestData = "Hello, world!"

 'Display the string in upper case
 'Will display "HELLO, WORLD!"
 HSerPrint UCase(TestData)
 HSerPrintCRLF

See Also LCase

SingleToBin

Syntax:

 stringvar = SingleToBin(Singlevar)

Command Availability:

Available on all microcontrollers

Explanation:

The SingleToBin function creates a string of a ANSI (32) characters. The function converts a number to
a string consisting of ones and zeros that represents the binary value.

Note: Supports Single variables only. For BYTE variables use VarToBin, for WORD variables use
VarWToBinand for INTEGER variables use VarIntegerToBin

Example:

 string = SingleToBin(1) ' Returns "00000000000000000000000000000001"

 string = SingleToBin(254) ' Returns "00000000000000000000000011111110"

For more help, see ByteToBin, WordToBin, IntegerToBin

796

SingleToHex

Syntax:

 stringvar = SingleToHex(number)

Command Availability:

Available on all microcontrollers

Explanation:

The Hex function will convert a Single number into hexadecimal format. The input number should be a
Single variable, or a fixed number between -3.4x10 ^ 38 and +3.4x10 ^ 38 inclusive. After running the
function, the string variable stringvar will contain an 4 digit hexadecimal number.

Example:

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Send EEPROM data over serial connection
 'Uses Hex to display as hexadecimal
 For CurrentLocation = 0 to 9999999
 'Send location
 HSerPrint SingleToHex(CurrentLocation)
 HSerPrint ":"
 'Read Single and send
 EPRead CurrentLocation, CurrSingle
 HSerPrint Hex(CurrSingle)
 'Send carriage return/line feed
 HSerPrintCRLF
 Next

See Also ByteToHex,WordToHex, LongToHex, IntegerToHex

SingleToString

Syntax:

797

 stringvar = SingleToString(Single_variable) 'supports Single.

Command Availability:

Available on all microcontrollers

Explanation:

The SingleToString function will convert a number into a string. number can be any Single variable. For
Byte numbers use ByteToString(), Word numbers use WordToString(), for Integer numbers use
IntegerToString() and for Long numbers use LongToString()

The string variable stringvar will contain the ACSII representation of the input number. The length of
the string is variable length dependent on the input variable value.

This function is especially useful if a number needs to added to the end of a string, or if a custom data
sending routine has been created but only supports the output of string variables.

These methods will not support conversion of hexadecimal number strings.

Operational Returned Controls

The function returns either the number string or the message "Error ". The reasons for "Error " are:

• Very small number that actaully compute as 0.0

• The input values is too large

• Too many chars-out of range

There is a public variable available after using this function. `SysByte_STS_Err` - this variable returns
the following:

 SysByte_STS_Err where 1 or 9 equates to no error.

 1 equates to a properly formatted number string.

 8 equateq to a properly formatted integer number string.

Bitwise returned details

SysByte_STS_Err.0 : 1 = good, or, 0 = bad
SysByte_STS_Err.1 : 1 = decimals places to many chars, or, 0 = ok
SysByte_STS_Err.2 : 1 = integer places to many chars-out of range, or, 0 = ok
SysByte_STS_Err.3 : 1 = no decimal point, info only
SysByte_STS_Err.4 : 1 = non numeric chars found

798

Example Usage 1:

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 Dim SensorReading as Single

 'Take an A/D reading
 SensorReading = ReadAD(AN0)

 'Create a string variable
 Dim OutVar As String

 'Fill string with sensor reading
 OutVar = SingleToString(SensorReading)

 'Send
 HSerPrint OutVar
 HSerPrintCRLF

 When using the functions SingleToString() do not leave space between the function
 call and the left brace. You will get a compiler error that is
 meaningless.

 ' use this, note this is no space between the SingleToString() and the left brace!
 SingleToString(number_variable)
 ' do not use, note the space!
 SingleToString (number_variable)

 Do
 Loop

 End

Example Usage 2:

799

 '''
 '''
 '''
 '''
 '''**
 '''
 ''' PIC: 16F18855
 ''' Compiler: GCB
 ''' IDE: GCode
 '''
 ''' Board: Xpress Evaluation Board
 ''' Date: June 2021
 '''
 ' ----- Configuration
 'Chip Settings.
 #chip 16f18855,32
 #Config CLRE_ON
 #option Explicit

 ; ----- Define Hardware settings

 'Set the PPS of the RS232 ports.
 UNLOCKPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;
 LOCKPPS

 ; ----- Constants
 #define USART_BAUD_RATE 19200
 #define USART_TX_BLOCKING

 ; ----- Variables
 dim Singlevar as Single

 ; ----- Main body of program commences here.
 Singlevar = -10

 do
 wait 100 ms

 HSerPrint SingleToString(Singlevar)
 HSerPrintCRLF
 wait 1 s
 loop

 end

800

See Also ByteToString, WordToString, LongToString, SingleToString, ByteToHex

StringToByte

Syntax:

 var = StringToByte(string) 'Supports decimal byte range strings only.

Command Availability:

Available on all microcontrollers

Explanation:

The StringToByte function will extract a number from a string variable, and store it in a byte variable.
One potential use is reading numbers that are sent in ASCII format over a serial connection.

The StringToByte function will not extract a StringToByte from a hexadecimal string.

Example1:

 ' ----- Configuration
 'Chip Settings.
 #chip 16f18855,32
 #Config MCLRE_ON

 ; ----- Define Hardware settings

 '' -------------------LATA-----------------
 '' Bit#: -7---6---5---4---3---2---1---0---
 '' LED: ---------------|D5 |D4 |D3 |D2 |-
 ''---
 ''

 'Set the PPS of the RS232 ports.
 UNLOCKPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;
 LOCKPPS

 ; ----- Constants
 #define USART_BAUD_RATE 19200
 #define USART_TX_BLOCKING

801

 #define LEDD2 PORTA.0
 #define LEDD3 PORTA.1
 #define LEDD4 PORTA.2
 #define LEDD5 PORTA.3
 Dir LEDD2 OUT
 Dir LEDD3 OUT
 Dir LEDD4 OUT
 Dir LEDD5 OUT

 #define Potentiometer PORTA.4
 DIR Potentiometer In

 #define SWITCH_DOWN 0
 #define SWITCH_UP 1
 #define SWITCH PORTA.5
 Dir SWITCH In

 ; ----- Variables
 dim bytevar as Byte
 dim wordvar as Word
 dim longvar as long

 bytevar = 0
 wordvar = 0
 longvar = 0

 ; ----- Main body of program commences here.

 #option Explicit

 do
 wait 100 ms

 bytevar = StringToByte("255")
 HSerPrint bytevar
 HSerPrintCRLF

 wait 1 s
 loop
 end

 ; ----- Support methods. Subroutines and Functions

802

StringToLong

Syntax:

 var = StringToLong(string) 'Supports decimal Long range strings only.

Command Availability:

Available on all microcontrollers

Explanation:

The StringToLong function will extract a number from a string variable, and store it in a Long variable.
One potential use is reading numbers that are sent in ASCII format over a serial connection.

The StringToLong function will not extract a StringToLong from a hexadecimal string.

Example1:

 ' ----- Configuration
 'Chip Settings.
 #chip 16f18855,32
 #Config MCLRE_ON

 ; ----- Define Hardware settings

 '' -------------------LATA-----------------
 '' Bit#: -7---6---5---4---3---2---1---0---
 '' LED: ---------------|D5 |D4 |D3 |D2 |-
 ''---
 ''

 'Set the PPS of the RS232 ports.
 UNLOCKPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;
 LOCKPPS

 ; ----- Constants
 #define USART_BAUD_RATE 19200
 #define USART_TX_BLOCKING

 #define LEDD2 PORTA.0
 #define LEDD3 PORTA.1
 #define LEDD4 PORTA.2

803

 #define LEDD5 PORTA.3
 Dir LEDD2 OUT
 Dir LEDD3 OUT
 Dir LEDD4 OUT
 Dir LEDD5 OUT

 #define Potentiometer PORTA.4
 DIR Potentiometer In

 #define SWITCH_DOWN 0
 #define SWITCH_UP 1
 #define SWITCH PORTA.5
 Dir SWITCH In

 ; ----- Variables
 dim bytevar as Byte
 dim wordvar as Word
 dim longvar as long

 bytevar = 0
 wordvar = 0
 longvar = 0

 ; ----- Main body of program commences here.

 #option Explicit

 do
 wait 100 ms

 Longvar = StringToLong("255")
 HSerPrint Longvar
 HSerPrintCRLF

 wait 1 s
 loop
 end

 ; ----- Support methods. Subroutines and Functions

StringToSingle

Syntax:

804

 var = StringToSingle(string) 'Supports decimal Single range strings only.

Command Availability:

Available on all microcontrollers

Explanation:

The StringToSingle function will extract a number from a string variable, and store it in a Single
variable. One potential use is formatting a serial number recieve via a serial connection.

The StringToSingle function will not extract a StringToSingle from a hexadecimal string.

The function supports two messages to support usage.

' SysByte_STS_Err = 0 if no error
' SysByte_STS_Err.0 = 1 good - 0 - bad
' SysByte_STS_Err.1 = 1 decimals places to many chars, 0 = ok
' SysByte_STS_Err.2 = 1 integer places to many chars-out of range, 0 = ok
' SysByte_STS_Err.3 = 1 no decimal point, info only
' SysByte_STS_Err.4 = non numeric chars found

Example Usage 1:

805

 ' ----- Configuration
 'Chip Settings.
 #chip 16f18855,32
 #Config MCLRE_ON

 'Set the PPS of the RS232 ports.
 UNLOCKPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;
 LOCKPPS

 ; ----- Constants
 #define USART_BAUD_RATE 19200
 #define USART_TX_BLOCKING

 ; ----- Variables
 dim bytevar as Byte
 dim wordvar as Word
 dim Singlevar as Single

 bytevar = 0
 wordvar = 0
 Singlevar = 0

 ; ----- Main body of program commences here.

 #option Explicit

 do
 wait 100 ms

 Singlevar = StringToSingle("255")
 HSerPrint SingltoString(Singlevar)
 HSerPrintCRLF

 wait 1 s
 loop
 end

 ; ----- Support methods. Subroutines and Functions

StringToWord

Syntax:

806

 var = StringToWord(string) 'Supports decimal Word range strings only.

Command Availability:

Available on all microcontrollers

Explanation:

The StringToWord function will extract a number from a string variable, and store it in a Word variable.
One potential use is reading numbers that are sent in ASCII format over a serial connection.

The StringToWord function will not extract a StringToWord from a hexadecimal string.

Example1:

 ' ----- Configuration
 'Chip Settings.
 #chip 16f18855,32
 #Config MCLRE_ON

 ; ----- Define Hardware settings

 '' -------------------LATA-----------------
 '' Bit#: -7---6---5---4---3---2---1---0---
 '' LED: ---------------|D5 |D4 |D3 |D2 |-
 ''---
 ''

 'Set the PPS of the RS232 ports.
 UNLOCKPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;
 LOCKPPS

 ; ----- Constants
 #define USART_BAUD_RATE 19200
 #define USART_TX_BLOCKING

 #define LEDD2 PORTA.0
 #define LEDD3 PORTA.1
 #define LEDD4 PORTA.2
 #define LEDD5 PORTA.3
 Dir LEDD2 OUT
 Dir LEDD3 OUT
 Dir LEDD4 OUT

807

 Dir LEDD5 OUT

 #define Potentiometer PORTA.4
 DIR Potentiometer In

 #define SWITCH_DOWN 0
 #define SWITCH_UP 1
 #define SWITCH PORTA.5
 Dir SWITCH In

 ; ----- Variables
 dim bytevar as Byte
 dim wordvar as Word
 dim longvar as long

 bytevar = 0
 wordvar = 0
 longvar = 0

 ; ----- Main body of program commences here.

 #option Explicit

 do
 wait 100 ms

 Wordvar = StringToWord("65535")
 HSerPrint WordVar
 HSerPrintCRLF

 wait 1 s
 loop
 end

 ; ----- Support methods. Subroutines and Functions

ULongIntToBin

Syntax:

 stringvar = ULongIntToBin(ULongIntvar)

Command Availability:

808

Available on all microcontrollers

Explanation:

The ULongIntToBin function creates a string of a ANSI (32) characters. The function converts a number
to a string consisting of ones and zeros that represents the binary value.

Note: Supports ULongInt variables only. For BYTE variables use VarToBin, for WORD variables use
VarWToBinand for INTEGER variables use VarIntegerToBin

Example:

 string = ULongIntToBin(1) ' Returns "00000000000000000000000000000001"

 string = ULongIntToBin(254) ' Returns "00000000000000000000000011111110"

For more help, see ByteToBin, WordToBin, IntegerToBin

WordToBin

Syntax:

 stringvar = WordToBin(bytevar)

Command Availability: Available on all microcontrollers

Explanation:

The WordToBin function creates a string of a ANSI (16-byte) characters. The function converts a number
to a string consisting of ones and zeros that represents the binary value.

Example:

 string = WordToBin(1) ' Returns "0000000000000001"

 string = WordToBin(37654) ' Returns "1001001100010110"

For more help, see ByteToBin

WordToHex

Syntax:

809

 stringvar = WordToHex(number)

Command Availability:

Available on all microcontrollers

Explanation:

The Hex function will convert a Word number into hexadecimal format. The input number should be a
Word variable, or a fixed number between 0 and 65525 inclusive. After running the function, the string
variable stringvar will contain a 4 digit hexadecimal number.

Example:

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Send EEPROM data over serial connection
 'Uses Hex to display as hexadecimal
 For CurrentLocation = 0 to 65535
 'Send location
 HSerPrint WordToHex(CurrentLocation)
 HSerPrint ":"
 'Read Word and send
 EPRead CurrentLocation, CurrWord
 HSerPrint Hex(CurrWord)
 'Send carriage return/line feed
 HSerPrintCRLF
 Next

See Also ByteToHex,LongToHex, IntegerToHex, SingleToHex

WordToString

Syntax:

 stringvar = WordToString(Word_variable) 'supports Word.

Command Availability:

810

Available on all microcontrollers

Explanation:

The WordToString function will convert a number into a string. number can be any Word variable, or a
fixed number constant between 0 and 65535 inclusive. For Word number use WordToString(), Long
numbers use LongToString(), for Integer numbers use IntegerToString() and for Single numbers use
SingleToString()

The string variable stringvar will contain the same number, represented as a string. The length of the
string returned is 5 characters.

This function is especially useful if a number needs to added to the end of a string, or if a custom data
sending routine has been created but only supports the output of string variables.

These methods will not support conversion of hexadecimal number strings.

Example1:

811

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 Dim SensorReading as Word

 'Take an A/D reading
 SensorReading = ReadAD10(AN0)

 'Create a string variable
 Dim OutVar As String

 'Fill string with sensor reading
 OutVar = WordToString(SensorReading)

 'Send
 HSerPrint OutVar
 HSerPrintCRLF

 When using the functions WordToString() do not leave space between the function
 call and the left brace. You will get a compiler error that is
 meaningless.

 ' use this, note this is no space between the WordToString() and the left brace!
 WordToString(number_variable)
 ' do not use, note the space!
 WordToString (number_variable)

Example2:

 '''
 '''
 '''
 '''
 '''**
 '''
 ''' PIC: 16F18855
 ''' Compiler: GCB
 ''' IDE: GCode
 '''
 ''' Board: Xpress Evaluation Board

812

 ''' Date: June 2021
 '''
 ' ----- Configuration
 'Chip Settings.
 #chip 16f18855,32
 #Config CLRE_ON
 #option Explicit

 ; ----- Define Hardware settings

 'Set the PPS of the RS232 ports.
 UNLOCKPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;
 LOCKPPS

 ; ----- Constants
 #define USART_BAUD_RATE 19200
 #define USART_TX_BLOCKING

 ; ----- Variables
 dim Wordvar as Word

 ; ----- Main body of program commences here.
 Wordvar = 0xffff

 do
 wait 100 ms

 HSerPrint WordToString(Wordvar)
 HSerPrintCRLF
 wait 1 s
 loop
 end

; ----- Support methods. Subroutines and Functions

See Also ByteToString, LongToString, IntegerToString, SingleToString, ByteToHex

Concatenation

Syntax:

 stringvar = variable1 + variable2

813

Command Availability:

Available on all microcontrollers

Explanation:

The method joins two variables into another variable.

This method does not change the existing strings, but returns a new string containing the text of the
joined variables, see Concatenated String Constraint below.

Concatenation joins the elements of a specified values using the specified separator between each
variable.

WARNING

Using concatenation as a parameter with commands like HSerPrint or Print the
compiler will create a system string variable. An examples of concatenating two
strings constants like HSerPrint ("123"+"456") may yield incorrect results. Use the
constant SYSDEFAULTCONCATSTRING to resolve. Without using
SYSDEFAULTCONCATSTRING there is a risk that the compiler does not allocate
sufficient RAM to hold the concatenated string. The resulting string may be
corrupted as the size of the system string variable is not sufficient. Use
SYSDEFAULTCONCATSTRING within the source program to resolve.

Set a specific size of compiler created system string variable

Use the following to set the size of the system string variable used during concatenation.

The compiler will create system string variables when you concatenate on a commands line like
HSerPrint, Print and many others commands. Using concatenate with a command is bad practice,
using a lot of RAM and may create a number of system string variables. It is recommended to define a
string (of a known length), concatenate using an assignment then use the string.

To control the size of system string variable use the following. Also, use this constant to set the size
when the compiler does not create a system string variable.

 'Define the constant to control the size of system created string variables called
SYSSTRINGPARAM1, SYSSTRINGPARAM2 etc.
 Use #DEFINE SYSDEFAULTCONCATSTRING 4

 'Then, use
 HSerPrint "A"+"123" 'will print A123. Without the SYSDEFAULTCONCATSTRING constant
some microcontrollers may corrupt the result of the concatenation.

This concatenation constraint does not apply using concatenation as an assignment.

Example 1:

814

 timevariable = 999
 stringvar = "Time = " + str(timevariable) ' Convert the timevariable to a String.
This operation returns Time = 999

Example 2:

An example showing how to set a string to an escape sequence for an ANSI terminal. You can
`Dim`ension a string and then assign the elements like an array. {empty} + {empty} +

 dim line2 as string
 line2 = 27, "[", "2", "H", 27, "[","K"
 HSerPrint line2

Will send the following to the terminal. <esc>[2H<esc>[K

Example 3: Assigning concatenated string to same string

For reliable coding you must not assign a string concatenation to same source variable. You must
assign the result of string concatenation to another string. To resolve see below:

 Dim outstring, tmpstring as string * 16
 Dim outnumber as byte

 outnumber = 24
 outstring = "Result = "
 'This concatenation may yield an incorrect string on 10f, 12f or 16f chips
 outstring = outstring + str(outnumber)
 HserPrintCRLF 2
 HSerPrint outstring
 HserPrintCRLF 2

 outstring = "Result = "
 'This concatenation will yield an the correct string. With tmpstring1 containing the
correct concatenated string
 tmpstring = outstring +str(outnumber)
 HSerPrint tmpstring
 HserPrintCRLF 2
 end

To resolve the constraint simply assign the source string to another string.

815

Deprecated string functions.

Use the alternative updated functions.

Hex

Syntax:

 stringvar = Hex(number)

Command Availability:

Available on all microcontrollers

Explanation:

The Hex function will convert a number into hexadecimal format. The input number should be a byte
variable, or a fixed number between 0 and 255 inclusive. After running the function, the string
variable stringvar will contain a 2 digit hexadecimal number.

Example:

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Send EEPROM data over serial connection
 'Uses Hex to display as hexadecimal
 For CurrentLocation = 0 to 255
 'Send location
 HSerPrint Hex(CurrentLocation)
 HSerPrint ":"
 'Read byte and send
 EPRead CurrentLocation, CurrByte
 HSerPrint Hex(CurrByte)
 'Send carriage return/line feed
 HSerPrintCRLF
 Next

See Also Str, Val

816

Str

Syntax: Deprecated use ByteToString()

 stringvar = Str(number) 'supports decimal byte and word strings only.

 'Use the following to support decimal long number strings.
 stringvar = Str32(long number) 'supports decimal long number strings.

 'Use the following to support decimal integer number strings.
 stringvar = StrInteger(integer number) ' decimal integer number strings.

Command Availability:

Available on all microcontrollers

Explanation:

The Str function will convert a number into a string. number can be any byte or word variable, or a
fixed number between 0 and 65535 inclusive. For Long numbers use Str32 and for Integer numbers
use StrInteger.

The string variable stringvar will contain the same number, represented as a string. The length of the
string returned is 5, 10 or 6 characters for Byte & Word, Long and Integer respectively.

This function is especially useful if a number needs to added to the end of a string, or if a custom data
sending routine has been created but only supports the output of string variables.

These methods will not support conversion of hexadecimal number strings.

Example1:

817

 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Take an A/D reading
 SensorReading = ReadAD(AN0)

 'Create a string variable
 Dim OutVar As String

 'Fill string with sensor reading
 OutVar = Str(SensorReading)

 'Send
 HSerPrint OutVar
 HSerPrintCRLF

 When using the functions STR() do not leave space between the function
 call and the left brace. You will get a compiler error that is
 meaningless.

 ' use this, note this is no space between the STR and the left brace!
 STR(number_variable)
 ' do not use, note the space!
 STR (number_variable)

Example2:

 '''
 '''
 '''
 '''
 '''**
 '''
 ''' PIC: 16F18855
 ''' Compiler: GCB
 ''' IDE: GCode
 '''
 ''' Board: Xpress Evaluation Board
 ''' Date: June 2021

818

 '''
 ' ----- Configuration
 'Chip Settings.
 #chip 16f18855,32
 #Config CLRE_ON
 #option Explicit

 ; ----- Define Hardware settings

 '' -------------------LATA-----------------
 '' Bit#: -7---6---5---4---3---2---1---0---
 '' LED: ---------------|D5 |D4 |D3 |D2 |-
 ''---
 ''

 'Set the PPS of the RS232 ports.
 UNLOCKPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;
 LOCKPPS

 ; ----- Constants
 #define USART_BAUD_RATE 19200
 #define USART_TX_BLOCKING

 #define LEDD2 PORTA.0
 #define LEDD3 PORTA.1
 #define LEDD4 PORTA.2
 #define LEDD5 PORTA.3
 Dir LEDD2 OUT
 Dir LEDD3 OUT
 Dir LEDD4 OUT
 Dir LEDD5 OUT

 #define Potentiometer PORTA.4
 DIR Potentiometer In

 #define SWITCH_DOWN 0
 #define SWITCH_UP 1
 #define SWITCH PORTA.5
 Dir SWITCH In

 ; ----- Variables
 dim bytevar as Byte
 dim wordvar as Word
 dim longvar as long
 dim integervarP, integervarN,integervar as Integer

819

 ; ----- Main body of program commences here.
 bytevar = 0xff
 wordvar = 0xffff
 longvar = 0xffffffff
 integervarP = 127
 integervarN = -127
 integervar = 0

 do
 wait 100 ms

 HSerPrint str(bytevar)
 HSerPrintCRLF
 HSerPrint str(wordvar)
 HSerPrintCRLF
 HSerPrint str32(longvar)
 HSerPrintCRLF
 HSerPrint StrInteger(integervarP)
 HSerPrintCRLF
 HSerPrint StrInteger(integervarN)
 HSerPrintCRLF
 HSerPrint StrInteger(integervar)
 HSerPrintCRLF
 wait 100 ms
 HSerPrintCRLF

 wait 1 s
 loop
 end

; ----- Support methods. Subroutines and Functions

See Also Hex, Val

Val

Syntax:

 var = Val(string) 'Supports decimal byte and word strings only.

 'use the following for strings that represent Long numbers
 var = Val32(string) 'Supports decimal long number strings only.

820

Command Availability:

Available on all microcontrollers

Explanation:

The Val function will extract a number from a string variable, and store it in a word variable. One
potential use is reading numbers that are sent in ASCII format over a serial connection.

The Val32 function will extract a long number from a string variable, and store it in a long variable.

The Val function will not extract a value from a hexadecimal string.

Example1:

821

 'Program for an RS232 controlled dimmer
 'Set chip model
 #chip 16F1936

 'Set up hardware serial connection
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 'Set pin directions for USART and PWM

 'Variable for output level
 Dim OutputLevel As Word

 'Variables for received bytes
 Dim DataIn As String
 DataInCount = 0

 'Main Loop
 Do
 'Get serial byte
 Wait Until USARTHasData
 HSerReceive InByte

 'Process latest byte
 'Enter key?
 If InByte = 13 Then
 'Convert output level to numeric variable
 OutputLevel = Val(DataIn)

 'Output
 HPWM 1, 32, OutputLevel

 'Clear output buffer for next command
 DataIn = ""
 DataInCount = 0
 End If

 'Number?
 If InByte >= 48 and InByte <= 57 Then
 'Add to end of DataIn string
 DataInCount += 1
 DataIn(DataInCount) = InByte
 DataIn(0) = DataInCount
 End If
 Loop

822

Example2:

 ' ----- Configuration
 'Chip Settings.
 #chip 16f18855,32
 #Config MCLRE_ON

 ; ----- Define Hardware settings

 '' -------------------LATA-----------------
 '' Bit#: -7---6---5---4---3---2---1---0---
 '' LED: ---------------|D5 |D4 |D3 |D2 |-
 ''---
 ''

 'Set the PPS of the RS232 ports.
 UNLOCKPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;
 LOCKPPS

 ; ----- Constants
 #define USART_BAUD_RATE 19200
 #define USART_TX_BLOCKING

 #define LEDD2 PORTA.0
 #define LEDD3 PORTA.1
 #define LEDD4 PORTA.2
 #define LEDD5 PORTA.3
 Dir LEDD2 OUT
 Dir LEDD3 OUT
 Dir LEDD4 OUT
 Dir LEDD5 OUT

 #define Potentiometer PORTA.4
 DIR Potentiometer In

 #define SWITCH_DOWN 0
 #define SWITCH_UP 1
 #define SWITCH PORTA.5
 Dir SWITCH In

 ; ----- Variables

823

 dim bytevar as Byte
 dim wordvar as Word
 dim longvar as long

 bytevar = 0
 wordvar = 0
 longvar = 0

 ; ----- Main body of program commences here.

 #option Explicit

 do
 wait 100 ms

 bytevar = Val("255")
 HSerPrint bytevar
 HSerPrintCRLF

 wordvar = Val("65535")
 HSerPrint wordvar
 HSerPrintCRLF

 longvar = Val32("65536")
 HSerPrint longvar
 HSerPrintCRLF 2

 wait 1 s
 loop
 end

 ; ----- Support methods. Subroutines and Functions

See Also Hex, Str

824

Miscellaneous Commands
This is the Miscellaneous Commands section of the Help file. Please refer the sub-sections for details
using the contents/folder view.

Dir

Syntax:

 Dir port.bit {In | Out} (Individual Form)
 Dir port {In | Out | DirectionByte} (Entire Port Form)

Command Availability:

Available on all microcontrollers.

Explanation:

The Dir command is used to set the direction of the ports of the microcontroller chip. The individual
form sets the direction of one pin at a time, whereas the entire port form will set all bits in a port.

In the individual form, specify the port and bit (ie. PORTB.4), then the direction, which is either In or
Out.

The entire port form is similiar to the TRIS instruction offered by some Microchip PIC microcontrollers.
To use it, give the name of the port (i.e. PORTA), and then a byte is to be written into the TRIS variable.
This form of the command is for those who are familiar with the Microchip PIC microcontrollers
internal architecture.

Note: Entire port form will work differently on Atmel AVR microcontrollers when a value other than
IN or OUT is used. Atmel AVR microcontrollers use 0 to indicate in and 1 to indicate out, whereas
Microchip PIC microcontrollers use 0 for out and 1 for in. When IN and OUT are used there are no
compatibility issues.

Example:

825

 'This program sets PORTA bits 0 and 1 to in, and the rest to out.
 'It also sets all of PORTB to output, except for B1.
 'Individual form is used for PORTA:
 DIR PORTA.0 IN
 DIR PORTA.1 IN
 DIR PORTA.2 OUT
 DIR PORTA.3 OUT
 DIR PORTA.4 OUT
 DIR PORTA.5 OUT
 DIR PORTA.6 OUT
 DIR PORTA.7 OUT
 'Entire port form used for B:
 DIR PORTB b'00000010'

 'Entire port form used for C:
 DIR PORTC IN

Automatic DIRection setting by the compiler

The compiler will set the automatic pin DIRection using the following logic.

Any time that the user program reads a pin or port, the compiler records that. Any time that the user
program writes to a pin or entire port, the compiler also records that.

Once all input code has been compiled, the compiler examinies the list of reads and writes.

If a pin is only ever written to, the compiler makes it an output.

If a pin is only ever read, the compiler does not know if the intent is to read the latch or an input value,
so it sets that pin to be an input.

If the compiler sees a pin being read and written to, the compiler does not know if you are using a pin
for some sort of bidirectional communication, or if you are just reading the latch. To avoid making
incorrect assumptions, the compiler will expect you to set the pin direction manually.

If you use "portA.2 = 1", you’ve only written to the pin, so the compiler knows it must be an output.

If you use "portA.2 = not portA.2", the compiler sees that you are reading and writing to the pin, and
will expect the user program set the direction instead of trying to guess what you are doing.

The compiler also records any use of the Dir command, and will not do any automatic direction setting
on a pin if Dir has been used on that pin anywhere in the user program..

GetUserID

Syntax:

826

Command Availability:

Available on all Microchip microcontrollers that support UserIDs.

Explanation:

Reads the memory location and returns the ID for a specific microcontroller.

If the microcontroller does not support GetUSerID then the following message will be issued during
compilation Warning: GetUserID not supported by this microcontroller.

The method reads the memory location 0x8000 + Index and returns it as a Word value, where the
Index 0x00 to 0x0B as follows:

Address Function Rea
d

Writ
e

8000h-8003h User IDs Yes Yes

8006h/8005h Device ID/Revision ID Yes No

8007h-800Bh Configuration Words 1 through 5 Yes No

Refer to your particular Device Datasheet to confirm the address table

Example:

827

 #chip 16F1455
 #Config MCLRE_ON

 #include <GetUserID.h>

 #define USART_BAUD_RATE 19200
 #define USART_TX_BLOCKING

 'Implement ANSI escaope code for serial terminal NOT using a LCD!
 #define ESC chr(27)
 #define CLS HSerPrint(ESC+"[2J")
 #define HOME HSerPrint(ESC+"[H")
 #define Print HSerPrint

 CLS
 HOME

 dim UserIDRegister as word

 For Index = 0 to 0xF
 UserIDRegister = GetUserID(Index)
 HserPrint "80" + hex(NVIndex)
 HserPrint " : "
 HserPrint hex(UserIDRegister_H)
 HserPrint hex(UserIDRegister)
 Next Index

 End

Pot

Syntax:

 Pot pin, output

Command Availability:

Available on all microcontrollers.

Explanation:

Pot makes it possible to measure an analog resistance with a digital port, with the addition of a small
capacitor. This is the required circuit:

828

The command works by using the microcontroller pin to discharge the capacitor, then measuring the
time taken for the capacitor to charge again through the resistor.

The value for the capacitor must be adjusted depending on the size of the variable resistor. The
charging time needs to be approximately 2.5 ms when the resistor is at its maximum value. For a
typical 50 k potentiometer or LDR, a 50 nf capacitor is required.

This command should be used carefully. Each time it is inserted, 20 words of program memory are
used on the chip, which as a rough guide is more than 15 times the size of the Set command.

pin is the port connected to the circuit. The direction of the pin will be dealt with by the Pot command.

output is the name of the variable that will receive the value.

Example 1:

829

 'This program will beep whenever a shadow is detected
 'A potentiometer is used to adjust the threshold

 #chip 16F628A, 4

 #define ADJUST PORTB.0
 #define LDR PORTB.1
 #define SoundOut PORTB.2

 Dir SoundOut Out

 Do
 Pot ADJUST, Threshold
 Pot LDR, LightLevel
 If LightLevel > Threshold Then
 Tone 1000, 100
 End If
 Loop

Example 2:

This program is an implementation of the capacitor and resistor principle using the chips internal
capacitor and the internal pullup resistor.

The will test the state of the GPIO.3 port by using these internal components, and, after the charge state
has been complete the LED PWM will represent the detected value of signal on the GPIO.3 port.

It should be note that GCBASIC will set the DIRection of GPIO.2 and GPIO.3 automatically. And, this
solution is specific to the 12F509 and therefore the 12F509 register called NOT_GPPU may be different on
another chip.

830

 #chip 12F509
 #option Explicit

 ;Defines (Constants)
 #define PWM_Out1 GPIO.2

 ;Variables
 Dim TimeCount As byte
 Dim OPTION_REG as byte

 Do Forever

 NOT_GPPU = Off
 Wait 1 ms
 NOT_GPPU = On
 TimeCount = 0

 'Do while held high by the internal capacitance
 Do While GPIO.3 = 1

 TimeCount = TimeCount + 1
 If TimeCount = 255 Then
 Exit Do
 End If

 Loop

 PWMout 1, TimeCount, 5

 Loop

See also ladyada.net/library/rccalc.html or cvs1.uklinux.net/cgi-bin/calculators/time_const.cgi for
calculating capacitor value. These sites are not associated with GCBASIC.

PulseOut

Syntax:

 PulseOut pin, time units

Command Availability:

Available on all microcontrollers.

Explanation:

831

http://ladyada.net/library/rccalc.html
http://web.archive.org/web/20100818230450/http://www.cvs1.uklinux.net/cgi-bin/calculators/time_const.cgi

The PulseOut command will set the specified pin high, wait for the specified amount of time, and then
set the pin low again. The pin is specified in the same way as it is for the Set command, and the time is
the same as for the Wait command.

Example:

 'This program flashes an LED on GPIO.0 using PulseOut
 #chip 12F629, 4

 'The DIRection of the port is set to show the command. It is not required to set the
DIRection when using the PulseOut command.
 Dir GPIO.0 Out
 Do
 PulseOut GPIO.0, 1 sec 'Turn LED on for 1 sec
 Wait 1 sec 'Wait 1 sec with LED off
 Loop

PulseOutInv

Syntax:

 PulseOutInv pin, time units

Command Availability:

Available on all microcontrollers.

Explanation:

The PulseOutInv command will set the specified pin low, wait for the specified amount of time, and
then set the pin high. The pin is specified in the same way as it is for the Set command, and the time is
the same as for the Wait command.

Example:

 'This program flashes an LED on GPIO.0 using PulseOutInv
 #chip 12F629, 4

 Dir GPIO.0 Out
 Do
 PulseOutInv GPIO.0, 1 sec 'Turn LED off for 1 sec
 Wait 1 sec 'Wait 1 sec with LED on
 Loop

832

PulseIn

Syntax:

 PulseIn pin, user_variable, time units

Command Availability:

Available on all microcontrollers.

Explanation:

The PulseIn command will monitor the specified pin when the pin is high, and then measure the high
time. It will store the time in the user variable. The user variable must be a WORD if returned units are
expected to be > 255 (Example: Pulse is 500 ms)

PulseIn is not recommended for accurate measurement of microsecond pulses

Example:

 #chip 12F629, 4

 Dir GPIO.0 In
 Dim TimeResult as WORD

 Do while GPIO.0 = Off 'Wait for next positive edge to start measuring
 Loop

 Pulsein GPIO.0, TimeResult, ms

PulseInInv

Syntax:

 PulseInInv pin, user_variable, time units

Command Availability:

Available on all microcontrollers.

Explanation:

The PulseIn command will monitor the specified pin when the pin is low, and then measure the low
time. It will store the time in the user variable. The user variable must be a WORD if returned units are

833

expected to be > 255 (Example: Pulse is 500 ms)

PulseInInv is not recommended for accurate measurement of microsecond pulses.

Example:

 #chip 12F629, 4

 Dir GPIO.0 In
 Dim TimeResult as WORD

 Do while GPIO.0 = On 'Wait for next negative edge to start measuring
 Loop

 PulseinInv GPIO.0, TimeResult, ms

Peek

Syntax:

 OutputVariable = Peek (location)

Command Availability:

Available on all microcontrollers.

Explanation:

The Peek function is used to read information from the on-chip RAM of the microcontroller.

location is a word variable that gives the address to read. The exact range of valid values varies from
chip to chip.

This command should not normally be used, as it will make the porting of code to another chip very
difficult.

Example #1 :

 'This program will read and check a value from PORTA
 'This specific peek will only work on some microcontrollers
 Temp = Peek(5)
 IF Temp.2 ON THEN SET green ON
IF Temp.2 OFF THEN SET red ON

Example #2

834

 ' This subroutine will toggle the pin state.
 ' You must change the parameters for your specific chip.
 ' Usage as show in examples below.
 '
 ' Toggle @PORTE, 2 ' equates to RE1.
 ' Wait 100 ms
 ' Toggle @PORTE, 2
 ' Wait 100 ms

 ' Port , Pin address in Binary
 ' Pin0 = 1
 ' Pin1 = 2
 ' Pin2 = 4
 ' Pin3 = 8
 '
 ' You can toggle any number of pins.
 ' Toggle @PORTE, 0x55
 Sub Toggle (In DestPort As word, In DestBit)
 Poke DestPort, Peek(DestPort) xor DestBit
 End sub

See Also Poke

Poke

Syntax:

 Poke(location, value)

Command Availability:

Available on all microcontrollers.

Explanation:

The Poke command is used to write information to the on-chip RAM of the microcontroller.

location is a word variable that gives the address to write. The exact range of valid values varies from
chip to chip. value is the data to write to the location.

This command should not normally be used, as it will make the porting of code to another chip very
difficult.

Example 1:

835

 'This program will set all of the PORTB pins high
 POKE (6, 255)

Example 2:

 ;Chip Settings
 #chip 16F88

 Dir PORTB out

 Do Forever
 FlashPin @PORTB, 8
 Wait 1 s
 Loop

 Sub FlashPin (In DestVar As word, In DestBit)
 Poke DestVar, Peek(DestVar) Or DestBit
 Wait 1 s
 Poke DestVar, Peek(DestVar) And Not DestBit
 End Sub

Using @ before the name of a variable (including a special function register) will give you the address
of that variable, which can then be stored in a word variable and used by Peek and Poke to indirectly
access the location.

See Also Peek

Weak Pullups

Weak pullups provide a method within many microcontrollers such as the Atmel AVR and Microchip
PIC microcontrollers to support internal/selectable pull-ups for convenience and reduced parts count.

If you require Weak pullups these internal pullups can provide a simple solution. For example, you can
use them to ground input pins with a switch closure - with the pullup enabled, the pin is held in a high
state until the input line pulls it to ground. Be aware of possible EMI interference and also make sure
to use a debounce routine.

If you need your weak pullups to exactly control current (rare for most microcontroller applications),
then you should consider 10k resistors (5V/10K = 500uA) Why? If you review in the microcontroller
data sheet, there is no resistance given for the weak pullups. That is because they are not weak pull-
resistors they are weak pullups consisting of what appear to be high-resistance channel pFETs. Their
channel resistance will vary with temperature and between parts; not easy to characterize.

The data sheet gives a current range for the internals as 50-400uA (at 5V).

836

PORTs can have an individually controlled weak internal pullup. When set, each bit of the appropriate
Microchip PIC register enables the corresponding pin pullup. There is a master bit within a specific
register bit that enables pullups on all pins which also have their corresponding weak pull bit set.
Also when set, there is a weak pull register bit to disable all weak pullups.

The weak pullup is automatically turned off when the port pin is configured as an output. The pullups
are disabled on a Power-on Reset.

Each specific microcontroller has different registers/bits for this functionality.

You should review the datasheet for the method for a specific microcontroller.

The following code demonstrates how to set the weak pullups available on port B of an 18F25K20.

Example:

 'A program to show the use of weak pullups on portb.
 'Set chip model
 #chip 18F25k20,16 'at 16 MHz
 #config MCLR = Off

 Set RBPU = 0 'enabling Port B pullups in general.
 SET WPUB1 = 1 'portb.1 pulled up
 Set WPUB2 = 1 'portb.2
 Set WPUB3 = 1 'portb.3
 Set WPUB4 = 1 'portb.4

 Dir Portb in
 Dir Portc out

 do
 portc.1 = portb.1 'in pin 22, out pin 12
 portc.2 = portb.2 'in pin 23, out pin 13
 portc.3 = portb.3 'in pin 24, out pin 14
 portc.4 = portb.4 'in pin 25, out pin 15

 loop 'jump back to the start of the program

 'main line ends here
 end

Also, see I2C Slave Hardware for an example using a 16F microcontroller.

837

Maths
This is the Maths section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Abs

Syntax:

 integer_variable = Abs(integer_variable)

Command Availability:

Available on all microcontrollers.

Explanation:

The Abs function will compute the absolute value of a integer number therefore in the range of −32767
to +32767.

Example:

 absolute_value = Abs(-127) ' Will return 127
 absolute_value = Abs(127) ' Will return 127 also. :-)

Average

Syntax:

 integer_variable = Average(byte_variable1 , byte_variable2)

Command Availability:

Available on all microcontrollers.

Explanation:

A function that returns the average of two numbers. This only supports byte variables.

Provides a very fast way to calculate the average of two 8 bit numbers.

Example:

838

 average_value = Average(8,4) ' Will return 6

Difference

Syntax:

 Difference (word_variable1 , word_variable2) or
 Difference (byte_variable1 , byte_variable2)

Command Availability:

Available on all microcontrollers.

Explanation:

A function that returns the difference between of two numbers. This only supports byte or word
variables.

Example:

 Difference(8 ,4) ' Will return 4
 Difference(0xff01 , 0xfffa) ' Will return 0xf9 or 249d

Int

Syntax:

 integer_variable = Int(single_variable)

Command Availability:

Available on all microcontrollers.

Explanation:

The Int function will compute the integer value of an integer number therefore will return the range
of single variable.

Example:

 integer_value = Int(_singlevariable_) ' Will return the range of single
variable.

839

Logarithms

Explanation:

GCBASIC support logarithmic functions through the include file <maths.h>.

These functions compute base 2, base e and base 10 logarithms accurate to 2 decimal places, +/- 0.01.

The values returned are fixed-point numbers, with two decimal places assumed on the right. Or if you
prefer, think of the values as being scaled up by 100.

The input arguments are word-sized integers, 1 to 65535. Remember, logarithms are not defined for
non-positive numbers. It is the calling program’s responsibility to avoid these. Output values are also
word-sized.

Local variables consume 9 bytes, while the function parameters consume another 4 bytes, for a grand
total of 13 bytes of RAM used. The lookup table takes 35 words of program memory.

For more help, see Log10, Log2, Loge

Supported in <MATHS.H>

Log2

Syntax:

 returned_word_variable = Log2 (word_value)

Command Availability:

Available on all microcontrollers.

Explanation:

The Log2 command will return the base-2 logarithm, to 2 decimal places.

The values returned are fixed-point numbers, with two decimal places assumed on the right. or if you
prefer, think of the values as being scaled up by 100.

Example:

 dim log_value as word
 log_value = log2 (10) 'return 3321 equate to 3.321

Supported in <MATHS.H>

840

Loge

Syntax:

 returned_word_variable = Loge (word_value)

Command Availability:

Available on all microcontrollers.

Explanation:

The Loge command will return the base-e logarithm, to 2 decimal places.

The values returned are fixed-point numbers, with two decimal places assumed on the right. or if you
prefer, think of the values as being scaled up by 100.

Example:

 dim log_value as word
 log_value = loge (10)

Supported in <MATHS.H>

Log10

Syntax:

 returned_word_variable = Log10 (word_value)

Command Availability:

Available on all microcontrollers.

Explanation:

The Log10 command will return the base-10 logarithm, to 2 decimal places.

The values returned are fixed-point numbers, with two decimal places assumed on the right. or if you
prefer, think of the values as being scaled up by 100.

Example:

841

 dim log_value as word
 log_value = log10 (10) 'return 230 equate to 2.30

Supported in <MATHS.H>

Power

Syntax:

 power(base, exponent)

Explanation:

This function raises a base to an exponent, i.e, power(base,exponent). Calculation powers will become
large, in terms of long numbers, you must ensure the program manage numbers remain within range
of the defined variables.

The base and exponent are Byte sized numbers in this method.
The returned result is a Long.
Non-negative numbers are assumed throughout.

Note: 0 raised to 0 is meaningless and should be avoided, but, any other non-zero base raised to 0 is
handled correctly.

Example:

842

 ;Thomas Henry -- 5/2/2014

 ;----- Configuration

 #chip 16F88, 8 ;PIC16F88 running at 8 MHz
 #config mclr=off ;reset handled internally

 #include <maths.h> ;required maths.h

 ;----- Constants

 #define LCD_IO 4 ;4-bit mode
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RS PortB.2 ;pin 8 is LCD Register Select
 #define LCD_Enable PortB.3 ;pin 9 is LCD Enable
 #define LCD_DB4 PortB.4 ;DB4 on pin 10
 #define LCD_DB5 PortB.5 ;DB5 on pin 11
 #define LCD_DB6 PortB.6 ;DB6 on pin 12
 #define LCD_DB7 PortB.7 ;DB7 on pin 13
 #define LCD_NO_RW 1 ;Ground the RW line on LCD

 ;----- Variables

 dim i, j as byte

 ;----- Program

 dir PortB out ;all outputs to the LCD
 for i = 1 to 10 ;do all the way from
 for j = 0 to 9 ;1^0 on up to 10^9
 cls
 print i
 print "^"
 print j
 print "="
 locate 1,0
 print power(i,j) ;here's the invocation
 wait 1 S
 next j
 next i

Supported in <MATHS.H>

843

RoundSingle

Syntax:

 rounded_single_value = RoundSingle(single_variable)

Command Availability:

Available on all microcontrollers.

Explanation:

The RoundSingle function will return a floating point number that is a rounded version of the specified
number.

This operates the same as Microsoft floor().

Example:

 rounded_single_value = RoundSingle(_singlevariable_) ' Will return the range of
single variable.

Scale

Syntax:

 integer_variable = Scale (value_word , fromLow_integer , fromHigh_integer ,
toLow_integer , toHigh_integer [, calibration_integer])

Command Availability:

Available on all microcontrollers. The parameters are:

value: the number to scale. A value between 0 and 0xFFFFF - all values passed will be treated as Word
variables.

fromLow: the lower bound of the value’s current range. An Integer value between -32767 and 32767.

fromHigh: the upper bound of the value’s current range. An Integer value between -32767 and 32767.

toLow: the lower bound of the value’s target range. An Integer value between -32767 and 32767.

toHigh: the upper bound of the value’s target range. An Integer value between -32767 and 32767.

calibration: optional calibration offset value. An Integer value between -32767 and 32767.

844

This is also an overloaded method. You can also use word variables to provide a returned result of 0-
65535.

 word_variable = Scale (value_word , fromLow_word , fromHigh_word , toLow_wordr ,
toHigh_word [, calibration_integer])

Available on all microcontrollers. The parameters are:

value: the number to scale. A value between 0 and 0xFFFFF - all values passed will be treated as Word
variables.

fromLow: the lower bound of the value’s current range. A word value.

fromHigh: the upper bound of the value’s current range. A word value.

toLow: the lower bound of the value’s target range. A word value.

toHigh: the upper bound of the value’s target range. A word value.

calibration: optional calibration offset value. An Integer value between -32767 and 32767.

Explanation:

Scales, re-maps, a number from one range to another. That is, a value of fromLow would gets scaled
to toLow, a value of fromHigh to toHigh, values in-between to values in-between, etc.

The method does not constrain values to within the integer range returned, because out-of-range
values are sometimes intended and useful.

Note that the "lower bounds" of either range may be larger or smaller than the "upper bounds" so the
scale() method may be used to reverse a range of numbers, for example:

 my_newvalue = scale (ReadAD10(An0) , 0, 1023, 135, 270)

The method also handles negative integer numbers well, so that this example:

 my_newvalue = scale(ReadAD(An0), 0, 255, 50, -100);

This method is similar to the Ardunio Map() function.

Sqrt

Syntax:

845

 word_variable = sqrt (word)

Explanation:

A square root routine for GCBASIC. The function only involves bit shifting, addition and subtraction,
which makes it fast and efficient.

This method required a word variable as the input and a word variable as the output. The method will
handle arguments of up to 4294.

Command Availability:

Available on all microcontrollers, required MATHS.H include file.

Example:

 ;Demo: Show the first 100 square roots to 2 decimal places.
 ;This uses the maths.h include file.

 ;----- Configuration

 #chip 16F88, 8 ;PIC16F88 running at 8 MHz
 #config mclr=off ;reset handled internally

 #include <maths.h> ;required maths.h

 ;----- Constants

 #define LCD_IO 4 ;4-bit mode
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RS PortB.2 ;pin 8 is LCD Register Select
 #define LCD_Enable PortB.3 ;pin 9 is LCD Enable
 #define LCD_DB4 PortB.4 ;DB4 on pin 10
 #define LCD_DB5 PortB.5 ;DB5 on pin 11
 #define LCD_DB6 PortB.6 ;DB6 on pin 12
 #define LCD_DB7 PortB.7 ;DB7 on pin 13
 #define LCD_NO_RW 1 ;ground the RW line on LCD

 ;----- Variables

 dim length as byte
 dim i as word
 dim valStr, outStr as string

 ;----- Program

846

 dir PortB out ;all outputs to the LCD

 for i = 0 to 100 ;print first 100 square roots
 cls
 print "sqrt("
 print i
 print ")="

 valStr = str(sqrt(i)) ;format decimal nicely
 length = len(valStr)

 select case length
 case 1:
 outStr = "0.00" ;zero case
 case 3:
 outStr = left(valStr,1)+ "."+right(valStr,2)
 case 4:
 outStr = left(valStr,2)+ "."+right(valStr,2)
 case 5:
 outStr = left(valStr,3)+ "."+right(valStr,2)
 end select

 print outStr ;display results
 wait 2 S
 next i

Supported in <MATHS.H>

Trigonometry Sine, Cosine and Tangent

Syntax:

 integer_variable = sin(integer_variable)

 integer_variable = cos(integer_variable)

 integer_variable = tan(integer_variable)

Explanation:

GCBASIC supports Three Primary Trigonometric Functions

GCBASIC supports the following functions, sin(x), cos(x), tan(x), where x is a signed integer
representing an angle measured in a whole number of degrees. The output values are also integers,
represented as fixed point decimal fractions.

847

Details:

The sine, cosine and tangent functions are available for your programs simply by including the header
file offering the precision you need.

 #INCLUDE <TRIG2PLACES.H> gives two decimal places
 #INCLUDE <TRIG3PLACES.H> gives three decimal places
 #INCLUDE <TRIG4PLACES.H> gives four decimal places

In fixed point representation, the decimal point is assumed. For example, with two places of accuracy,
sin(60) returns 87, which you would interpret as 0.87. With three places, 866 is returned, to be
interpreted as 0.866, and so on. Another way of thinking of this is to consider the two-place values as
scaled up by 100, the three-place values scaled up by 1000 and the four-place values scaled up by
10,000.

Sine and Cosine are always defined, but remember that tangent fails to exist at 90 degrees, 270 degrees
and all their coterminal angles. It is the responsibility of the calling program to avoid these special
values.

Note that the tangent function is not available to four decimal places, since its value grows so rapidly,
exceeding what the Integer data type can represent.

These routines are completely general. The input argument may be positive, negative or zero, with no
restriction on the size. Further observe that lookup tables are used, so the routines are very fast,
efficient and accurate.

Example: Show the trigonometric values to three decimal places.

 ;----- Configuration
 #CHIP 16F88, 8 ;PIC16F88 RUNNING AT 8 MHZ
 #CONFIG MCLR=OFF ;RESET HANDLED INTERNALLY

 #INCLUDE <TRIG3PLACES.H>

 ;----- Constants

 #define LCD_IO 4 ;4-bit mode
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RS PortB.2 ;pin 8 is LCD Register Select
 #define LCD_Enable PortB.3 ;pin 9 is LCD Enable
 #define LCD_DB4 PortB.4 ;DB4 on pin 10
 #define LCD_DB5 PortB.5 ;DB5 on pin 11
 #define LCD_DB6 PortB.6 ;DB6a on pin 12
 #define LCD_DB7 PortB.7 ;DB7 on pin 13
 #define LCD_NO_RW 1 ;ground the RW line on LCD

848

 ;----- Variables

 dim ii as integer
 dim outStr, valStr as string

 ;----- Program

 dir PortB out ;all outputs to the LCD

 for ii = -720 to 720 ;arguments from -720 to 720
 cls
 print "sin(" ;print the label
 print ii ;and the argument
 print ")=" ;and closing parenthesis
 locate 1,0
 printTrig(sin(ii)) ;print value of the sine
 wait 500 mS ;pause to view

 cls ;do likewise for cosine
 print "cos("
 print ii
 print ")="
 locate 1,0
 printTrig(cos(ii))
 wait 500 mS ;pause to view
 cls ;do likewise for tangent
 print "tan("
 print ii
 print ")="
 locate 1,0
 printTrig(tan(ii))
 wait 500 mS ;pause to view
 next i

 sub printTrig(in value as integer)
 ;print decently formatted trig results

 outStr = "" ;assume positive (no sign)

 if value < 0 then ;handle negatives
 outStr = "-" ;prefix a minus sign
 value = -1 * value ;but work with positives
 end if

 valStr = str(value)
 length = len(valStr)
 select case length

849

 case 1:
 outStr = outStr + "0.00" + valStr
 case 2:
 outStr = outStr + "0.0" + valStr
 case 3:
 outStr = outStr + "0." + valStr
 case 4:
 outStr = outStr + left(valStr,1) + "." + right(valStr,3)
 case 5:
 outStr = outStr + left(valStr,2) + "." + right(valStr,3)
 end select
 print outStr
 end sub

Trigonometry ATAN

Syntax:

 #include <maths.h>

 integer_variable = ATan (_x_vector_,_y_vector_)

Explanation:

GCBASIC supports the trigonometric function for ATan.

Details:

GCBASIC supports the following functions ATan(x, y) where x and y are the vectors. The function
returns an Integer result representing the angle measured in a whole number of degrees.

The function also returns a global byte variable NegFlag with returns the quadrant of the angle.

Quadrant 1 = 0 to 89
Quadrant 2 = 90 to 179
Quadrant 3 = 180 to 269
Quadrant 4 = 270 to 359

This ATan function is a fast XY vector to integer degree algorithm developed in Jan 2011, see
www.RomanBlack.com and see http://www.romanblack.com/integer_degree.htm

The function converts any XY vectors including 0 to a degree value that should be within +/- 1 degree of
the accurate value without needing large slow trig functions like ArcTan() or ArcCos().

At least one of the X or Y values must be non-zero. This is the full version, for all 4 quadrants and will

850

http://www.romanblack.com/integer_degree.htm

generate the angle in integer degrees from 0-360. Any values of X and Y are usable including negative
values provided they are between -1456 and 1456 so the 16bit multiply does not overflow.

851

Peripheral Pin Select
This is the Peripheral Pin Select section of the Help file. Please refer the sub-sections for details using
the contents/folder view.

Peripheral Pin Select for Microchip microcontrollers.

Introduction:

Peripheral Pin Select (PPS) enables the digital peripheral I/O pins to be changed to support mapping of
external pins to different pins.

In older 8-bit Microchip devices, a peripheral was hard-wired to a specific pin (example: PWM1 output
on pin RC5).

PPS allows you to choose from a number of output and input pins to connect to the digital peripheral.

This can be extremely useful for routing circuit boards.

There are cases where a change of I/O position can make a circuit board easier to route Sometimes
mistakes are found too late to fix so having the option to change a pinout mapping in software rather
than creating a new printed circuit board can be very helpful.

You must use the command UnLockPPS to enable setting of the PPS if the PPS have been previously
locked, and, you can, optionally, use LockPPS to prevent unintentional change to PPS settings.

GCBASIC includes these two macros to ensure this process is handled correctly.

Also, see http://microchip.wikidot.com/8bit:pps for more information.

Example:

852

http://microchip.wikidot.com/8bit:pps

 'Please check configuration before using on an alternative microcontroller.

 #chip 16f18855,32
 #option explicit

 'Set the PPS of the I2C and the RS232 ports.
 #startup InitPPS, 85
 Sub InitPPS
 LOCKPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;

 SSP1CLKPPS = 0x14 'RC3->MSSP1:SCL1;
 SSP1DATPPS = 0x13 'RC4->MSSP1:SDA1;
 RC3PPS = 0x15 'RC3->MSSP1:SCL1;
 RC4PPS = 0x14 'RC4->MSSP1:SDA1;
 UnLockPPS
 End Sub

For more help, see: UnlockPPS and LockPPS.

UnLockPPS

Syntax:

 UNLOCKPPS

Explanation:

Peripheral Pin Select (PPS) has an operation mode in which all input and output selections can be
prevented to stop inadvertent changes.

PPS selections are unlocked by setting by the use of the UnLockPPS command.

Using this command will ensure the special sequence of Microchip assembler is handled correctly.

Command Availability:

Available on all Microchip microcontrollers only.

853

 #chip 16f18855,32
 #option explicit

 'Set the PPS of the I2C and the RS232 ports.
 #startup InitPPS, 85
 Sub InitPPS
 UNLOCKPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;

 SSP1CLKPPS = 0x14 'RC3->MSSP1:SCL1;
 SSP1DATPPS = 0x13 'RC4->MSSP1:SDA1;
 RC3PPS = 0x15 'RC3->MSSP1:SCL1;
 RC4PPS = 0x14 'RC4->MSSP1:SDA1;
 LockPPS
 End Sub

For more help, see: LockPPS.

LockPPS

Syntax:

 LOCKPSS

Explanation:

Peripheral Pin Select (PPS) has an operation mode in which all input and output selections can be
prevented to stop inadvertent changes.

PPS selections are locked by setting by the use of the LockPPS command.

Using this command will ensure the special sequence of Microchip assembler is handled correctly.

Command Availability:

Available on all Microchip microcontrollers only.

854

 #chip 16f18855,32
 #option explicit

 'Set the PPS of the I2C and the RS232 ports.
 #startup InitPPS, 85
 Sub InitPPS
 UNLOCKPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;

 SSP1CLKPPS = 0x14 'RC3->MSSP1:SCL1;
 SSP1DATPPS = 0x13 'RC4->MSSP1:SDA1;
 RC3PPS = 0x15 'RC3->MSSP1:SCL1;
 RC4PPS = 0x14 'RC4->MSSP1:SDA1;
 LOCKPPS
 End Sub

For more help, see: UnlockPPS.

855

Compiler Directives
This is the Compiler Directives section of the Help file. Please refer the sub-sections for details using
the contents/folder view.

#asmraw
Syntax:

 #asmraw [label]
 #asmraw [Mnemonics | Directives | Macros] [Operands] ['comments]

for ASM blocks use

 #asmraw[
 [label]
 [Mnemonics | Directives | Macros] [Operands] ['comments]
 #asmraw]

Explanation:

The #asmraw directive is used to specify the assembly that GCBASIC will use.

Anything following this directive will be inserted into ASM source file with no changes other than
trimming spaces - no replacement of constants.

Assembly is a programming language you may use to develop the source code for your application.
The directive must conform to the following basic guidelines. Each line of the source file may contain
up to four types of information:

• Labels

• Mnemonics, Directives and Macros

• Operands

• Comments

The order and position of these are important. For ease of debugging, it is recommended that labels
start in column one and mnemonics start in column two or beyond. Operands follow the
mnemonic.

856

Comments may follow the operands, mnemonics or labels, and can start in any column. The maximum
column width is 255 characters.

White space or a colon must separate the label and the mnemonic, and white space must separate the
mnemonic and the operand(s). Multiple operands must be separated by commas.

White space is one or more spaces or tabs. White space is used to separate pieces of a source line.
White space should be used to make your code easier for people to read.

Example 1

 #asmraw lds SysValueCopy,TCCR0B
 #asmraw andi SysValueCopy, 0xf8
 #asmraw inc SysValueCopy
 #asmraw sts TCCR0B, SysValueCopy

Example 2

 #asmraw[
 lds SysValueCopy,TCCR0B
 andi SysValueCopy, 0xf8
 inc SysValueCopy
 sts TCCR0B, SysValueCopy
 #asmraw]

This example will generate the following in the ASM source file.

 lds SysValueCopy,TCCR0B
 andi SysValueCopy, 0xf8
 inc SysValueCopy
 sts TCCR0B, SysValueCopy

#chip
Syntax:

 #chip model, frequency

 #chip model, frequency / numeric constant

857

Explanation:

The #chip directive is used to specify the chip model and frequency that GCBASIC will use.

The model is the specific microcontroller - examples are "16F819".

The frequency is the frequency of the chip in MHz, and is required for the delay and PWM routines. The
following constants simplify setting specific frequencies. 31k, 32.768K, 125k, 250k or 500k. Any of these
constant can be used. As shown in the example below.

If frequency is not present the compiler will select a frequency default frequency that should work for
the microcontroller.

If numeric constant is specified then the compiler will complete a simple math calculation to determine
the frequency. The only supported math instruction is divide.

1. If the chip has an internal oscillator, the compiler will use that and pick the highest frequency it
supports.

2. If the chip does not have an internal oscillator, then GCBASIC will assume that the chip is being run
at its maximum possible clock frequency using an external crystal.

3. If you are using an external crystal then you must specify a chip frequency.

When using an AVR:

1. There is no need to specify "AT" before the name.

2. Only AVRDX chips support setting the internal frequency using the frequency statement.

3. megaAVR assumes an external oscillator, and, therefore the frequency must match the external
oscillator frequency. For Arduino products this is typically 16Mhz

When using a LGT:

1. Only LGT support setting the internal frequency using the frequency statement.

Examples:

858

 #chip 12F509, 4
 #chip 18F4550, 48
 #chip 16F88, 0.125
 #chip tiny2313, 1
 #chip mega8, 16
 #chip 12f1840, 31k
 #chip 12f1840, 500k
 #chip 12f1840, 250k
 #chip 12f1840, 125k

 #chip lgt8x328p, 4
 #chip tiny3127, 16 / 48

 'Select the internal low frequency oscillator. The microcontroller must have a low
frequency oscillator option. The internal oscillator is automatically selected on PIC.
 #chip 16f18326, 31k

 'Select the external SOSC clock source.
 #chip 16f18855, 32.768k
 #config osc=SOSC

Setting Other Clock frequencies: Some alternative compilers allow value of the clock frequency to be
set with the numerical value in Hertz (i.e. 24576000). This can be useful when using the clock
frequencies other than standard frequencies.

GCBASIC requires clock frequencys to be specified in MHz, but will accept decimal points. For example,
if you wanted to run a 16F1827 at 24576000 Hz, you would write the following:

 #chip 16F1827, 24.576

GCBASIC support for microcontrollers:

Each microcontroller has a microcontroller data file. This file is located in \GCBasic\chipdata\ folder
when installed.

An example is 12F1840.dat

The there are two sections in the microcontroller data file that control the "chip frequency", they are:

[ChipData] and *[ConfigOps]*

ChipData section

The ChipData section for 12F1840 microcontroller. The 12F1840 is used an example

859

 [ChipData]
 Prog=4096
 EEPROM=256
 RAM=256
 I/O=6
 ADC=4
 MaxMHz=32
 IntOsc=32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.125
 31kSupport=INTOSC,OSCCON,2
 Pins=8
 Family=15
 ConfigWords=2
 PSP=0
 MaxAddress=4095

The IntOsc line specifies the supported internal clock frequencies - The 12F1840 microcontroller
supports nine internal frequencies (ChipMHz). #Chip is used as follows: The 31kSupport line specifies
the chip supports 31k for internal clock frequency.

 #chip 12F1840, 32

A ChipMHz of 32 does two things.

1. When using the internal oscillator, it tells the compiler to set the chip clock frequency (FOSC) to
32MHz

2. It tells the compiler to calculate all delays (wait times) based upon FOSC of 32 MHz. Unlike Picaxe
Basic (and other compilers) GCBASIC delays ("wait") are correct regardless of the setting of FOSC. If
you set the internal oscillator to 4 MHz a "wait 1 ms" will still be 1 ms.

If you set chipMHz to something other than the valid options in the [ChipData] IntOsc section of the
microcontroller specific dat file, then, the compiler assumes that you are using an external oscillator
and will calculate the delays according to the value you use. The wait times will be incorrect if you are
not using an external oscillator at the same frequency as ChipMhz.

 Example: #chip 12F1840, 12

Since "12" is not a valid internal osc frequency, the microcontroller FOSC will default to 8 MHz because
there is no external crystal installed. However, the wait times will be incorrect as they will be
calculated by the compiler based upon a 12 Mhz clock.

ConfigOps section

The [ConfigOps] section of 12F1840.dat is towards the end of the chip data file. For the 12F1840 is looks

860

like this

 [ConfigOps]
 OSC=LP,XT,HS,EXTRC,INTOSC,ECL,ECM,ECH
 WDTE=OFF,SWDTEN,NSLEEP,ON
 PWRTE=ON,OFF
 MCLRE=OFF,ON
 CP=ON,OFF
 CPD=ON,OFF
 BOREN=OFF,SBODEN,NSLEEP,ON
 CLKOUTEN=ON,OFF
 IESO=OFF,ON
 FCMEN=OFF,ON
 WRT=ALL,HALF,BOOT,OFF
 PLLEN=OFF,ON
 STVREN=OFF,ON
 BORV=HI,LO,19
 LVP=OFF,ON

OSC specifies which oscillator options are available for the specific microcontroller. INTOSC is the
internal oscillator. All others are some form of external clock source. PLLEN sets the internal Phase Lock
Loop either on or off. With this chip the default clock frequency is 8 Mhz. The PLL multiplies this by 4.
So to get 32 Mhz the basic internal oscillator will be 8 Mhz then multiplied by 4. For 16 MHz it wil be 4
multiplied by 2.

GCB sets the PLL automatically, so this option should generally be left alone. IF PLLEN is set to ON, then
GCB may not be able to set the correct frewuency of the internal oscillator. Only set PLL = ON if you
know what you are doing.

It is a good practice to set the oscillator source in #config at the beginning of your code when you are
not using the internal oscillator. This prevents potential errors. Example:

 #Chip 12F1840, 16
 #Config OSC = INTOSC 'This is normally not required as the internal oscillator is
the default oscillator.

In this example above, GCBASIC will automatically set the necessary OSC bits for the microcontroller.
Frequency bits will be set to 4 MHz and the PLL will be turned on and wait times will be calculated on
an FOSC of 16.

You can set the clock to other frequencies but you have to put the PIC into EC or External Clock mode
and then supply that specific clock frequency to the OSC1 pin.

There are three EC modes on the PIC12F1840:

861

 ECL - 0 MHz - 0.5 MHz
 ECM - 0.5 MHz - 4 MHz
 ECH = 4 MHz - 32MHz

Example: For a 2.1 MHz clock you would need to set the #config and the clock frequency, and, provide
the OSC1 pin with a 2.1 MHz signal.

 #chip 12f1840,2.1
 #config OSC = ECM

Notes

When "#config osc=" is not specified in the source code, most microcontrollers will default to an
external oscillator source. This means at runtime the chip is expecting an external clock signal. If the
external clock signal is not present, the chip detects a "failure" of the external clock and will "falls
back" to the default internal oscillator setting.

The PLLEN bit defaults to OFF. The PLL is enabled depending upon the ChipMhz in #Chip xxxxxx,
ChipMhz.

The GCBASIC defaults - This is how the bits are set if there is no #config in the source code, GCBASIC
does set certain bits. To examine what bits are set on a particular chip you can omit #config in the
source code, thenm compile the code and then use "Open ASM" in the GCBASIC IDE. The bits that are
set will be in the config section. All other bits (those not specifically set) with #Config will be at the POR
setting as described below, The POR settings are shown in the datasheet for each microcontroller.

Currently GCBASIC sets the LVP bit OFF by default on many chips. This does not affect normal HV
programming like a with a PicKit3. The default of LVP = OFF will prevent the microcontroller from
being programmed with Low Voltage Programmer. This means that if a PIC microcontroller has
previously been programmed with with "LVP = OFF", then it must be erased or reprogrammed with
LVP = ON using a HVP programmer prior to using certain programming devices e.g. Curiosity
development boards, or "NS" programmers as these required that LVP = ON.

When LVP = ON, the MCLR pin is automatically set to EXTERNAL MCLR. This means that the MCLRE
pin CANNOT be sue for general purpose I/O functions.

The native POR (Power On Reset) defaults. This is the state of the config bits after Power on if the ASM
code has no configuration entries or on a blank factory chip. The only way to power up in this state
with GCB code is to use " #option NoConfig" in the GCBASIC source code.

#config
Syntax:

862

 #config option1, option2, ... , optionN

Explanation:

The #config directive is used to specify configuration options for the chip. There is a detailed
explanation of #config in the Configuration section of help.

See Also Configuration

#DEFINE
Syntax:

 #DEFINE NAME [String]

 or

 #DEFINE NAME [= String]

Explanation:

#DEFINE allows to declare string-based preprocessor constants.

This directive defines a text substitution string. Wherever name is encountered in the program or
assembly code, string will be substituted.

The expansion is done recursively, until there is nothing more to expand and the compiler can
continue analyzing the resulting code.

The use of an existing constant is supported. The order of constants when using an existing constant is
strict. The constant must exist prior to use.

To ensure evaluation of a calculation. A `=` must be used. This is strict.

#UNDEFINE can be used to make the compiler delete an existing constant.

Using the directive with no string causes a definition of name to be noted internally and may be tested
for using the ifdef directive/conditional processing. See the examples below.

Constants defined with this method are available for viewing in the CDF file. Creation of the CDF file is
controlled with the Programmer Preferences Utility.

GCBASIC does not support creation of SUBroutine or FUNCTION with this directive.

Examples:

863

This progress shows the creation of constants, the processing and showing of constants within a script,
creation of specific constants within a script and use of constants within a program.

 #chip MEGA4809
 #option Explicit

 // Numeric constants
 #define LENGTH 20
 #define CONTROL 0x19,7
 #define SINGLEPI = 22/7 // evaluated
numberic string
 #define INTPI = INT(22/7) // evaluated
numberic string
 #define FACTOREDPI = INT((22/7 - INT(22/7))*1000) // evaluated
numberic string
 #define LENGTHSQUARED = LENGTH * LENGTH // evaluated
numberic string
 #define PI 3.142
 #define RADIUS 10
 #define CIRCUMFERENCECALC = PI * RADIUS // evaluated
numberic string, with constant substitution
 #define FACTORISEDCIRCUMFERENCE = INT(CIRCUMFERENCECALC*100) // evaluated
numberic string, with constant substitution

 //String(s) required double quotes and NO `=` assignment
 #define MYSTRING "This is a string"
 // A string assignment is not required
 #define ACONSTANTTHATEXISTS

 // Macros are not supported.. just define the sub!
 // #define BADPOSITION(XX,YY,ZZ) (YY-(2 * ZZ +XX))

 // Unused Constants that are invalid may not report an error until try to use within
your program- as in this example
 // String assignment with an equal sign will fail. Do not use `=`
 #define BADMYSTRING = "This is a string"

 #script
 //Scripts can modify and manage CONSTANTS

 // Warning can be used to show values during compilation
 WARNING LENGTH
 WARNING CONTROL
 WARNING SINGLEPI

864

 WARNING INTPI
 WARNING FACTOREDPI
 WARNING MYSTRING

 If DEF(ACONSTANTTHATEXISTS) Then
 WARNING "The constant ACONSTANTTHATEXISTS exists"
 End If

 // Test for a value in the [ChipData] section of the DAT file. Always has the
prefix CHIP
 If DEF(CHIPAVRDX) Then
 WARNING "This is an AVRDX chip"
 End If

 // Good practice constant testing, see the code below for BAD and GOOD practice

 // Set the constant to 0 we can use this to test for validity
 // Use prefix of SCRIPT as this is clear in the program
 SCRIPTAN1CONSTANT = 0
 If DEF(AVRDX) Then
 // Is this an AVRDx chip
 If DEF(AIN1) Then
 SCRIPTAN1CONSTANT = AIN1
 End If
 End If
 If NODEF(AVRDX) Then
 // This is NOT an Avrdx chip
 If DEF(AVR) Then
 // This is an AVR
 SCRIPTAN1CONSTANT = AN1
 End If
 If DEF(PIC) Then
 // This is an AVR
 SCRIPTAN1CONSTANT = ANA1
 End If
 End If
 // Now test for validate result
 If SCRIPTAN1CONSTANT = 0 Then
 WARNING Script has determined that no valid ADC port exists, or, some
other message
 End If

 #endscript

 // Some conditional examples

 #IF DEF(CONSTANTTHATEXISTS)
 //! Cause a compiler error - as the constant exits. Remove comment to test

865

 #ELSE
 //! Cause a compiler error - as the constant does not exits. Remove comment to
test
 #ENDIF

 #IFDEF
Oneof(CHIP_18F24K40,CHIP_18F25K40,CHIP_18F26K40,CHIP_18F27K40,CHIP_18F45K40,CHIP_18F46K40
,CHIP_18F47K40,CHIP_18F65K40,CHIP_18F66K40,CHIP_18LF24K40, CHIP_18LF25K40,
CHIP_18LF26K40, CHIP_18LF27K40, CHIP_18LF45K40, CHIP_18LF46K40, CHIP_18LF47K40,
CHIP_18F65K40, CHIP_18LF65K40, CHIP_18F66K40, CHIP_18LF66K40, CHIP_18F67K40,
CHIP_18LF67K40)
 //~ Do something
 #ENDIF

 dim myStringVar as String
 myStringVar = MYSTRING

 // BAD PRACTICE = code is hard to understand
 // Use constant test to determine correct ADC to read. Bad practice, see the
#SCRIPT section
 dim mybyteVar as Byte
 #IF DEF(AIN1)
 mybyteVar = readAD(AIN1)
 #ELSE
 #IF DEF(ANA1)
 mybyteVar = readAD(ANA1)
 #ELSE
 mybyteVar = readAD(AN1)
 #ENDIF
 #ENDIF

 // GOOD PRACTICE
 dim mybyteVar as Byte
 mybyteVar = readAD(SCRIPTAN1CONSTANT)

 dim myArray(2)
 myArray = CONTROL

See Also DEFINEs

#UNDEFINE
Syntax:

866

 #UNDEFINE existing-symbol

Explanation:

#UNDEFINE Undefines a symbol previously defined with #DEFINE.

Can be used to ensure that a symbol has a limited lifespan and does not conflict with a similar macro
definition that may be defined later in the source code.

(Note: #UNDEFINE should not be used to undefine variable or function names used in the current
program. The names are needed internally by the compiler and removing them can cause strange and
unexpected results.)

See Also Defines

#if
Syntax:

 #if Condition
 ...
 [#else]
 ...
 #endif

Explanation:

The #if directive is used to prevent a section of code from compiling unless Condition is true.

Condition has the same syntax as the condition in a normal GCBASIC if command. The only difference
is that it uses constants instead of variables and does not use "then".

Example:

867

 'This program will pulse an adjustable number of pins on PORTB
 'The number of pins is controlled by the FlashPins constant
 #chip 16F88, 8

 'The number of pins to flash
 #define FlashPins 2

 'Initialise
 Dir PORTB Out

 'Main loop
 Do
 #if FlashPins >= 1
 PulseOut PORTB.0, 250 ms
 #endif
 #if FlashPins >= 2
 PulseOut PORTB.1, 250 ms
 #endif
 #if FlashPins >= 3
 PulseOut PORTB.2, 250 ms
 #endif
 #if FlashPins >= 4
 PulseOut PORTB.3, 250 ms
 #endif
 Loop

#ifnot
Syntax:

 #ifnot Condition
 ...
 [#else]
 ...
 #endif

Explanation:

The #ifnot directive is used to prevent a section of code from compiling unless Condition is false.

Condition has the same syntax as the condition in a normal GCBASIC if command. The only difference
is that it uses constants instead of variables and does not use "then".

Example:

868

 'This program will set the constant to true only if NOT a PIC family
 #chip 16F88, 8

 #ifnot ChipFamily = 14

 #define myConstant True

 #endif

#ifdef
Syntax:

 #ifdef Constant | Constant Value | Var(VariableName)
 ...
 [#else]
 ...
 #endif

Explanation:

The #ifdef directive is used to selectively enable sections of code.

There are several ways in which it can be used:

• Checking if a constant is defined

• Checking if a constant is defined and has a particular value

• Checking if a system variable exists

• Checking if a system bit has been defined

The advantage of using #ifdef rather than an equivalent series of IF statements is the amount of code
that is downloaded to the chip. #ifdef controls what code is compiled and downloaded, IF controls
what is run once on the chip. #ifdef should be used whenever the value of a constant is to be checked.

GCBASIC also supports the #ifndef directive - this is the opposite of the #ifdef directive - it will remove
code that #ifdef leaves, and vice versa.

Note: The code in the following sections will not compile, as it is missing #chip directives and Dir
commands. It is intended to act as an example only.

Example 1: Enabling code if a constant is defined

869

 #define Blink1

 #ifdef Blink1
 PulseOut PORTB.0, 1 sec
 Wait 1 sec
 #endif
 #ifdef Blink2
 PulseOut PORTB.1, 1 sec
 Wait 1 sec
 #endif

This code will pulse PORTB.0, but not PORTB.1. This is because Blink1 has been defined, but Blink2 has
not. If the line was added at the start of the program, then both pins would be pulsed.

 #define Blink2

The value of the constant defined is not important and can be left off of the #define.

Example 2: Enabling code if a constant is defined and has a given value

 #define PinsToFlash 2

 #ifdef PinsToFlash 1,2,3
 PulseOut PORTB.0, 1 sec
 #endif
 #ifdef PinsToFlash 2,3
 PulseOut PORTB.1, 1 sec
 #endif
 #ifdef PinsToFlash 3
 PulseOut PORTB.2, 1 sec
 #endif

This program uses a constant called PinsToFlash that controls how many lights are pulsed. PORTB.0 is
pulsed when PinsToFlash is equal to 1, 2 or 3, PORTB.1 is pulsed when PinsToFlash equals 2 or 3, and
PORTB.2 is flashed when PinsToFlash is 3.

Example 3: Enabling code if a system variable is defined

870

 #ifdef NoVar(ANSEL)
 SET ADCON1.PCFG3 OFF
 SET ADCON1.PCFG2 ON
 SET ADCON1.PCFG1 ON
 SET ADCON1.PCFG0 OFF
 #endif
 #ifdef Var(ANSEL)
 ANSEL = 0
 #endif

The above section of code has been copied directly from a-d.h. It is used to disable the A/D function of
pins, so that they can be used as standard digital I/O ports. If ANSEL is not declared as a system variable
for a particular chip, then the program uses ADCON1 to control the port modes. If ANSEL is defined, then
the chip is newer and its ports can be set to digital by clearing ANSEL.

Example 4: Enabling code if a system bit is defined

Similar to above, except with Bit and NoBit in the place of Var and NoVar respectively.

See Also Defines, #define

#ifndef
Syntax:

 #ifndef Constant | Constant Value | Var(VariableName)
 ...
 [#else]
 ...
 #endif

Explanation:

The #ifndef directive is used to selectively enable sections of code. It is the opposite of the #ifdef
directive - it will delete code in cases where #ifdef would leave it, and will leave code where #ifdef
would delete it.

See the #ifdef article for more information.

#include
Syntax:

871

 #include filename

Explanation:

#include tells GCBASIC to open up another file, read all of the subroutines and constants from it, and
then copy them into the current program.

There are two forms of include; absolute and relative.

Absolute is used to refer to files in the ..\GCBASIC\include directory. The name of the file is specified in
between < and > symbols. For instance, to include the file srf04.h, the directive is:

 #include <srf04.h>

Relative is used to read files in the same folder as the currently selected program. Filenames are given
enclosed in quotation marks, such as where mycode.h is the name of the file that is to be read.

 #include "mycode.h"

NOTES: It is not essential that the include file name ends in .h - the important thing is that the name
given to GCBASIC is the exact name of the file to be included.

Those who are familiar with #include in assembly or C should bear in mind that #include in GCBASIC
works differently to #include in most other languages - code is not inserted at the location of the
#include, but rather at the end of the current program.

#insert
Syntax:

 #insert filename

Explanation:

#insert tells GCBASIC to open up another file, read all of the subroutines and constants from it, and
then copy them into the current program at the specific line where the #insert directive is located.

There are two forms of include; absolute and relative.

Absolute is used to refer to files in the ..\GCBASIC\include directory. The name of the file is specified in
between < and > symbols. For instance, to include the file toolchain.il, the directive is:

872

 #insert <"toolchain.il">

Relative is used to read files in the same folder as the currently selected program. Filenames are given
enclosed in quotation marks, such as where mycode.h is the name of the file that is to be read.

 #insert "toolchain.il"

Difference from #include:

This is very different from #include. With #include you can organize constant, method and macro
definitions and then use #include directive to add them to any source file. Include files are also useful
for incorporating declarations of external variables and complex data types. The types may be defined
and named only once in an include file created for that purpose. The compiler will optimise the
include files to determine the best order/location in your program.

Using #insert you are determining the location of the code segment. It will be inserted exactly where
you specify. The optimisation will only be applied to any methods that you insert but the rest of the
code essentially exits at the point of insertion.

#Insert does not support Conversion:

There is no conversion of the inserted file. For conversion use #Include.

If you need to convert a file from an external source then see the Converters section of the Help.

Usage Notes:

The file must exist. An error message is issued if not found. When an error is encountered in the
inserted file the error line number is in the format of xxxxyyyy. Where xxxx is the code line number
in the user program and the yyyy is the the line number in the inserted file.

An example error message. Where the source insert instruction is on line 6 and the error in the
inserted file is on line 4.

 An error has been found:
 insertexample.gcb (60004): Error: Syntax Error
 The message has been logged to the file Errors.txt.

#script
Syntax:

873

 #script
 [scriptcommand1]
 [scriptcommand2]
 ...
 [scriptcommandn]
 #endscript

Explanation:

The #script block is used to create small sections of code which GCBASIC runs during compilation. A
detail explanation and example are included in the Scripts article.

See Also Scripts

#startup
Syntax:

 #startup SubName [priority]

Explanation:

#startup is used in include files to automatically insert initialization routines. If a define or subroutine
from the file is used in the program, then the specified subroutine will be called.

The priority to #startup support the setting of the priority of the subroutines for all the libraries in a
project.

Subroutines will be called in order from smallest to largest priority number.

InitSys has priority 80, lowlevel communication routines have the priority of 90
All other subroutines defaults to 100.

Notes: Limitations on this directive are:

startup may only occur once within a source file.

No parameters can be passed the the subroutine that is specificed.

Example 1:

This example from the hardware I2C library set the subroutine with the priority of 90.

874

 #startup HIC2Init, 90

Example 2:

This example from would be included in user code to ensure the PPS setting are set prior to use of the
MSSP or USART.

 #chip 16f18855,32
 #option explicit

 'Set the PPS of the I2C and the RS232 ports.
 #startup InitPPS, 85
 Sub InitPPS
 RC0PPS = 0x0010 'RC0->EUSART:TX;
 RXPPS = 0x0011 'RC1->EUSART:RX;

 SSP1CLKPPS = 0x14 'RC3->MSSP1:SCL1;
 SSP1DATPPS = 0x13 'RC4->MSSP1:SDA1;
 RC3PPS = 0x15 'RC3->MSSP1:SCL1;
 RC4PPS = 0x14 'RC4->MSSP1:SDA1;
 End Sub

#mem
This directive is obsolete.

GCBASIC determines the amount of memory on a chip automatically, and will ignore the #mem directive.

It is recommended that this directive is removed from all programs.

Enum
Overview

Enums in GCBASIC provide a convenient way to define named constants, improving code readability
and maintainability. Instead of using raw numeric values, users can define meaningful names for
states, modes, or categories.

Syntax:

The Enum keyword allows users to declare an enumeration with automatic assignment of values:

875

Enum ModbusState [Reset]
 MODBUS_IDLE ' Waiting for a new message
 MODBUS_SYNC ' Sync with Modbus device address
 MODBUS_FUNCTION_CODE ' Identify function code
 MODBUS_PROCESS_DATA ' Read incoming data bytes
 MODBUS_COMPLETE ' Packet processing finished
End Enum

The optional Reset parameter will start this specific enum at zero. If Reset is not specified then every
enum element will be sequentially/uniquely numbered.

Enhanced Compatibility with External Systems

Many protocols, such as Modbus, require specific numeric values for states or function codes. By
letting users define their own values, they can align their enums with standardised protocols. The
Enum keyword also allows users to declare an enumeration with named constants:

Enum ModbusState
 MODBUS_IDLE = 1
 MODBUS_SYNC = 0x02
 MODBUS_FUNCTION_CODE = 0x03
 MODBUS_PROCESS_DATA = MODBUS_FUNCTION_CODE + 1
 MODBUS_COMPLETE = INT((30/2)+1)
End Enum

Users can manually assign enumeration values using constants and expressions. Calculations must
use the equals sign (=), following #DEFINE rules.

Usage

Users can declare variables of an enum type and assign values directly:

Dim currentState As Byte
currentState = MODBUS_IDLE

Enums can be used in conditions for more readable logic:

If currentState = MODBUS_FUNCTION_CODE Then
 ' Handle function code processing
End If

Users can also define additional Enum values using constants:

876

#DEFINE CUSTOM_STATE = MODBUS_PROCESS_DATA + 2
If currentState = CUSTOM_STATE Then
 Print "Custom processing step reached."
End If

Conversion Support

Enums in GCBASIC can be used in mathematical operations and references to other constants. This
allows developers to integrate enums seamlessly into calculations and logical expressions.

Math Operations

Users can use enums in arithmetic expressions since they resolve to numeric values:

Dim nextState As Byte
nextState = MODBUS_SYNC + 1 ' Evaluates to MODBUS_FUNCTION_CODE

Enums can also be used in expressions involving comparisons:

If currentState < MODBUS_COMPLETE Then
 ' Keep processing data
End If

Reference to Other Constants

Since enum values are numeric, users can reference them in calculations that involve predefined
constants:

#DEFINE MAX_STATE = MODBUS_COMPLETE
If currentState = MAX_STATE Then
 Print "Processing complete."
End If

Summary

• Users can use automatic enumeration values.

• Users can manually assign enumeration values using constants and calculations.

• Calculations must use the equals sign (=), following GCBASIC’s #DEFINE rules.

• Enums allow users to define named constants.

• Values start at 0 and increment automatically if not manually assigned.

• Enums improve readability and eliminate the need for magic numbers.

877

• Enums can be used in mathematical operations and references to constants.

Other directives
The built-in #defines are used to support the #IFDEF command set are as follows. The table also shows
which #defines are supported as string in HSerPrint, SerPrint and other string related commands.

Constants Type Usage Decription

CHIPADC Constan
t

Conditional compilation or
output commands

The number of A/D inputs on the current chip

CHIPASSEMBL
ER

Constan
t

Conditional compilation or
output commands

The select assemble GCASM/MPASM/PICAS etc

CHIPEEPROM Constan
t

Conditional compilation or
output commands

The number of Bytes in EEPROM memmory

CHIPIO Constan
t

Conditional compilation or
output commands

The number of general purpose IO pins

CHIPMHZ Constan
t

Conditional compilation or
output commands

The microcontroller clock speed

CHIPNAME Constan
t

Conditional compilation
only

The microcontroller type

CHIPNAMESTR Constan
t

Conditional compilation or
output commands

The microcontroller name

CHIPPINS Constan
t

Conditional compilation or
output commands

The number of microcontroller pins.

CHIPRESERVE
HIGHPROG

Constan
t

Scripts, Conditional
compilation, and output
commands

The value of the words reserved

CHIPOSC Constan
t

Scripts, Conditional
compilation, and output
commands

The frequency selected

CHIPUSINGIN
TOSC

Constan
t

Scripts, Conditional
compilation, and output
commands

The constant exists if the compiler has deternined
the program is using the internal oscillator

CHIPPROGRAM
MERNAMESTR

String
constan
t

Name of the chip type to be
used by a programmer

The psuedo microcontroller type

CHIPRAM Constan
t

Conditional compilation or
output commands

The RAM size

878

Constants Type Usage Decription

CHIPSHAREDR
AM

Constan
t

Conditional compilation or
output commands

The first RAM location

CHIPFAMILY Constan
t

Conditional compilation or
output commands

See the table below

CHIPWORDS Constan
t

Conditional compilation or
output commands

The number of WORDS in Flash memmory

SOURCEFILE Constan
t string

Conditional compilation or
output commands

The name of the source GCB file

Function Type Usage Description

Var() Functio
n

Conditional compilation
only

True if a register is declared (or false if not
declared) in the currently specficied
microcontroller’s .dat file. Var(register_name)

NoVar() Functio
n

Conditional compilation
only

True if a register is NOT declared (or false if
declared) in the currently specficied
microcontroller’s .dat file. NoVar(register_name)

Bit() Functio
n

Conditional compilation
only

True if a bit is declared (or false if not declared) in
the currently specficied microcontroller’s .dat file.
Bit(bit_name)

NoBit() Functio
n

Conditional compilation
only

True if a bit is NOT declared (or false if declared)
in the currently specficied microcontroller’s .dat
file. NoBit(bit_name)

Allof() Functio
n

Conditional compilation
only

True if all defines are declared: AllOf(define1,
define2, …)

OneOf() Functio
n

Conditional compilation
only

True if one of the defines is declared:
OneOf(define1, define2, …)

The table below shows two special directives that support the mapping for one variable or bit to
anoher variable or bit. This is useful when creating portable code or libraries to ensure GCBASIC

879

Directiv
e

Explanation Usage

#samebit The compiler checks each item in the list to
see which ones are implemented on the
current microcontroller.
If any of the bits do not exist, the compiler
will create a constant mapping to the name
of the first parameter in the list of
parameters that does exist. + If none of the
bits exist the no constant is created.

 #samebit PLLEN, SPLLEN, SPLLMULT
 Set SPLLEN On

#sameva
r

The compiler checks each item in the list to
see which ones are implemented on the
current microcontroller.
If any of the variables do not exist, the
compiler will create a constant mapping to
the name of the first parameter in the list of
parameters that does exist. + If none of the
variables exist the no constant is created.

 #samevar CMCON, CMCON0, CMCONbob
 #ifdef Var(CMCONbob)
 CMCONbob = 7
 #endif

 Compiles to:
 ;CMCONbob = 7
 movlw 7
 movwf CMCON,ACCESS

This table shows the ChipFamily constants mapped to the microcontroller architecture.

ChipFamily Value

AVR Microcontroller Characteristics

100 AVR core version V0E class microcontrollers

110 AVR core version V1E class microcontrollers

120 AVR core version V2E class microcontrollers

-120 Subtype: 121 AVR core version AVR8L, also called AVRrc, reduced core class microcontrollers.
ATTiny4-5-9-10 and ATTiny102-104 with only 16 GPR’s from r16-r31 and only 54
instructions.

-120 Subtype: 122 LGT microcontrollers.

-120 Subtype: 123 AVR core version V2E class microcontrollers with one USART like the mega32u4,
mega16u4 - they have different registers for the usart.

121 Tiny4-5-9-10 and tiny102-104. Only 16 GPR’s from r16-r31 and only 54
instructions.

130 AVR core version V3E class microcontrollers but essentially the mega32u6 only

880

ChipFamily Value

140 AVRDX microcontrollers. Series 0, series1, series2, DA series and DB series.

PIC Microcontroller Characteristics

12 Baseline devices. 12 Bit instruction set

15 Mid-range core devices. 14 Bit instruction set with enhanced instruction set class

15 plus
familyVariant=1

Mid-range core devices. 14 Bit instruction set with enhanced instruction set and
with large memory capability class

16 High end core devices. 16 Bit instruction set, memory addressing architecture
and an extended instruction set. Chip family 16 also have a sub chip family
Constant. These constants are shown below: ChipFamily18FxxQ10 = 16100
 ChipFamily18FxxQ43 = 16101 ChipFamily18FxxQ41 = 16102
 ChipFamily18FxxK42 = 16103 ChipFamily18FxxK40 = 16104
 ChipFamily18FxxQ40 = 16105 ChipFamily18FxxQ84 = 16106
 ChipFamily18FxxK83 = 16107 ChipFamily18FxxQ83 = 16108
 ChipFamily18FxxQ71 = 16109 ChipFamily18FxxQ20 = 16110
 ChipFamily18FxxQ24 = 16111

881

Compiler Options
This is the Compiler Options section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

#Option Explicit
Syntax:

 #option explicit

This option ensures that all variables are dimensioned in the user program. The scope is the user code
only and no other code space like .h or include files.

#option explicit requires all variables,including bytes, in the user program to be defined.

Variables can be defined and not used within your user program. Unused variables will not allocate
memory.

Introduction:

Example:

 'Set chip model
 #chip 16f877a

 'Example command
 #option explicit

 dim myuserflag as byte

 myuserflag = true

For more help, see Variable Lifecycle

#Option NoConfig
Syntax:

 #option NoConfig

This option will prevent the generated assembler from generating _Config items.

882

#option NoConfig is used when using a bootloader.

Introduction:

Example:

 'Set chip model
 #chip 16f877a

 'Example command
 #option NoConfig

 'User Code......

#Option Bootloader
Syntax:

 #option bootloader address

Explanation:

#option bootloader prevents the overwriting of any pre-loaded bootloader code, vectors, etc. below the
specified address. The GCBASIC code will start at specified address.

A bootloader is a program that stays in the microcontroller and communicates with the PC, typically
through the serial interface. The bootloader receives a user program from the PC and writes it in the
flash memory, then launches this program in execution. Bootloaders can only be used with those
microcontrollers that can write their flash memory through software.

The bootloader itself must be written into the flash memory with an external programmer.

In order for the bootloader to be launched after each reset, a goto bootloader instruction must exist
somewhere in the first 4 instructions; There are two types of bootloaders, some that require that the
user reallocate the code and others that by themselves reallocate the first 4 instructions of the user
program to another location and execute them when the bootloader exits.

The diagram below shows the architecture of a bootloader. The left hand is the operation of the
instructions without a bootloader. The right hand shows the initial instruction of goto the bootoader,
then, when the bootloader has initialised the execution of the start code.

883

See example bootload software.

Example:

 #option bootloader 0x800

#Option NoContextSave
Syntax:

 #option NoContextSave

Explanation:

Interrupts can occur at almost any time, and may interrupt another command as it runs. To ensure
that the interrupted command can continue properly after the interrupt, some temporary variables
(the context) must be saved. Normally GCBASIC will do this automatically, but in some cases it may be
necessary to prevent this. If porting some existing assembly code to GCBASIC, or creating a bootloader
using GCBASIC that will call another program,

NoContextSave can be used to prevent the context saving code from being added automatically.

Be very careful using this option - it is very easy to cause random corruption of variables. If creating
your own context saving code, you may need to save several variables. These are:

1. For Microchip PIC microcontrollers 12F/16F: W, STATUS, PCLATH

2. For Microchip PIC microcontrollers 12F1/16F1/18F: W, STATUS, PCLATH, PCLATU, BSR

884

https://sourceforge.net/projects/tinypicbootload/files/

3.

For Atmel AVR microcontrollers: All 32 registers

Other variables may also need to be saved, depending on what commands are used inside the
interrupt handler. Everything that is saved will also need to be restored manually when the interrupt
handler finishes.

Example:

 ' This shows an example that could be used by a bootloader to call some application
code.

 ' The application code must deal with context save and restore
 ' Suppose that application code starts at location 0x100, with interrupt vector at
0x108

 'Chip model
 #chip 18F2620

 'Do not save context automatically
 #option NoContextSave

 'Main bootloader routine
 Set PORTB.0 On
 'Do other stuff to make this an actual bootloader and not a trivial example
 'Transfer control to application code
 goto 0x100

 'Interrupt routine - this will be placed at the interrupt vector
 Sub Interrupt
 'If any interrupt occurs, jump straight to application interrupt vector
 goto 0x108
 End Sub

#Option NoLatch
Syntax:

 #option nolatch

This option disables PORTx to LATx redirection.

Introduction:

The GCBASIC compiler will redirect all I/O pin writes from PORTx to LATx registers on 16F1/18F
Microchip PIC microcontrollers.

885

The Microchip PIC mid-range microcontrollers use a sequence known as Read-Modify-Write (RMW)
when changing an output state (1 or 0) on a pin. This can cause unexpected behavior under certain
circumstances.

When your program changes the state on a specific pin, for example RB0 in PORTB, the
microcontroller first READs all 8 bits of the PORTB register which represents the states of all 8 pins in
PORTB (RB7-RB0).

The microcontroller then stores this data in the MCU. The bit associated with RB that you’ve
commanded to MODIFY is changed, and then the microcontrollers WRITEs all 8 bits (RB7- RB0) back
to the PORTB register.

During the first reading of the PORT register, you will be reading the actual state of the physical pin.
The problem arises when an output pin is loaded in such a way that its logic state is affected by the
load. Instances of such loads are LEDs without current-limiting resistors or loads with high capacitance
or inductance.

For example, if a capacitor is attached between pin and ground, it will take a short while to charge
when the pin is set to 1. On the other hand, if the capacitor is discharged, it acts like a short circuit,
forcing the pin to '0' state, and, therefore, a read of the PORT register will return 0, even though we
wrote a 1 to it.

GCBASIC resolves this issue using the LATx register when writing to ports, rather than using PORTx
registers. Writing to a LATx register is equivalent to writing to a PORTx register, but readings from
LATx registers return the data value held in the port latch, regardless of the state of the actual pin. So,
for reading use PORTx.

Note:

You can use the #option nolatch if problems occur with compiler redirection.

#Option Required
Syntax:

 #option REQUIRED PIC|AVR CONSTANT %message.dat entry%
 #option REQUIRED PIC|AVR CONSTANT "Message string"

 or

 #option REQUIRED DISABLE

This option ensure that the specific CONSTANT exists within a library to ensure a specific capability is
available with the microcontroller.

886

Introduction:

This will cause the compiler check the CONSTANT is a non zero value. If the CONSTANT does not exist
it will be treated as a zero value.

Example:

This example tests the CONSTANT CHIPUSART for both the PIC and AVR microcontrollers. If the
CONSTANT is zero or does not exist then the string will be displayed as an error message.

 #option REQUIRED PIC CHIPUSART "Hardware Serial operations. Remove USART commands to
resolve errors."
 #option REQUIRED AVR CHIPUSART "Hardware Serial operations. Remove USART commands to
resolve errors."

Disabling:

To disable checking capability, add the following directive.

 #option REQUIRED DISABLE

#Option Volatile
Syntax:

 #option volatile `bit`

This option ensure port setting are glitch-free.

Introduction:

#option volatile bit where bit is an IO bit, like PORTB.0 appended.

This will cause the compiler to set the bit without any glitches when copying a value from another
variable, but will increase code size slightly.

Example:

887

 'Set chip model
 #chip 16f877a

 'Example command
 #option volatile portb.0

 dir portb.0 out

 do forever

 portb.0 = !portb.0

 loop

#Option ReserveHighProg
Syntax:

 #option ReserveHighProg [words]

This option reserves program memory to be kept free at the top end of memory. This useful for
HEF/SAF or bootloaders.

The option provided a reservation for the memory region that is normally assumed to be available to
the compiler for the application code storage. In order to avoid any possible conflict (overlapping code
and data usage), it is important to reserve the devices pecific memory range by using the compiler
option (shown above) in the project configuration.

Using the #option ReserveHighProg [words] exposes the constant `ChipReserveHighProg in the user
program.

Defined constants

The compiler has constants that can be used as an alternative to the parameter [words].

The compiler constants are: OPTIBOOT, OPTIBOOTUSB, ARDUINONANO, ARDUINOMEGA2560 or
TINYBOOTLOADER.

Where these constants equate to:

888

 OPTIBOOT = 1024
 OPTIBOOTUSB = 2048
 ARDUINONANO = 1024
 ARDUINOMEGA2560 = 1024
 TINYBOOTLOADER = 128
 TINYBOOTLOADER128 = 128
 TINYBOOTLOADER125 = 256

Examples 1

In the example below the region 0x1F80 to 0x1FFF (flash block for a PIC16F1509 microcontroller) has
been removed from the default space available for code storage using the compiler option.

 'Set chip model
 #chip 16F1509

 'Directive
 #option ReserveHighProg 128

Examples 2

In the example below the bootloader area of Program Memory is protected.

This will ensure the program size does not overwrite the OptiBoot bootloader.

 'Set chip model
 #chip MEGA328P

 'Directive
 #option ReserveHighProg OPTIBOOT

889

Using Assembler
This is the Using Assembler section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Assembler Overview
Introduction:

You can use microcontroller assembler code within your GCBASIC code.

You can put the assembler code inline in with your source code. The assembler code will be passed
through to the assembly file associated with your project.

GCBASIC should recognise all of the commands in the microcontroller datasheet.

The commands should be in lower case, this is good practice, and have a space or tab in front of the
command.

Even if the mnemonics are not being formatted properly, gputils/MPASM should still be capable of
assembling the source code.

Format commands as follows:

Example:

 btfsc STATUS,Z
 bsf PORTB,1

890

Macros
This is the Macros section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Macros Overview
Introduction:

You can use macros within your GCBASIC code.

Macros are similar to subroutines. But during compilation, everything is inserted inline. This may
increase the code size slightly, but it also reduces stack usage.

Parameters are handled in a similar way to how constants are handled, so there is a lot more freedom
when passing things in to a macro. (Unlike subs or functions, where everything must be stored in a
variable.)

For example, for PulseOut one parameter is a pin, and the other is a time length like "500 ms". Neither
of those parameters could be stored in a variable, but passing them in as macro parameters is possible.

Demonstration Program:

 'PulseOut Macro
 macro Pulseout (Pin, Time)
 Set Pin On
 Wait Time
 Set Pin Off
 end macro

891

Example Macros
This is the Example Macros section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Measuring a Pulse Width

Introduction

The demonstration shows how a macro can be used to optimised code by compiling code inline.

When the measurement of a pulse width to sub-microsecond resolution is required for instance
measuring the high or low pulse width of an incoming analog signal a comparator can be combined
with a timer to provide the pulse width.

Microchip PIC has published a "Compiled Tips 'N Tricks Guide" that explains how to do certain tasks
with Microchip PIC 8-bit microcontrollers.

This guide provides the steps that need to be taken to perform the task of measuring a pulse width.
The guide provides guidance on measuring a pulse width using Timer 1 and the CCP module. This
guidance was used as the basis for the GCBASIC port the shown below. The guidance was generic and
in this example polling the CCP flag bit was more convenient than using an interrupt.

In this demonstration shown below, a 16F1829 microcontroller operating at 32 Mhz uses the internal
oscillator. The demonstration code is based on a macro that uses Timer1 and CCP4. However, any of
the four CCP modules could be used, the 16F1829 microcontroller has four CCP module.

The timer resolution of this method uses a timer Prescaler of 1:8 and a microcontroller frequency of 32
MHz giving a pulse width resolution is 1ms. With the timer Prescaler of 1:2 and the microcontroller
frequency of 32MHz the resolution is 250 ns.

The accuracy is dependent upon the accuracy of the system clock, but oscilliscope measurements have
show an accuracy of +- 1us from 3us to 1000us.

In this demonstration the following was implemented

• Using GCBASIC a macro to ensure the generated assembler is inline to ensure the timing is
consistent and no sub routines are called.

• Another microcontroller was used to generate the pulses to be measured

• A TEK THS730A oscilliscope was used to measure/verify pulse widths

• A 4x20 LDC module with an I2C Backpack was used to display the results. However, as an
alternative, a serial output
to a terminal program to view the data could be used

This demonstration could be improved by adding code to poll the TIMER1 overflow flag. If the timer

892

overflows, then either no pulse was detected or the pulse was longer than allowed by the
prescaler/OSC settings. In this case, return a value of zero for pulse width.

Usage:

To get positive pulse width use:

 PULSE_IN

PULSE_IN returns a global word variable Pulse_Width

Demonstration Program:

 #Chip 16F1829, 32
 #CONFIG MCLRE = OFF

 'Setup Software I2C
 #define I2C_MODE Master
 #define I2C_DATA PORTA.2
 #define I2C_CLOCK PORTC.0
 #define I2C_DISABLE_INTERRUPTS ON

 'Set up LCD
 #define LCD_IO 10
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_SPEED FAST
 #define LCD_Backlight_On_State 1
 #define LCD_Backlight_Off_State 0

 'Note: This example can be improved by adding code to poll the 'TIMER1 overflow flag.
IF the timer overflows, then either no 'pulse was detected or the pulse was longer than
allowed by the 'prescaler/OSC settings. In this case, return a value of zero 'for pulse
width.

 CLS
 PRINT "Pulse Width Test"
 DIM PULSE_WIDTH AS WORD
 DIR PORTC.6 IN

 'Setup timer
 'Set timer1 using PS1_2 gives 250ns resolution
 InitTimer1 OSC, PS1_8
 wait 1 s
 CLS

893

 'MAIN PROGRAM LOOP
 DO
 PULSE_IN 'Call the Macro to get positive pulse width.
 Locate 0,0
 PRINT Pulse_Width
 PRINT " "
 wait 1 s
 Loop

 MACRO PULSE_IN 'Measure Pulse Width
 'Configure CCP4 to Capture rising edge
 CCP4CON = 5 'Set to 00000101
 StartTimer 1
 CCP4IF = 0

 do while CCP4IF = 0 'Wait for rising edge
 loop

 TMR1H = 0: TMR1L = 0 'Clear timer to zero
 CCP4IF = 0 'Clear flag

 'Configure CCP4 to Capture Falling Edge
 CCP4CON = 4 '00000100'

 do while CCP4IF = 0 'Wait for falling edge
 loop

 StopTimer 1 'Stop the time
 Pulse_Width = TIMER1 'Save the timer value
 CCP4IF = 0 'Clear the CCP4 flag
 End MACRO

Also see Macros Overview

Implementing a method with a Pin name as a parameter

Introduction

A constant such as a Pin name cannot be passed to a sub routine or a function. This is a constraint of
GCBASIC.

A macro can be used to implement a method of passing a constant to reusable code section.

The example shown below implements a button press routine and takes an input port constant and
prints the result on an LCD display.

894

Note: A macro will use more program memory as the macro will be compiled as inline code.
Therefore, for every use of the macro will use additional program memory - the same amount of
program memory for each call to the macro.

Demonstration Program:

 #chip 16F877a, 16
 #define Button PORTC.1 ' Switch on PIN 14 via 10K pullup resistor
 DIR Button In
 wait 1 sec

 'USART settings
 #define USART_BAUD_RATE 9600
 #define USART_TX_BLOCKING

 ;======== MAIN PROGRAM LOOP ================
 HSerPrint "Button Test"
 HSerPrintCRLF 2
 Do
 Test_button (button)
 Loop
 ;==

 Macro Test_button (Button)
 if Button = ON then
 wait 10 ms 'debounce
 ButtonCount = 0

 Do While Button = On
 Wait 10 ms
 ButtonCount += 1
 Loop

 if ButtonCount > 5 then
 if ButtonCount > 50 then 'Long push
 hserprint "Long push"
 else 'Short push
 hserprint "Short push"
 end if
 HSerPrintCRLF
 end if
 wait 1 s
 end if
 End Macro

895

Also see Macros Overview

896

Example Programs

Flashing LEDs and an Interrupt
Explanation:

This code implements four flashing LEDs. This is based on the Microchip PIC Low Pin Count Demo
Board.

The example program will blink the four red lights in succession. Press the Push Button Switch, labeled
SW1, and the sequence of the lights will reverse. Rotate the potentiometer, labeled RP1, and the light
sequence will blink at a different rate.

This implements an interrupt for the switch press, reads the analog port and set the LEDs.

Demonstration program:

 #chip 18F14K22, 32
 #config MCLRE_OFF

 'Works with the low count demo board

 'Set the input pin direction
 #define SwitchIn1 PORTa.3
 Dir SwitchIn1 In

 #define LedPort PORTc
 DIR PORTC OUT

 'Setup the ADC pin direction
 Dir PORTA.0 In
 dim ADCreading as word

 'Setup the input pin direction
 #define IntPortA PORTA.1
 Dir IntPortA In

 'Variable and constants
 #define intstate as byte
 intstate = 0
 #define minwait 1

 dim ccount as byte
 dim leddir as byte

897

 ccount = 8
 leddir = 0

 SET PORTC = 15
 WAIT 1 S

 SET PORTC = 0

 'Setup the Interrupt
 Set IOCA.3 on
 Dir porta.3 in
 On Interrupt PORTABCHANGE Call Setir

 'Set initial LED direction
 setLedDirection

 DO FOREVER

 INTON
 ADCreading = ReadAD10(AN0)
 if ADCreading < minwait then ADCreading = minwait

 'Set LEDs
 Set PortC = ccount
 wait ADCreading ms

 if leddir = 0 then
 rotate ccount left simple
 'Restart LED position
 if ccount = 16 then
 ccount = 128
 end if

 end if

 if leddir = 1 then
 rotate ccount Right simple
 'Restart LED position
 if ccount = 128 then
 ccount = 8
 end if

 end if
 'Reset interrupt - this may be been reset so set to zero so interrupt can
operate.
 intstate = 0

898

 Loop

 'Interrupt routine.
 sub Setir

 if IntPortA = 0 and intstate = 0 then
 intstate = 1
 wait while SwitchIn1 = 0
 setLedDirection
 end if

 end sub

 sub setLedDirection

 'Set LED values
 select case leddir

 case 0
 leddir = 1
 ccount = 8

 case 1
 leddir = 0
 ccount = 1

 end select

 End Sub

See Also Interrupts, ReadAD10

Flashing LED with timing parameters
Explanation:

This is an example of how to define a subroutine.

When called, this subroutine will blink an LED for the number of times and duration as determined by
the input parameters.

The syntax of the subroutine is:

899

 ' Flash_LED (numtimes, OnTime, (optional) OffTime)
 ' Where numtimes is from 1 - 255 and OnTime/OffTime is
 ' from 0 - 65535 ms. If OffTime is not entered, then
 ' OffTime = OnTime.

 Sub Flash_LED (in numtimes, in OnTime as WORD, Optional OffTime as WORD = OnTime)
 repeat numtimes
 set LED on
 wait OnTime ms
 set LED OFF
 wait OffTime ms
 end repeat
 End Sub

Shown below is a working example program using a Microchip PIC 18F25K22.

Change Settings/PORTS as needed for other Chips.

Connect an LED to the LED pin via a 1K series resistor.

Demonstration program:

900

 #chip 18F25K22, 16
 #define LED PORTC.1 'Led on PIN 14 via 1K resistor
 DIR LED OUT
 wait 1 sec

 ;======== MAIN PROGRAM LOOP ================
 Do
 Flash_LED (3,250) '3 Flashes 250 ms equal on/off time
 Wait 2 Sec
 Flash_LED (5,250,500) '5 flashes On 250 ms / off 500 ms
 Wait 2 Sec
 Flash_LED (10,100) '10 rapid flashes
 Wait 2 Sec
 Loop
 ;==

 Sub Flash_LED (in numtimes, in OnTime as WORD, optional OffTime as word = OnTime)
 repeat numtimes
 set LED on
 wait OnTime ms
 set LED OFF
 wait OffTime ms
 end repeat
 End Sub

Generate Accurate Pulses
Explanation:

The PulseOut Command is a reliable method for generating pulses if accuracy is not critical, the
PulseOut command uses a calculation of the clock to speed for the timing .

If you need better accuracy and resolution then an alternative approach is required.

To generate pulses in the 100 us to 2500 us range with an accuracy of +- 1us over this range is practical
using the approach shown in this example.

This example code works on a midrange PIC16F690 operating at 8Mhz. However, it should work on
any Microchip PIC microcontroller, but may need some minor modifications.

Usage:

 Pulse_Out_us (word_value)

How It Works:

901

Timer1 is loaded with a preset value based upon the variable passed to the sub routine. The timer
(Timer1) is started and the pulse pin (the output pin) is set high. When Timer1 overflows the Timer1
interrupt flag bit (TMR1IF) is set. This causes the program to exit a polling loop and set the pulse Pin off.
Then, Timer1 is stopped and TMRIF flag is cleared and the sub routine exits.

This method supports delays between 5 us and 65535 us and uses Timer1.

Test Results:

These tests were completed using a Saleae Logic Analyzer.

Pulse setting Time Results

Pulse_Out_us (2500) 2501.375 us

Pulse_Out_us (1000) 1000.750 us

Pulse_Out_us (100) 100. 125 us

Pulse_Out_us (10) 10.125 us

Pulse_Out_us with less then 4 Unreliable results

Demonstration program:

 ;**************************************
 ; Code: Output an accurate pulse
 ; Author: William Roth 03/13/2021
 ;**************************************

 #chip 16F690,8

 ; ---- Define Hardware settings
 ; ---- Define I2C settings - CHANGE PORTS AS REQUIRED
 #define I2C_MODE Master
 #define I2C_DATA PORTB.4
 #define I2C_CLOCK PORTB.6
 #define I2C_DISABLE_INTERRUPTS ON

 ; ---- Set up LCD - Using I2C LCD Backpack
 #define LCD_IO 10
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_I2C_Address_1 0x4e ; default to 0x4E
 ; ---- May need to use SLOW or MEDIUM if your LCD is a slower device.
 #define LCD_SPEED Medium
 #define LCD_Backlight_On_State 1
 #define LCD_Backlight_Off_State 0

 CLS

902

 ; ---- USART settings
 #define USART_BAUD_RATE 38400
 #define USART_TX_BLOCKING
 DIR PORTB.7 OUT

 ; ---- Setup Pulse parameters
 #define PulsePin PORTC.4
 Dim Time_us As WORD
 Dir PulsePin Out 'Pulsout pin
 Set PulsePin off

 ; ---- Setup Timer
 InitTimer1 Osc, PS1_2 'For 8Mhz Chip
 'InitTimer1 Osc, PS1_4, 'For 16 Mhz Chip
 TMR1H = 0: TMR1L = 0 'Clear timer1
 TMR1IF = 0 'Clear timer1 int flag
 TMR1IE = on 'Enable timer1 Interrupt (Flag only)

 ' **** This is the MAIN loop *****
 Do
 PULSE_OUT_US (2500) 'Measured as 2501.375 us
 wait 19 ms
 Pulse_Out_US (1000) 'Measured as 1000.750 us
 wait 19 ms
 Pulse_Out_US (100) 'Measured as 100.125 us
 wait 19 ms
 Pulse_Out_US (10) 'Measured as 10.125 us
 Wait 19 ms
 loop

 SUB PULSE_OUT_US (IN Variable as WORD)
 TMR1H = 65535 - Variable_H 'Timer 1 Preset High
 TMR1L = (65535 - Variable) + 4 'Timer 1 Preset Low
 Set TMR1ON ON 'Start timer1
 Set PulsePin ON 'Set Pin high
 Do While TMR1IF = 0 'Wait for Timer1 overflow
 Loop
 Set PulsePin off ' Pin Low
 Set TMR1ON OFF ' Stop timer 1
 TMR1IF = 0 'Clear the Int flag
 END SUB

Also see PulseOut

Graphical LCD Demonstration

903

Explanation:

This demonstration code shows the set of commands supported by GCBASIC.

Demonstration program:

 ;Chip Settings
 #chip 16F877a,16

 #include <glcd.h>

 'Setup the GLCD
 #Define glcd_rw PORTD.3 'RW pin on LCD
 #Define glcd_reset PORTD.4 'Reset pin on LCD
 #Define glcd_cs1 PORTD.1 'CS1, CS2 can be reversed
 #Define glcd_cs2 PORTD.2 'CS1, CS2 are be reversed
 #Define glcd_rs PORTD.5 'D/I pin on LCD
 #Define glcd_enable PORTD.4 'E pin on LCD
 #Define glcd_db0 PORTB.0 'D0
 #Define glcd_db1 PORTB.1 'D1
 #Define glcd_db2 PORTB.2 'D2
 #Define glcd_db3 PORTB.3 'D3
 #Define glcd_db4 PORTB.4 'D4
 #Define glcd_db5 PORTB.5 'D5
 #Define glcd_db6 PORTB.6 'D6
 #Define glcd_db7 PORTB.7 'D7 on LCD

 'Specify the type of GLCD
 #define GLCD_TYPE GLCD_TYPE_KS0108
 #define GLCD_WIDTH 128
 #define GLCD_HEIGHT 64
 #define GLCD_PROTECTOVERRUN

 wait 1 s
 GLCDCLS
 GLCDPrint 0, 1, "GCBASIC "
 wait 1 s
 GLCDCLS

 rrun = 0
 dim msg1 as string * 16

 do forever

 GLCDCLS
 Box 18,30,28,40
 Line 0,0,127,63

904

 Line 0,63,127,0
 wait 1 s

 FilledBox 18,30,28,40
 wait 1 s

 GLCDCLS

 GLCDDrawString 30,0,"ChipMhz@"
 GLCDDrawString 78,0, str(ChipMhz)
 Circle(10,10,10,1) 'upper left
 Circle(117,10,10,1) 'upper right
 Circle(63,31,10,1) 'center
 Circle(63,31,20,1) 'center
 Circle(10,53,10,1) 'lower left
 Circle(117,53,10,1) 'lower right
 wait 1 s

 GLCDDrawString 30,0,"ChipMhz@"
 GLCDDrawString 78,0, str(ChipMhz)
 FilledCircle(10,10,10,1) 'upper left
 FilledCircle(117,10,10,1) 'upper right
 FilledCircle(63,31,10,1) 'center
 FilledCircle(63,31,20,1) 'center
 FilledCircle(10,53,10,1) 'lower left
 FilledCircle(117,53,10,1) 'lower right
 wait 1 s

 GLCDCLS
 GLCDDrawString 30,0,"ChipMhz@"
 GLCDDrawString 78,0, str(ChipMhz)
 Circle(10,0,10,1) 'upper left
 Circle(117,0,10,1) 'upper right
 Circle(63,31,10,1) 'center
 Circle(63,31,20,1) 'center
 Circle(10,63,10,1) 'lower left
 Circle(117,63,10,1) 'lower right
 wait 1 s

 GLCDCLS
 GLCDDrawString 0,10,"Hello" 'Print Hello
 wait 1 s
 GLCDDrawString 0,10, "ASCII #:" 'Print ASCII #:
 Box 18,30,28,40 'Draw Box Around ASCII Character
 for char = 0x30 to 0x39 'Print 0 through 9
 GLCDDrawString 16, 20 , Str(char)+" "
 GLCDdrawCHAR 20, 30, char
 wait 250 ms

905

 next
 line 0,50,127,50 'Draw Line using line command
 for xvar = 0 to 80 'Draw line using Pset command
 pset xvar,63,on
 next
 FilledBox 18,30,28,40 'Draw Box Around ASCII Character '
 wait 1 s
 GLCDCLS
 GLCDDrawString 0,10,"End "
 wait 1 s
 GLCDCLS

 workingGLCDDrawChar:
 dim gtext as string
 gtext = "KS0108"

 for xchar = 1 to gtext(0) 'Print 0 through 9
 xxpos = (1+(xchar*6)-6)
 GLCDDrawChar xxpos , 0 , gtext(xchar)
 next

 GLCDDrawString 1, 9, "GCBASIC @2021"
 GLCDDrawString 1, 18,"GLCD 128*64"
 GLCDDrawString 1, 27,"Using GLCD.H from GCB"
 GLCDDrawString 1, 37,"Using GLCD.H GCB@2021"
 GLCDDrawString 1, 45,"GLCDDrawChar method"
 GLCDDrawString 1, 54,"Test Routines"

 wait 1 s
 GLCDCLS

 msg1 = "Run = " +str(rrun)
 rrun++
 GLCDPrint 0, 3, msg1
 wait 1 s
 GLCDCLS

 loop

For more help, see Graphical LCD Demonstration, GLCDCLS, GLCDDrawChar, GLCDPrint,
GLCDReadByte, GLCDWriteByte, Pset

InfraRed Remote
Explanation:

GCBASIC support interfacing with IR remote controls. The header file contains explanations, for both

906

hardware and software.

This has been tested on many different IR sensors, and different remote controls.

Demonstration program:

The example is expected to work with most any IR sensor running at a 38 kHz carrier frequency.

907

 ;This demo prints the device number and key number sent by
 ;a Sony compatible IR remote control unit to an LCD

 ;Thomas Henry --- 4/23/2014

 #chip 16F88, 8 ;PIC16F88 running at 8 MHz
 #config mclr=off ;reset handled internally
 #include <SonyRemote.h> ;include the header file

 ;----- Constants

 #define LCD_IO 4 ;4-bit mode
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RS PortB.2 ;pin 8 is Register Select
 #define LCD_Enable PortB.3 ;pin 9 is Enable
 #define LCD_DB4 PortB.4 ;DB4 on pin 10
 #define LCD_DB5 PortB.5 ;DB5 on pin 11
 #define LCD_DB6 PortB.6 ;DB6 on pin 12
 #define LCD_DB7 PortB.7 ;DB7 on pin 13
 #define LCD_NO_RW 1 ;ground RW line on LCD

 #define IR_DATA_PIN PortA.0 ;sensor on pin 17

 ;----- Variables

 dim device, button as byte

 ;----- Program

 dir PortA in ;A.0 is IR input
 dir PortB out ;B.2 - B.6 for LCD

 do
 readIR_Remote(device, button) ;wait for button press

 cls ;show device code
 print "Device: "
 print device

 locate 1,0
 print "Button: " ;show button code
 print button

 wait 10 mS ;ignore any repeats
 loop ;repeat forever

908

See also SonyRemote.h.

SonyRemote.h

Explanation: Sony IR Remote Control Library for GCBASIC

This include file will let you easily read and use the infrared signals from a Sony compatible television
remote control. In particular, the remote control transmits a pulse modulated signal, the sensor detects
this, and the subroutine in this header file decodes the signal, returning two numbers: one
representing the device (television, VCR, DVD, tuner, etc.), while the the other returns the key which
has been depressed (VOL+, MUTE, channel numbers 0 through 9, etc.).

This has been tested and confirmed with a fixed remote control purchased surplus for $2.00 from All
Electronics, as well as an universal remote control, set to Sony mode.

Moreover it has also been tested with a Panasonic IR sensor and a Vishay sensor, both purchased
surplus for about fifty cents.

Every combination performed well, and it is probably the case that most any garden variety 38 kHz IR
sensor will work. The only tricky bit is making sure you get the pinout for your sensor correct, search
out the datasheet for whichever device you use.

There are only three pins: Ground Vcc Data

It is essential to filter the power applied to the Vcc pin. Do this by connecting a 100 ohm resistor from
the +5V power supply to the Vcc pin, and bridge the pin to ground with a 4.7uF electrolytic capacitor.

The Data pin requires a 4.7k pullup resistor.

There is only one constant required of the calling program. It indicates which port line the IR sensor is
connected to. For example,

 #DEFINE IR_DATA_PIN PORTA.0

There is one subroutine:

 readIR_Remote(IR_rem_dev, IR_rem_key)

The values returned are, respectively, the device number mentioned earlier and the key that is
currently pressed. Both are byte values.

Seventeen local bytes are consumed, and two bytes are used for the output parameters. That’s a grand
total of nineteen bytes required when invoking this subroutine.

Header File

909

 sub readIR_Remote(out IR_rem_dev as byte, out IR_rem_key as byte)
 dim IR_rem_count, IR_rem_i as byte
 dim IR_rem_width(12) as byte ;pulse width array

 do
 IR_rem_count = 0 ;wait for start bit
 do while IR_DATA_PIN = 0 ;measure width (active low)
 wait 100 uS ;24 X 100 uS = 2.4 mS
 IR_rem_count++
 loop
 loop while IR_rem_count < 20 ;less than this so wait

 for IR_rem_i = 1 to 12 ;read/store the 12 pulses
 do
 IR_rem_count = 0
 do while IR_DATA_PIN = 0 ;zero = 6 units = 0.6 mS
 wait 100 uS ;one = 12 units = 1.2 mS
 IR_rem_count++
 loop
 loop while IR_rem_count < 4 ;too small to be legit

 IR_rem_width(IR_rem_i) = IR_rem_count ;else store pulse width
 next IR_rem_i

 IR_rem_key = 0 ;command built up here
 for IR_rem_i = 1 to 7 ;1st 7 bits are the key
 IR_rem_key = IR_rem_key / 2 ;shift into place
 if IR_rem_width(IR_rem_i) > 10 then ;longer than 10 mS
 IR_rem_key = IR_rem_key + 64 ;so call it a one
 end if
 next

 IR_rem_dev = 0 ;device number built up here
 for IR_rem_i = 8 to 12 ;next 5 bits are device number
 IR_rem_dev = IR_rem_dev / 2
 if IR_rem_width(IR_rem_i) > 10 then
 IR_rem_dev = IR_rem_dev + 16
 end if
 next
 end sub

Midpoint Circle Algorithm
Explanation:

GCBASIC can draw circles using the midpoint circle algorithm. The midpoint circle algorithm

910

determines the points needed for drawing a circle. The algorithm is a variant of Bresenham’s line
algorithm, and is thus sometimes known as Bresenham’s circle algorithm, although not actually
invented by Jack E. Bresenham.

The example program below show the midpoint circle algorithm within GCBASIC.

Example Output on GLCD Device:

 'Midpoint Circle algorithm
 'Chip model
 #chip 16F886, 8 ;PIC16F88 running at 8 MHz
 #config mclr=off ;reset handled internally

 #include <glcd.h>

 ;----- Constants

 ;Pinout is shown for the LCM12864H-FSB-FBW
 ;graphical LCD available from Amazon.

 ; +5V ;LCD pin 1
 ; ground ;LCD pin 2
 ; Vo = wiper of pot ;LCD pin 3
 #define GLCD_DB0 PORTB.0 ;LCD pin 4
 #define GLCD_DB1 PORTB.1 ;LCD pin 5
 #define GLCD_DB2 PORTB.2 ;LCD pin 6
 #define GLCD_DB3 PORTB.3 ;LCD pin 7
 #define GLCD_DB4 PORTB.4 ;LCD pin 8
 #define GLCD_DB5 PORTB.5 ;LCD pin 9
 #define GLCD_DB6 PORTB.6 ;LCD pin 10
 #define GLCD_DB7 PORTB.7 ;LCD pin 11
 #define GLCD_CS2 PORTA.0 ;LCD pin 12
 #define GLCD_CS1 PORTA.1 ;LCD pin 13

911

https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
https://en.wikipedia.org/wiki/Jack_Elton_Bresenham

 #define GLCD_RESET PORTA.2 ;LCD pin 14
 #define GLCD_RW PORTA.3 ;LCD pin 15
 #define GLCD_RS PORTA.4 ;LCD pin 16
 #define GLCD_ENABLE PORTA.6 ;LCD pin 17
 ; Vee = pot low side ;LCD pin 18
 ; backlight anode ;LCD pin 19
 ; backlight cathode ;LCD pin 20

 #define GLCD_TYPE GLCD_TYPE_KS0108
 #define GLCD_WIDTH 128
 #define GLCD_HEIGHT 64

 ;----- Program

 Do forever

 GLCDDrawString 30,0,"ChipMhz@"
 GLCDDrawString 78,0, str(ChipMhz)
 Circle(10,10,10,0) ;upper left
 Circle(117,10,10,0) ;upper right
 Circle(63,31,10,0) ;center
 Circle(63,31,20,0) ;center
 Circle(10,53,10,0) ;lower left
 Circle(117,53,10,0) ;lower right
 GLCDDrawString 30,54,"PIC16F886"

 loop

I2C Master Hardware
Explanation:

This program demonstrates how to read and write data from an EEPROM device using the serial
protocal called I2C.

This program uses the hardware I2C module within the microcontroller. If your microcontroller does
not have a hardware I2C module then please use the software I2C GCBASIC ibrary.

This program has three sections.

1. Read a single byte from the EEPROM

2. Write and read a page of 64 bytes to and from the EEPROM, and

3. Finally display the contents of the EEPROM.

This program has an interrupt driven serial handler to capture and manage input from a serial
terminal.

912

Demonstration program:

 'Change the microcontroller, frequency and config to suit your needs.
 #chip 16F1937, 32
 #config MCLRE_ON

 'Required Library to read and write to an EEPROM
 #include <I2CEEPROM.h>

 ' Define I2C settings - CHANGE PORTS
 #define HI2C_BAUD_RATE 400
 #define HI2C_DATA PORTC.4
 #define HI2C_CLOCK PORTC.3
 'I2C pins need to be input for SSP module for Microchip PIC devices.
 Dir HI2C_DATA in
 Dir HI2C_CLOCK in
 'I2C MASTER MODE
 HI2CMode Master

 ' THIS CONFIG OF THE SERIAL PORT WORKS WITH max232 THEN TO PC
 ' USART settings
 #define USART_BAUD_RATE 9600
 Dir PORTc.6 Out
 Dir PORTc.7 In
 #define USART_DELAY OFF
 #define USART_TX_BLOCKING
 wait 500 ms

 'Create a Serial Interrupt Handler
 On Interrupt UsartRX1Ready Call readUSART

 ' Constants etc required for the serial Buffer Ring
 #define BUFFER_SIZE 32
 #define bkbhit (next_in <> next_out)
 ' Required Variables for the serial Buffer Ring
 Dim buffer(BUFFER_SIZE)
 Dim next_in as byte: next_in = 1
 Dim next_out as byte: next_out = 1

 Dim syncbyte as Byte
 wait 125 ms

 ' Read ONE byte from the EEPROM
 dim DeviceID as byte
 dim EepromAddress, syscounter as word
 #define EEpromDevice 0xA0

913

 'Master Main Loop
 location = 0
 'Define our array
 dim outarray(64), inarray(64)

 do
 HSerPrintCRLF 2
 HSerPrint "Commence Array Write and Read"
 'Populate the array
 for tt = 1 to 64
 outarray(tt) = tt
 next

 'Library write call is: eeprom_wr_array(device_number, page_size, address,
array_name, number_of_bytes)
 eeprom_wr_array(EEpromDevice, 64, location, outarray, 64)

 'Library read call is: eeprom_rd_array(device_number, address, array_name,
number_of_bytes)
 eeprom_rd_array(EEpromDevice, location, inarray, 64)

 'Show results of the read of the I2C EEPROM
 HSerPrintCRLF 2
 for tt = 1 to 64

 if outarray(tt) <> inarray(tt) then
 Hserprint "!"
 HSerPrint inarray(tt)
 else
 HSerPrint inarray(tt)
 end if
 HSerPrint ","
 next

 HSerPrintCRLF 2
 HSerPrint "Commence Write and Read a single byte":HSerPrintCRLF
 HSerPrint "Read value should be "
 HSerPrint str(location):HSerPrintCRLF
 HSerPrint "Read = "
 'Use library to write and read from the I2C EEPROM
 eeprom_wr_byte (EEpromDevice, location, location)
 eeprom_rd_byte (EEpromDevice, location, bbyte)

 HSerPrint bbyte
 location++
 HSerPrintCRLF 2

914

 'Show the connnected I2C devices on the Serial terminal.
 HI2CDeviceSearch
 HSerPrint "Commence Dump of the EEPROM"
 validateEEPROM
 Loop
 End

 'Show the attached I2C devices
 sub HI2CDeviceSearch
 'Assumes serial is operational
 HSerPrintCRLF
 HSerPrint "I2C Device Search"
 HSerPrintCRLF 2
 for deviceID = 0 to 255
 HI2CStart
 HI2CSend (deviceID)
 if HI2CAckPollState = false then
 HSerPrint "ID: 0x"
 HSerPrint hex(deviceID)
 HSerSend 9
 testid = deviceID | 1
 select case testid
 case 49
 Hserprint "DS2482_1Channel_1Wire Master"
 case 65
 Hserprint "Serial_Expander_Device"
 Case 73
 Hserprint "Serial_Expander_Device"
 case 161
 Hserprint "EEProm_Device_Device"
 case 163
 Hserprint "EEProm_Device_Device"
 case 165
 Hserprint "EEProm_Device_Device"
 case 167
 Hserprint "EEProm_Device_Device"
 case 169
 Hserprint "EEProm_Device_Device"
 case 171
 Hserprint "EEProm_Device_Device"
 case 173
 Hserprint "EEProm_Device_Device"
 case 175
 Hserprint "EEProm_Device_Device"
 case 209
 Hserprint "DS1307_RTC_Device"

915

 case 249
 Hserprint "FRAM_Device"
 case else
 Hserprint "Unknown_Device"
 end select
 HI2CSend (0)
 HSerPrintCRLF
 end if
 HI2CStop
 next
 HSerPrint "End of Device Search"
 HSerPrintCRLF 2
 end sub

 'Validation EEPROOM code
 sub validateEEPROM
 EepromAddress = 0
 HSerPrintCRLF 2
 HSerPrint "Hx"
 HSerPrint hex(EepromAddress_h)
 HSerPrint hex(EepromAddress)
 HSerPrint " "

 for EepromAddress = 0 to 0xffff
 'Read from EEPROM using a library function
 eeprom_rd_byte EEPromDevice, EepromAddress, objType

 HSerPrint hex(objType)+" "
 if ((EepromAddress+1) % 8) = 0 then
 HSerPrintCRLF
 HSerPrint "Hx"
 syscounter = EepromAddress + 1
 HSerPrint hex(syscounter_h)
 HSerPrint hex(syscounter)
 HSerPrint " "
 end if
 'Has serial data been received
 if bkbhit then
 syschar = bgetc
 select case syschar
 case 32
 do while bgetc = 32
 loop
 case else
 HSerPrintCRLF
 HSerPrint "Done"
 exit sub
 end select

916

 end if
 next
 HSerPrintCRLF
 HSerPrint "Done"
 end Sub

 ' Start of Serial Support functions
 ' Required to read the serial port
 ' Assumes serial port has been initialised
 Sub readUSART
 buffer(next_in) = HSerReceive
 temppnt = next_in
 next_in = (next_in + 1) % BUFFER_SIZE
 if (next_in = next_out) then ' buffer is full!!
 next_in = temppnt
 end if
 End Sub

 ' Serial Support functions
 ' Get characters from the serial port
 function bgetc
 wait while !(bkbhit)
 bgetc = buffer(next_out)
 next_out=(next_out+1) % BUFFER_SIZE
 end Function

I2C Slave Hardware
Explanation:

This program demonstrates how to control and display using a LCD the code for the keypad.

This program can be adapted. This program uses the hardware I2C module within the microcontroller.
If your microcontroller does not have a hardware I2C module then please use the software I2C
GCBASIC library for most microcontrollers.

This program also has an interrupt driven I2C handler to manage the I2C from the Start event.

Demonstration program:

 'Code for the keypad and LCD Microchip PIC microcontroller on the Microlab board v2
 'microcontroller is responsible for:
 ' - Reading keypad
 ' - Displaying data on LCD
 ' - communication with main Microchip PIC microcontroller via I2C

917

 ' - providing 5 keypad lines to main Microchip PIC microcontroller (for
compatibility)
 ' - receiving remote control signals for button and keypad

 'This code has support for two keypad layouts. This is one possible layout:
 '0123
 '4567
 '89AB
 'CDEF
 'And this is the other possible layout:
 '123A
 '456E
 '789D
 'A0BC
 'Select the keypad layout by uncommenting one of these lines:
 '#define KEYPAD_KEYMAP KeypadMap0123
 #define KEYPAD_KEYMAP KeypadMap123F

 'Chip and config
 #chip 16F882, 8

 'Ports connected to keypad
 'Column ports need pullups, hence columns are on PORTB for built in weak pullups
 #define KEYPAD_COL_1 PORTB.4
 #define KEYPAD_COL_2 PORTB.5
 #define KEYPAD_COL_3 PORTB.6
 #define KEYPAD_COL_4 PORTB.7
 #define KEYPAD_ROW_1 PORTA.4
 #define KEYPAD_ROW_2 PORTA.3
 #define KEYPAD_ROW_3 PORTA.2
 #define KEYPAD_ROW_4 PORTA.1

 'Ports connected to LCD
 #define LCD_IO 4
 #define LCD_WIDTH 20 ;specified lcd width for clarity only. 20 is the
default width
 #define LCD_RW PORTA.7
 #define LCD_RS PORTA.6
 #define LCD_Enable PORTA.5
 #define LCD_DB4 PORTA.4
 #define LCD_DB5 PORTA.3
 #define LCD_DB6 PORTA.2
 #define LCD_DB7 PORTA.1
 #define BACKLIGHT PORTA.0

 'Button port (for remote control)
 #define BUTTON PORTB.0

918

 'Keypad ports connected to main Microchip PIC microcontroller
 'These are disabled when KeyoutDisabled = true
 #define KEYOUT_A PORTC.5
 #define KEYOUT_B PORTC.2
 #define KEYOUT_C PORTC.1
 #define KEYOUT_D PORTC.0
 #define KEYOUT_DA PORTB.1

 'I2C ports
 #define I2C_DATA PORTC.4
 #define I2C_CLOCK PORTC.3

 'RS232/USART settings
 'To do if/when remote support needed

 'Initialise
 Dir KEYOUT_A Out
 Dir KEYOUT_B Out
 Dir KEYOUT_C Out
 Dir KEYOUT_D Out
 Dir KEYOUT_DA Out

 Dir BACKLIGHT Out
 Dir BUTTON In 'Is an output, turn off by switching pin to Hi-Z

 'Initialise I2C Slave
 'I2C pins need to be input for SSP module
 Dir I2C_DATA In
 Dir I2C_CLOCK In
 HI2CMode Slave
 HI2CSetAddress 128

 'Buffer for incoming I2C messages
 'Each message takes 4 bytes
 Dim I2CBuffer(10)
 BufferSize = 0
 OldBufferSize = 0

 'Set up interrupt to process I2C
 On Interrupt SSP1Ready Call I2CHandler

 'Enable weak pullups on B4-7 (keypad col pins)
 NOT_RBPU = 0
 WPUB = b'11110000'

 'Key buffers
 '255 indicates no key, other value gives currently pressed key
 RemoteKey = 255

919

 OutKey = 255
 KeyoutDisabled = False 'False if KEYOUT lines used to send key

 'Main loop
 Do

 'Read keypad, send value
 CheckPressedKeys
 SendKeys

 'Check for I2C messages
 ProcessI2C

 Loop

 'This keymap table is for this arrangement:
 '0123
 '4567
 '89AB
 'CDEF
 Table KeypadMap0123
 3
 7
 11
 15
 2
 6
 10
 14
 1
 5
 9
 13
 0
 4
 8
 12
 End Table

 'This keymap table is for this arrangement:
 '123F
 '456E
 '789D
 'A0BC
 Table KeypadMap123F
 15
 14
 13

920

 12
 3
 6
 9
 11
 2
 5
 8
 0
 1
 4
 7
 10
 End Table

 Sub CheckPressedKeys
 'Subroutine to:
 ' - Read keypad
 ' - Check remote keypress
 ' - Decide which key to output

 'Read keypad
 If RemoteKey <> 255 Then
 OutKey = RemoteKey
 Else
 EnableKeypad
 OutKey = KeypadData

 End If

 End Sub

 Sub EnableKeypad
 'Disable LCD so that keypad can be activated
 Set LCD_RW Off 'Write mode, don't let LCD write

 'Re-init keypad
 InitKeypad

 End Sub

 Sub I2CHandler
 'Handle I2C interrupt
 'SSPIF doesn't trigger for stop condition, only start!

 'If buffer full flag set, read

 Do While HI2CHasData

921

 HI2CReceive DataIn

 'Sending code
 If BufferSize = 0 Then
 LastI2CWasRead = False
 'Detect read address
 If DataIn = 129 Then
 LastI2CWasRead = True

 HI2CSend OutKey

 KeyoutDisabled = True
 Dir KEYOUT_A In
 Dir KEYOUT_B In
 Dir KEYOUT_C In
 Dir KEYOUT_D In
 Dir KEYOUT_DA In

 Exit Sub
 End If
 End If

 If BufferSize < 10 Then I2CBuffer(BufferSize) = DataIn
 BufferSize += 1
 Loop

 End Sub

 Sub SendKeys

 'Don't run if not using KEYOUT lines
 If KeyoutDisabled Then Exit Sub

 'Send pressed keys
 If OutKey <> 255 Then
 'If there is a key pressed, set output lines
 If OutKey.0 Then
 KEYOUT_A = 1
 Else
 KEYOUT_A = 0
 End If
 If OutKey.1 Then
 KEYOUT_B = 1
 Else
 KEYOUT_B = 0
 End If
 If OutKey.2 Then
 KEYOUT_C = 1

922

 Else
 KEYOUT_C = 0
 End If
 If OutKey.3 Then
 KEYOUT_D = 1
 Else
 KEYOUT_D = 0
 End If

 KEYOUT_DA = 1
 Else
 'If no key pressed, clear data available line to main Microchip PIC
microcontroller
 KEYOUT_DA = 0
 End If

 End Sub

 Sub ProcessI2C

 If HI2CStopped Then
 IntOff

 If LastI2CWasRead Then BufferSize = 0

 If BufferSize <> 0 Then
 OldBufferSize = BufferSize
 BufferSize = 0
 End If
 IntOn
 End If

 If OldBufferSize <> 0 Then

 CmdControl = I2CBuffer(1)

 'Set backlight
 If CmdControl.6 = On Then
 Set BACKLIGHT On
 Else
 Set BACKLIGHT Off
 End If

 'Set R/S bit
 LCD_RS = CmdControl.4

 'Send bytes to LCD
 LCDDataBytes = CmdControl And 0x0F

923

 If LCDDataBytes > 0 Then
 For CurrSendByte = 1 To LCDDataBytes
 LCDWriteByte I2CBuffer(LCDDataBytes + 1)
 Next
 End If
 'LCDWriteByte I2CBuffer(2)

 OldBufferSize = 0
 End If

 End Sub

RGB LED Control
Explanation:

This program demonstrates how to drive an RGB LED to create 4096 different colors. Each of the three
elements (red, green and blue) responds to 16 different levels. A value of 0 means the element never
turns on, while a value of 15 means the element never shuts off. Values in between these two extremes
vary the pulse width.

This program is an interrupt driven three channel PWM implementation.

The basic carrier frequency depends upon the microcontroller clock speed. For example, with an 8
MHz clock, the LED elements are modulated at about 260 Hz. The interrupts are generated by Timer 0.
With an 8 MHz clock they occur about every 256 uS. The interrupt routine consumes about 20 uS.

Do not forget the current limiting resistors to the LED elements. A value of around 470 ohms is typical,
but you may want to adjust the individual values, to balance the color response.

In this demonstration, three potentiometers are used to set the color levels using the slalom technique.

Demonstration program:

924

 ;----- Configuration
 #chip 16F88, 8 ;PIC16F88 running at 8 MHz
 #config mclr=off ;reset handled internally

 ;----- Constants
 #define LED_R PortB.0 ;pin to red element
 #define LED_G PortB.1 ;pin to green element
 #define LED_B PortB.2 ;pin to blue element
 ;----- Variables
 dim redValue, greenValue, blueValue, ticks as byte
 ;----- Program
 dir PortA in ;three pots for inputs
 dir PortB out ;the LED outputs
 on interrupt Timer0Overflow call update
 initTimer0 Osc, PS0_1/2
 do
 redValue = readAD(AN0)/16 ;red -- 0 to 15
 greenValue = readAD(AN1)/16 ;green -- 0 to 15
 blueValue = readAD(AN2)/16 ;blue -- 0 to 15
 loop

 Sub update ;interrupt routine
 ticks++ ;increment master timekeeper
 if ticks = 15 then ;start of the count
 ticks = 0
 if redValue <> 0 then ;only turn on if nonzero
 set LED_R on
 end if
 if greenValue <> 0 then
 set LED_G on
 end if
 if blueValue <> 0 then
 set LED_B on
 end if
 end if
 if ticks = redValue then ;time to turn off red?
 set LED_R off
 end if
 if ticks = greenValue then ;time to turn off green?
 set LED_G off
 end if
 if ticks = blueValue then ;time to turn off blue?
 set LED_B off
 end if
 end sub

925

Serial/RS232 Buffer Ring
Explanation:

This program demonstrates how to create a serial input buffer ring.

The program receives a character into the buffer and sends back. Try sending large volumes of
characters…..

This program program uses an interrupt event to capture the incoming byte value and place in the
buffer ring. When a byte is received the buffer ring is incremented to ensuer the next byte is handled
correctly.

Testing bkbhit will set to True when a byte has been received. Reading the function bgetc will return
the last byte received.

Demonstration program:

This demonstration program will support up to 256 bytes. For a larger buffer change the variables to
words.

 #chip 16F1937
 // #chip mega4809
 // #chip mega328p, 16

 // Add PPS if appropiate for your chip
 // [change to your config] This is the config for a serial terminal

 // assumes USART1 (or USART0 on AVRDx), if you select USART1/2/3/4 then you MUST
add the comport parameter to all HSerxxxxx functions.
 // turn on the RS232 and terminal port.
 // Define the USART settings
 #DEFINE USART_BAUD_RATE 9600

 // This assumes you are using an ANSI compatible terminal. Use PUTTY.EXE it is very
easy to use.

 // Main program

 // Wait for terminal to settle
 wait 3 s

 // Create the supporting variables
 Dim next_in As Byte
 Dim next_out As Byte
 Dim syncbyte As Byte

926

 Dim temppnt As Byte

 // Constants etc required for Buffer Ring
 #DEFINE BUFFER_SIZE 8
 #DEFINE bkbhit (next_in <> next_out)

 // Define the Buffer
 Dim buffer(BUFFER_SIZE - 1) // we will use element 0 in the array as part of out
buffer

 // Call init the buffer
 InitBufferRing

 HSerSend 10
 HSerSend 13
 HSerSend 10
 HSerSend 13
 HSerPrint "Started: Serial between two devices"
 HSerSend 10
 HSerSend 13

 // Get character(s) and send back
 // Get character(s) and send back
 Do

 // Do we have data in the buffer?
 if bkbhit then

 // Send the next character in the buffer to the terminal, exposed via the
function `bgetc` back the terminal
 HSerSend bgetc

 end if
 Loop

 // Supporting subroutines

 Sub readUSART

 buffer(next_in) = HSerReceive
 temppnt = next_in
 next_in = (next_in + 1) % BUFFER_SIZE
 If (next_in = next_out) Then // buffer is full!!
 next_in = temppnt
 End If

927

 End Sub

 Function bgetc
 Dim local_next_out as Byte // maintain a local copy of the next_out variable
to ensure it does not change when an Interrupt happens
 local_next_out = next_out
 bgetc = buffer(local_next_out)
 local_next_out=(local_next_out+1) % BUFFER_SIZE
 INTOFF
 next_out = local_next_out
 INTON
 End Function

 Sub InitBufferRing

 // Set the buffer to the first address
 next_in = 0
 next_out = 0
 // Interrupt Handler - some have RCIE and some have U1RXIE, so handle
 //
 // You would need to change the Interrupt if you use USART1,2,3, or 4
 //
 #IFDEF BIT(RCIE)
 On Interrupt UsartRX1Ready Call readUSART
 #ENDIF
 #IFDEF BIT(U1RXIE)
 On Interrupt UART1ReceiveInterrupt Call readUSART
 #ENDIF

 #IFDEF AVR
 #IFNDEF CHIPAVRDX
 //~ Support for legacy AVR
 On Interrupt UsartRX1Ready Call readUSART
 #ELSE
 //~ Support for AVRDx - AVRDx chips are USART0,USART1,USART2,USART3 and
USART4 not USART.
 On Interrupt Usart0RXReady Call readUSART
 #ENDIF
 #ENDIF

 End Sub

928

Trigonometry Circle
Explanation:

GCBASIC can draw circles on a Graphical LCD device using GCBASIC library functions.

Demonstration program:

 ;Circle and filled circle commands on a graphic LCD.
 ;This uses the 2-place trigonometric routines found in the include file.

 ;----- Configuration
 #CHIP 16F88, 8 ;PIC16F88 RUNNING AT 8 MHZ
 #CONFIG MCLR=OFF ;RESET HANDLED INTERNALLY
 #OPTION EXPLICIT
 #DEFINE USELEGACYFORNEXT ;WILL ENSURE THE OLD FOR-NEXT Loop is used just to save
some memory as this is a very simple FOR-NEXT loop

 #INCLUDE <GLCD.H>
 #INCLUDE <TRIG2PLACES.H>

 ;----- Constants

 ;Pinout is shown for the LCM12864H-FSB-FBW
 ;graphical LCD available from Amazon.

 ; +5V ;LCD pin 1
 ; ground ;LCD pin 2
 ; Vo = wiper of pot ;LCD pin 3
 #define GLCD_DB0 PORTB.0 ;LCD pin 4
 #define GLCD_DB1 PORTB.1 ;LCD pin 5
 #define GLCD_DB2 PORTB.2 ;LCD pin 6
 #define GLCD_DB3 PORTB.3 ;LCD pin 7
 #define GLCD_DB4 PORTB.4 ;LCD pin 8
 #define GLCD_DB5 PORTB.5 ;LCD pin 9
 #define GLCD_DB6 PORTB.6 ;LCD pin 10

929

 #define GLCD_DB7 PORTB.7 ;LCD pin 11
 #define GLCD_CS2 PORTA.0 ;LCD pin 12
 #define GLCD_CS1 PORTA.1 ;LCD pin 13
 #define GLCD_RESET PORTA.2 ;LCD pin 14
 #define GLCD_RW PORTA.3 ;LCD pin 15
 #define GLCD_RS PORTA.4 ;LCD pin 16
 #define GLCD_ENABLE PORTA.6 ;LCD pin 17
 ; Vee = pot low side ;LCD pin 18
 ; backlight anode ;LCD pin 19
 ; backlight cathode ;LCD pin 20

 #define GLCD_TYPE GLCD_TYPE_KS0108
 #define GLCD_WIDTH 128
 #define GLCD_HEIGHT 64

 ;----- Variables

 dim cx, cy, edge, jj as byte
 dim ii as word

 ;----- Program

 myCircle(10,10,10)
 ;upper left
 myCircle(117,10,10) ;upper right
 myCircleFilled(63,31,10) ;center
 myCircle(63,31,20) ;center
 myCircleFilled(10,53,10) ;lower left
 myCircleFilled(117,53,10) ;lower right

 ;----- Subroutines

 sub myCircle(cenX, cenY, rad)
 ;Center of circle = (cenX,cenY), radius = rad

 for ii = 0 to 358 step 2 ;every two degrees
 cx = cenX -((10*rad*cos(ii))/100+5)/10 ;properly rounded x value
 cy = cenY -((10*rad*sin(ii))/100+5)/10 ;properly rounded y value

 ;the following ignores the pixel if off the screen
 if (cx>=0 and cx<=GLCD_WIDTH and cy>=0 and cy<=GLCD_HEIGHT) then
 Pset(cx, cy, on)
 end if
 next ii
 end sub

 sub myCircleFilled(cenX, cenY, rad)

930

 ;Center of circle = (cenX,cenY), radius = rad

 for ii = 0 to 358 step 2
 cx = cenX -((10*rad*cos(ii))/100+5)/10
 cy = cenY -((10*rad*sin(ii))/100+5)/10
 edge = 2 * cenX - cx ;compute right edge

 for jj = cx to edge ;fill entire line, uses legacy for
next permitting CX to be less than edge
 if (jj>=0 and jj<=GLCD_WIDTH and cy>=0 and cy<=GLCD_HEIGHT) then
 Pset(jj,cy,on)
 end if
 next jj
 next ii
 end sub

See also Trigonometry, Circle, FilledCircle,

931

Graphical GCBASIC
This is the Graphical GCBASIC section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Code Documentation
Documenting GCBASIC is key for ease of use. This section is intended for developers only.

Documenting is the ability to read some extra information from comments in libraries.

Some comments that start with ''' have a special meaning, and will be displayed as tooltips or as
information to the user. These tooltips helps inexperienced users to use extra libraries.

1. GCBASIC uses ; (a semicolon) to show comments that it has placed automatically, and // or ' to
indicate ones that the user has placed. When loading a program, it will not load any that start with
a ; (semi-colon). The use of comments do not impact the users but it worthy of note.

2. As for code documentation comments, GCBASIC will load information about subroutines/functions
and any hardware settings that need to be set.

3. For subroutines, a line before the Sub or Function line that starts with ''' will be used as a tooltip
when the user hovers over the icon. A line that starts with '''@ will be interpreted differently,
depending on what comes after the @. '''@param ParamName Parameter Description will add a
description for the parameter. For a subroutine, this will show in the Icon Settings panel under the
parameter when the user has selected that icon.

4. For functions, it will show at the appropriate time in the Parameter Editor wizard. '''@return
Returned value applies to functions only. It will be displayed in the Parameter Editor wizard when
the user is asked to choose a function. An example of all this is given in srf04.h:

 '''Read the distance to the nearest object
 '''@param US_Sensor Sensor to read (1 to 4)
 '''@return Distance in cm
 Function USDistance(US_Sensor) As Word

5. If a subroutine or command is used internally in the library, but GCBASIC users should not see it, it
can be hidden by placing '''@hide before the Sub or Function line. Another example from srf04.h:

 '''@hide
 Sub InitUSSensor

These should hopefully be pretty easy to add. It is also possible to add Hardware Settings. A particular
setting can be defined anywhere in the file, using this syntax:

932

 '''@hardware condition, display name, constant, value type

These comments informs GCBASIC when to show the setting. Normally, this is All, but sometimes it can
include a constant, a space and then a comma separated list of values. display name is a friendly name
for the setting to display. constant is the constant that must be set, and valuetype is the type that will be
accepted for that constant’s value. To allow for multiple value types, enter a list of types with a |
between them.

6. Allowed types are:

 free - Allows anything
 label - Allows any label
 condition - Allows a condition
 table - Allows a data table
 bit - Allows any bit from variable, or bit variable
 io_pin - Allows an IO pin
 io_port - Allows an entire IO port
 number - Allows any fixed number or variable
 rangex:y - Allows any number between x and y
 var - Allows any variable
 var_byte - Allows any byte variable
 var_word - Allows any word variable
 var_integer - Allows any integer variable
 var_string - Allows any string variable
 const - Allows any fixed number
 const_byte - Allows any byte sized fixed number
 const_word - Allows any word sized fixed number
 const_integer - Allows any integer sized fixed number
 const_string - Allows any fixed string
 byte - Allows any byte (fixed number or variable)
 word - Allows any word
 integer - Allows any integer
 string - Allows any string
 array - Allows any array

7. When the library is added the program, GCBASIC will show a new device with the name of the
library file on the Hardware Settings window. The user can then set the relevant constants without
necessarily needing to see any code. Adding a GCBASIC library to GCBASIC will not result in any
changes to the library. GCBASIC uses the information it reads to help edit the user’s program, but
then the user’s program is passed to the compiler along with the unchanged library.

8. Hardware Settings are a bit more involved to add, but hopefully the bit of extra documentation for
subroutines will be straight forward.

933

Windows .NET Support
From Graphical GCBASIC version 0.941 supports use on newer Windows versions without having the
pre-requisite of .NET 3.5.

934

GCBASIC for Linux
This is the GCBASIC for Linux section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Overview - Linux Operating System
Introduction: GCBASIC can be used when using the Linux Operating System.

This instructions are not distribution specific, but are for Linux only (not Windows).

Instructions: Complete the following steps to compile and install GCBASIC for Linux:

1. Install FreeBasic from your distributions repository or
http://www.freebasic.net/wiki/CompilerInstalling

2. Download the "GCBASIC - Linux Distribution" from SourceForge at
https://sourceforge.net/projects/gcbasic/files/

3. Unrar/unpack GCBASIC.rar to a location of your choice within your home directory (eg. within
Downloads) with either a file manager or from a console.

4. From a console, change to the GCBASIC Sources in the unpacked directory:

 eg. cd ~/Downloads/sources/linuxbuild/

5. Make sure that install.sh is set as executable (ie. chmod +x install.sh), and then execute:
./install.sh build

6. You will need root privileges for this step. You can switch user (su) to root, or optionally use sudo.

 Execute: [sudo] ./install.sh install

7. If you su’d to root, use exit to drop back to your normal user. Then, be sure to follow the
instructions given by the script for updating your path.

8. Confirm proper execution, and the version, of GCBASIC by executing: gcbasic /version

Now you can create and compile GCBASIC source files.

Programming microcontrollers:

To program your microcontroller with your GCBASIC created hex file, you will need additional
programming and programmer software.

For Microchip PIC microcontroller programming, you might find what you need at:

935

http://www.freebasic.net/wiki/CompilerInstalling
https://sourceforge.net/projects/gcbasic/files/

www.pickitplus.co.uk The PICKitPlus Team provide programmers and Linux software.

For Atmel AVR microcontroller programming, you will need avrdude. It should be available in your
distributions repository. If not, check here: http://www.nongnu.org/avrdude/

Make ASM, Make HEX and Programming Operations
using the provided Linux scripts
The scripts provided are intended to assist in the creation of the ASM file (from a GCBASIC source file
), creation of the HEX file (also from a GCBASIC source file) and to support programming operations (
often called `FLASH`ing the microcontroller).

Script Usage Example

makeasm
.sh

To compile the GCBASIC source program to create the ASM. makeasm.sh
sourcefile.gcb

makehex
.sh

To compile and asseble the GCBASIC source program to create the ASM
and a microcontroller specific HEX file.

makehex.sh
sourcefile.gcb

flash.s
h

To compile,asseble the GCBASIC source program to create the ASM and a
microcontroller specific HEX file, and, then to program the
microcontroller

flash.sh
sourcefile.gcb

Examples

There are multiple constructs to run multiple programs on a single command line. The most common
are ';' and '&&'

To run another command immadiately after running makehex.sh. Use the following:

 makehex.sh sourcefile.gcb; anothercommand

To run another command only if makehex.sh does not exit with an error such as a compiler error. Use
the following:

 makehex.sh sourcefile.gcb && anothercommand

936

http://www.nongnu.org/avrdude/

GCBASIC for ARM & Pi
This is the GCBASIC for Pi section of the Help file. Please refer the sub-sections for details using the
contents/folder view.

Overview - Raspberry Pi
Introduction:

GCBASIC can be used when using the Raspberry Pi.

You can install the command-line version of GCBASIC on a Raspberry Pi (and similar single-board
computers) and use it to compile your GCBASIC programs.

You can also program most PICs and AVRs using only the Pi’s GPIO pins (see [Programming]), as well as
communicate with your device over the Pi’s serial port. This makes it easy to program, modify, and
communicate with a PIC or AVR using just a Pi and an SSH connection.

GCBASIC is not published for ARM-based computers, there is currently no pre-compiled version for
ARM-based computers, so you will have to compile it from source. The GCBASIC compiler is written in
FreeBASIC (an open-source version of BASIC), so you will need to first install the FreeBASIC compiler
on your Pi, then use it to compile the GCBASIC compiler from its source code. This is relatively simple.

FreeBASIC is not included in any of the major Linux repositories, but there is a customized version for
ARMv7 boards like the Raspberry Pi on their web site.

The following procedure will work with any ARMv7 single-board computer running a Debian
derivative like Raspberry Pi OS or Armbian. This includes the Raspberry Pi 2 and 3, and all single
board computers with an Allwinner H2+ or H3 microprocessor (Orange Pi PC, Orange Pi Zero, Nano Pi
R1, etc). It has not been tested with a Raspberry Pi 4.

Instructions:

All commands should be performed on your Pi board, either through a remote SSH terminal or using a
keyboard and monitor connected to your Pi.

Installing FreeBASIC

1. Install FreeBASIC dependencies

 $ sudo apt-get install libx11-dev libxext-dev libxpm-dev libxrandr-dev libncurses5
libncurses5-dev

2. Download the latest version FreeBASIC for ARMv7 from https://users.freebasic-
portal.de/stw/builds/linux-armv7a-hf-debian/ :

937

https://www.freebasic.net/
https://users.freebasic-portal.de/stw/builds/linux-armv7a-hf-debian/
https://www.raspberrypi.org/downloads/raspberry-pi-os/
https://www.armbian.com/
https://users.freebasic-portal.de/stw/builds/linux-armv7a-hf-debian/
https://users.freebasic-portal.de/stw/builds/linux-armv7a-hf-debian/

 $ cd ~
 $ wget https://users.freebasic-portal.de/stw/builds/linux-armv7a-hf-
debian/fbc_linux_armv7a_hf_debian_0376_2020-09-17.zip
 $ unzip fbc_linux_armv7a_hf_debian_0376_2020-09-17.zip

3. Install FreeBASIC

 $ cd fbc_linux_armv7a_hf_debian/
 $ chmod +x install.sh
 $ sudo ./install.sh -i

Installing GCBASIC

1. Download and extract the GCBASIC sources:

 $ wget "https://downloads.sourceforge.net/project/gcbasic/GCBasic%20-
%20Linux%20Distribution/GCB%40Syn.rar"
 $ sudo apt install unar
 # the password when requested in the next step is "GCB"
 $ unar GCBASIC.rar
 $ cd GCBASIC/sources/linuxbuild/

2. Build and install the compiler:

 $ chmod +x install.sh
 $./install.sh build
 $ sudo ./install.sh install

3. Verify the compiler is properly installed and view the full list of compiler options

 $ gcbasic

Now you can create and compile GCBASIC source files. For example, to compile a program you created
named myprogram.bas into myprogram.hex, you could run:

 $ gcbasic -A:GCASM -R:none -K:A -WX -V myprogram.bas

This will:

• use GCBASIC’s internal assembler,

938

• turn off report creation,

• preserve all code in the assembly file output (useful for debugging)

• treat warnings as errors, and

• print compiler messages in verbose mode

Programming

To transfer your compiled .hex program files from your Pi to your microcontroller, you will need
additional software.

For most PIC microcontrollers, you should use PICkitPlus for Pi. PICKitPlus support the widest range of
PICs including the latest PICs. It is fully supported application.

For AVR microcontrollers, you will need avrdude. It should be available in your distribution’s
repository. If not, check here: http://www.nongnu.org/avrdude/ . Instructions on how to use it can be
found here.

939

https://pickitplus.co.uk/Typesetter/index.php/PKCMD-Pi-Application
http://www.nongnu.org/avrdude/
https://learn.adafruit.com/program-an-avr-or-arduino-using-raspberry-pi-gpio-pins/overview

GCBASIC for Apple macOS
This is the GCBASIC for Apple macOS section of the Help file. Please refer the sub-sections for details
using the contents/folder view.

Overview - Apple macOS GCBASIC
Introduction

The GCBASIC compiler can be used with the Apple macOS operating system. It should run on any
version from Snow Leopard 10.6 and above. It is guaranteed to run on both High Sierra 10.13 and
Mojave 10.14 which have been extensively tested.

You have a choice to make. You can either:

1. download a macOS installer which will install a precompiled 64 bit binary for the GCBASIC
compiler along with support files and some optional components; or

2. download, compile and install the GCBASIC compiler from the source files.

There are instructions below for both choices. If I was you, I would use the macOS GCBASIC Installer
and save valuable programming time :-)

Instructions for using the GCBASIC Installer

1. Download the GCBASIC - macOS Installer disk image (.dmg) file from
https://sourceforge.net/projects/gcbasic/files/GCBasic-macOS-Installer.dmg/download

2. Double click the .dmg file to mount it on your Desktop and a window will open which contains the
Installer.

3. Double click the REAME_FIRST.txt file and read it for any important information you may need
before proceeding.

4. Double click the GCBASIC icon and follow the installer prompts.

Instructions for building your own GCBASIC binary

Complete the following steps to compile and install the GCBASIC compiler:

1. Download the FreeBASIC 1.06 macOS binary compilation from:
http://tmc.castleparadox.com/temp/fbc-1.06-darwin-wip20160505.tar.bz2

2. Download the GCBASIC UNIX Source Distribution from SourceForge at
http://gcbasic.sourceforge.net/Typesetter/index.php/Download

3. Note: the following instructions assume the distribution file is named GCBASIC-UNIX-v0_98_05.rar
however the version number (v0_98_05) may change before these instructions are updated, so you
may have to adjust the filename to match the version you have downloaded.

940

https://sourceforge.net/projects/gcbasic/files/GCBasic-macOS-Installer.dmg/download
http://tmc.castleparadox.com/temp/fbc-1.06-darwin-wip20160505.tar.bz2
http://gcbasic.sourceforge.net/Typesetter/index.php/Download

4. Unfortunately Apple replaced the gcc compiler with the clang compiler and FreeBASIC needs the
real gcc due to a certain use of goto… so, you can compile your own version of gcc following the
instructions at https://solarianprogrammer.com/2017/05/21/compiling-gcc-macos/ or you can take
the low road and just download the pre-compiled binary version from https://github.com/sol-
prog/macos-gcc-binary/releases/download/v8.3/gcc-8.3.macos.tar.bz2

5. Open a Terminal window (Terminal can be found in Applications > Utilities).

6. Move gcc-8.3.tar.bz2 from your Downloads directory to your Home directory by typing the
following command in your Terminal window:

 mv ~/Downloads/gcc-8.3.tar.bz2 ~/

6. Unpack the gcc-8.3.tar.bz2 compressed tar file by typing the following command into your Terminal
window:

 gzcat gcc-8.3.tar.bz2 | tar xvf -

This will produce a new directory called gcc-8.3.

7. You now need to link the binary gcc-8.3 to just gcc by typing the following commands into your
Terminal window:

 cd gcc-8.3
 ln -s gcc-8.3 gcc
 cd ..

8. Move the gcc-8.3 directory to the /usr/local/ directory by typing the following commands into your
Terminal window:

 sudo mv gcc-8.3 /usr/local

Note: You will be asked for your password to execute the above command.

9. Ensure that the Apple Developer Xcode app is installed. Xcode can be downloaded and installed
from the App Store for free.

10. Ensure that the Xcode command line tools are installed by typing the following command in your
Terminal window:

 xcode-select --install.

941

https://solarianprogrammer.com/2017/05/21/compiling-gcc-macos/
https://github.com/sol-prog/macos-gcc-binary/releases/download/v8.3/gcc-8.3.macos.tar.bz2
https://github.com/sol-prog/macos-gcc-binary/releases/download/v8.3/gcc-8.3.macos.tar.bz2

11. Move the FreeBASIC compressed tar file from your Downloads directory to your home directory by
typing the following command in your Terminal window:

 mv ~/Downloads/fbc-1.06-darwin-wip20160505.tar.bz2 ~/

12. Unpack the FreeBASIC compressed tar file by typing these commands in your Terminal window:

 gzcat fbc-1.06-darwin-wip20160505.tar.bz2 | tar xvf -

This will produce a new directory called fbc-1.06.

13. Move the GCBASIC compressed tar file from your Downloads directory to your home directory by
typing the following command in your Terminal window:

 mv ~/Downloads/GCBASIC-UNIX-v0_98_05.rar ~/

14. Unpack the GCBASIC compressed tar file by typing these commands in your Terminal window:

 unrar x GCBASIC-UNIX-v0_98_05.rar

This will produce a new directory called GCBASIC. Note: If you do not currently have the unrar
program which can extract rar file archives you can download and install it for free from the App
Store.

15. Change to the GCBASIC/Sources directory by typing this command in your Terminal window:

 cd ~/GCBASIC/Sources

16. Compile the GCBASIC binary (gcbasic) by typing the following command into your Terminal
window:

 sh DarwinBuild/build.sh

Note 1: If you did not install the various files with the same names as in the instructions above into
your Home directory, you will need to edit the build.sh script file and change the file paths and
filenames to the appropriate values.

Note 2: You may need to alter the library and include paths in the build.sh script depending on your
version of macOS (it is currently setup for the Xcode High Sierra 10.13 and Mojave 10.14 versions of
macOS).

942

17. Confirm the proper execution, and the version, of GCBASIC by typing the following command in the
Terminal window:

 gcbasic

Now you should be able create GCB source files with your favourite editor and compile those files with
the gcbasic compiler.

Programming microcontrollers

To program your microcontroller with your GCBASIC-created hex file, you will need additional
hardware and software.

1. For Microchip PIC microcontroller programming, you might find what you need at:
https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=pg164120 and the
macOS version of the pk2cmd v1.2 command line programming software.

2. For Atmel AVR microcontroller programming, you will need the avrdude programming software.
Check here: http://www.nongnu.org/avrdude/ for it.

Alternatively, if you use Virtual Machine software such as Parallels or VMWare Fusion to run Windows
programs, you can use Windows GUI programming software.

• For Microchip, the PICKit 2 and PICkit 3 standalone GUI software or even better the PICkitPlus
software (https://sourceforge.net/projects/pickit3plus/) for both the PICkit 2
(https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=pg164120) and PICkit
3 (https://www.microchip.com/Developmenttools/ProductDetails/PG164130) which has fixed
various bugs in those programs and been updated to program the latest Microchip 8 bit
microcontrollers.

Help

GCBASIC Help documentation is installed in the Documentation subdirectory in your GCBASIC
directory.

If at any time you encounter an issue and need help, you will find it over at the friendly GCBASIC
discussion forums at https://sourceforge.net/p/gcbasic/discussion/

GCBASIC for FreeBSD
This is the GCBASIC for FreeBSD OS section of the Help file. Please refer the sub-sections for details
using the contents/folder view.

943

https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=pg164120
http://www.nongnu.org/avrdude/
https://sourceforge.net/projects/pickit3plus/
https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=pg164120
https://www.microchip.com/Developmenttools/ProductDetails/PG164130
https://sourceforge.net/p/gcbasic/discussion/

Overview - FreeBSD GCBASIC
Introduction

The GCBASIC compiler can be used with the FreeBSD operating system.

Instructions for using the GCBASIC install.sh script

Complete the following steps to compile and install the GCBASIC compiler for FreeBSD:

1. Download one of the nightly builds of FreeBASIC 1.06 for the FreeBSD 32 bit or 64 bit binary
compilation from: http://users.freebasic-portal.de/stw/builds/freebsd32/ (32 bit) or
http://users.freebasic-portal.de/stw/builds/freebsd64/ (64 bit) The filenames are in the format
fbc_freebsd[32|64]_[BuildNumber]_[Date].zip.

2. Download the GCBASIC UNIX Source Distribution from SourceForge at
https://gcbasic.sourceforge.net/Typesetter/index.php/Download

3. Move the FreeBASIC ZIP file from your download directory to your home directory.

4. Unzip the FreeBASIC ZIP file which will produce a new directory called fbc_freebsd[32|64]. The
FreeBASIC compiler fbc is in the bin subdirectory. You should add the path to fbc to your path so
that the installation script can find it.

5. Move the GCBASIC compressed tar file from your download directory to your home directory.

6. Unpack the GCBASIC compressed tar file by typing the command below. Note: the version number
(v0_98_05) in the filename may change before these instructions are updated - adjust depending on
the version number of the file you downloaded.

 unrar x GCBASIC-UNIX-v0_98_05.rar

This will produce a new directory called GCBASIC. Note: If you do not already have the unrar program
installed you can either compile it from the ports collection or use the pkg command to install the
binary and any required dependancies.

7. Change to the GCBASIC/Sources directory.

8. Execute the FreeBSDBuild/install.sh shell script from the Sources directory.

 sh FreeBSDBuild/install.sh [all | build | install]

The build script arguments are:

• all - will compile and install the GCBASIC compiler and its support files.

• build - will just compile the binary for the GCBASIC compiler.

• install - will install the GCBASIC compiler and its support files.

944

http://users.freebasic-portal.de/stw/builds/freebsd32/
http://users.freebasic-portal.de/stw/builds/freebsd64/
https://gcbasic.sourceforge.net/Typesetter/index.php/Download

When choosing all or install you will be prompted for an installation directory. The default is
/usr/local/gcb-[version] for which you will need to run the installation script as root. Alternatively,
you can choose to install in your home directory (eg `~/bin/gcb). The installation script will
automatically append the GCBASIC version so that directory would become ~/bin/gcb-[version]

9. Add the directory where you installed gcbasic to your path, or use the full path to the gcbasic
installation directory and confirm the proper execution, and the version, of GCBASIC by executing
gcbasic.

Now you should be able create GCB source files with your favourite editor and compile those files with
the GCBASIC compiler.

Programming microcontrollers

To program your microcontroller with your GCBASIC-created hex file, you will need additional
hardware and software.

1. For Microchip PIC microcontroller programming, you might find what you need at:
https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=pg164120 and the
FreeBSD version of the pk2cmd v1.2 command line programming software.

2. For Atmel AVR microcontroller programming, you will need the avrdude programming software.
avrdude can be compiled and installed from the FreeBSD ports directory or the precompiled binary
and any missing dependancies can be installed using pkg install avrdude.

Alternatively, if you use Virtual Machine software such as Virtual Box to run Windows programs, you
may be able to use Windows GUI programming software.

• For Microchip, the PICKit 2 and PICkit 3 standalone GUI software or even better the PICkitPlus
software (https://sourceforge.net/projects/pickit3plus/) for both the PICkit 2
(https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=pg164120) and PICkit
3 (https://www.microchip.com/Developmenttools/ProductDetails/PG164130) which has fixed
various bugs in those programs and been updated to program the latest Microchip 8 bit
microcontrollers.

Help

GCBASIC Help documentation is installed in the Documentation subdirectory in your GCBASIC
directory.

If at any time you encounter an issue and need help, you will find it over at the friendly GCBASIC
discussion forums at https://sourceforge.net/p/gcbasic/discussion/

GCBASIC Maintenance and Development
This is the GCBASIC maintenance section of the Help file. Please refer the sub-sections for details using
the contents/folder view.

945

https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=pg164120
https://sourceforge.net/projects/pickit3plus/
https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=pg164120
https://www.microchip.com/Developmenttools/ProductDetails/PG164130
https://sourceforge.net/p/gcbasic/discussion/

GCBASIC Maintenance
Introduction: GCBASIC maintenance covers the key processes that the developers use to maintain and
build the solution.

These insights are not distribution specific.

Solution Architecture: These components are key for a complete solution:

1. GCBASIC installer

2. GCBASIC chip specific .DAT files

3. GCBASIC Help

4. GCBASIC IDE

GCBASIC installers:

The Windows GCBASIC installer uses the InnoSoft installer with packaging completed using R2Build.

The process uses a Gold build structure. The R2Build software creates four packages for Windows and
one package for the Linux distribution. The process is automated with automatic versioning and
configuration.

The macOS GCBASIC installer uses the Packages installer
(http://s.sudre.free.fr/Software/Packages/about.html) with packaging completed using the Bourne shell
script pkg2dmg.sh to create a compressed disk image file containing the installer.

GCBASIC chip specific .DAT files:

What are the .DAT files?

The DAT files are the GCBASIC representation of the capabilities of a specific microcontroller. The DAT
is based upon a number of vendor sources and corrections/omissions added by the GCBASIC
development team. The DAT file is exposed to the user program as a set of registers and register bits
that can used to configure the program in terms of the microcontroller specifics.

The process to create the .DAT file for microcontrollers is as follows:

946

http://s.sudre.free.fr/Software/Packages/about.html

Ste
p

Description

1 Obtain the MPASM *.INC or the AVR *.XML files to be used. These files determine the scope of
registers and register bits.

2 For Microchip only. Place the source INC files in the ..DAT\incfiles\OrgFiles. Process the file using
'Preprocess.bat'. This is an AWK text processor - you will need AWK.EXE in the executing
folder. This preprocessing will examine all the INC files in the ..DAT\incfiles\OrgFiles folder. The
resulting files will be placed in the ..DAT\incfiles folder. The resulting files will have the 'BITS'
section sorted in port priority - this priority ensures the bits are assigned in the target DAT in the
same order every time.

3 Update the database of support microcontrollers. This database contains the microcontroller
configuration that GCBASIC requires as the core information for the DAT files. The database is
called chipdata.csv or avr_chipdata.csv for Microchip and AVR respectively. - These files are
comma delimited. The first row of data specifies the field name - these field names control the
chip conversion program, see later notes. The database fields are controlled by the GCBASIC
development team and the specification of the database may change between releases to
support new capabilities. Database fields will have the suffix of Variant such as
PWMTimerVariant and SMTClockSourceVariant and are microcontroller specific configuration
settings to support the various microcontroller settings. The values of these variants are
determined by the examination of the microcontroller datasheets as this information is NOT
specified in the source files. Variants are exposed in the user program with the prefix of Chip. If
the variant is called PWMTimerVariant a constant called ChipPWMTimerVariant will be exposed in the
user program.

4 Update the CriticalChanges.txt file, if required. The CriticalChanges.txt file contains changes to
the INC file during processing that are corrections or additions to the source files. The format of
each line is the filename , Append (new line) or Replace, find, replace. Each line is comma
delimited and spaces are NOT critical. Essentially, the processing with find a partial line and
replace or append the whole line. example: p16lf1615.inc,R,OSCFIE EQU H'0007',OSFIE
EQU H'0007' - so, when processing p16lf1615.inc find the line OSCFIE EQU H'0007' and
replace with OSFIE EQU H'0007'.

5 If required. This is not normally edited. Update the 18FDefaultASMConfig.txt to set the 18f
configuration defaults.

6 Maintain the conversion program. The conversion program may require maintenance. The
programs are written in FreeBASIC and therefore require compilation. An example of
maintenance is a new variant field is required. The source program will need to be updated to
support the new variant - simply edit the source, compile and publish. Another example is the
addition of a new Interrupt - follow the same process to edit, compile and publish.

947

Ste
p

Description

7 Execute the program to convert the source files to the DAT files for Microchip or AVR. There are
two programs for each architecture. Executing the conversion program without a parameter will
process ALL the entries in the database (the csv file), passing a single parameter to the
conversion program will only convert the single microcontroller. The conversion program will
process as follows: a) Read the database for the chip specifics b) If a .DEV file or .INFO file is not
present a routine called GuessDefaultConfig is invoked. This method sets the bit(s). In all cases
the default mask is sometimes specified for a particular config option and that is used for
ASMConfig See the section below for the processing of a .DEV file. c) For all microcontrollers
read the CriticalChanges.txt file and process. d) For 18f microcontrollers read the
18FDefaultASMConfig.txt. This simply overwrites all options stated in 18FDefaultASMConfig.TXT
and marks this in the output DAT file. e) Create the output DAT file.

8 Test and publish the DAT file(s) to the distribution as required.

An example the processing of a .DEV.

This is the 18F25K20 example. For this microcontroller Disabled is default:

Where the default is selected from the Info_Type.

Prog = . An explanation of the parameter. The Prog value is measured in words. It is the same in the
device specific.dat files.

Microchip in the past have used words, but then they started using bytes on the website instead to
make their chips appear to have larger capacity.

An example: If a device has 8192 words, which is 8192 * 14 = 114688 bits, or 14336 bytes. It is an odd
measurement because dividing 14336 by 14/8 to see how many instructions you can use is extra maths
work within the compiler.

The GCBASIC PROGram memory analysis are in words.

Development Guide
There are lots of ways to contribute to the GCBASIC project: coding, testing, improving the build

948

process and tools, or contributing to the documentation. This guide provides information that will not
only help you get started as a GCBASIC contributor, but that you wiil find useful to refer to EVEN if you
are already an experienced contributor.

Need Help?

The GCBASIC community prides itself on being an open, accessible, and friendly community for new
participants. If you have any difficulties getting involved or finding answers to your questions, please
bring those questions to the forum via the discussion boards, where we can help you get started.

We know EVEN before you start contributing that getting set up to work on GCBASIC and finding a bug
that is a good fit for your skills can be a challenge. We are always looking for ways to improve this
process: making GCBASIC more open, accessible, and easier to participate with. If you are having any
trouble following this documentation, or hit a barrier you cannot get around, please contact use via the
discussion forum. We will solve hurdles for new contributors and make GCBASIC better.

This section addresses developing libraries but this guide is appropriate to any GCBASIC development.

The section covers the recommended programming style, Constants, Variables, Script syntax (gotchas)
and tab usage.

PROGRAMMING STYLES

Indenting is standardized.

All scripts within a specific library should be the first major section the library. Scripts within
methods should not be used.

Some #defines may need to be placed before the script to provide clarity to the structure of the library.

 #startup startupsub

 #Define I2C_ADDRESS_1 0x4E 'The default address if user does not specify in
the user program

 #SCRIPT
 ... code script
 ... code script
 ... code script
 #ENDSCRIPT

Scripts support structures like IF <CONDITION> THEN <ACTION> END iF. Scripts supports the
<condition> argument that must generate a TRUE result, meaning that at a literal level, your
conditional formatting rule is an If - THEN statement along the lines of “If this condition is TRUE, THEN
process the <ACTION>. the condition must use logical "AND" and "OR" to test two conditions. Using

949

"AND" or "OR" reduces the script size, however, it is essential the the conditional test(s) are valid. If a
test fails then you may not get the results you expect.

 IF .. THEN

 END IF

CONSTANTS

A constant is a value that cannot be altered by the program during normal execution. Within GCBASIC
there are two ways to create constants. 1. with the #DEFINE instruction, or, 2. via `#SCRIPT ..
#ENDSCRIPT'. ; Within a script constants can be created and changed. A script is process that is
executed prior to the GCBASIC source program is processing the main user program.

An example of using #DEFINE is

 #DEFINE TIME_DELAY_VALUE 10

The script construct is

 #SCRIPT
 'Create a constant
 TIME_REPEAT_VALUE = 10
 #ENDSCRIPT

Guide for constants

The following rules are recommended.

1 - All CONSTANTS are capitalized

2 - Do not define a constant in a library unless required

3 - Create all library constants within a script (see example below Constrain a Constant Example on
how to constrain a constant)

2 - Underscores are permitted in constant names within Scripts **

3 - No prefix is required when a CONSTANT is PUBLIC. A PUBLIC constant is one that the user sets or
the user can use.

4 - Prefix CONSTANTS with SCRIPT_ when the CONSTANT is used outside of the library specific script
section AND ARE NOT EXPOSED AS PUBLIC Constants.

950

5 - Prefix CONSTANTS with __ (two underscores) when the CONSTANT is ONLY used inside the library
specific script section

6 - For PUBLIC prefix CONSTANTS with the capability name, _ (one underscore) and then a meaningful
title, as follows GLCD_HEIGHT SPISRAM_TYPE

7 - All scripts within a specific library should be the first major section the library. Scripts within
methods (Sub, Functions) should not be used.

8 - All scripts within a specific library should be the first major section the library. Scripts within
methods (Sub, Functions) should not be used.

9 - Other naming recommendations. Do not use underscores in subroutine, function or variable
names

Example script within a library

 #startup startupsub
 #DEFINE I2C_ADDRESS_1 0x4E 'Default address if user omits
 #SCRIPT
 'script code
 'script code
 'script code
 #ENDSCRIPT

Simple Example

 #SCRIPT 'Calculate Delay Time
 __LCD_DELAY = (__LCD_TIMEPERIOD - __LCD_DELAYS) - (INT((4/ChipMHZ) *
__LCD_INSTRUCTIONS))
 SCRIPT_LCD_POSTWRITEDELAY = __LCD_DELAY
 SCRIPT_LCD_CHECKBUSYFLAG = TRUE
 #ENDSCRIPT

 'usage within user code or code outside of script
 #IF SCRIPT_LCD_CHECKBUSYFLAG = TRUE
 WaitForReady 'Call subroutine to poll busy flag
 set LCD_RW OFF 'Write mode
 #ENDIF
 WAIT SCRIPT_LCDPOSTWRITEDELAY us

Create Constant Example

Background: All constants are always processed, regardless of where they are placed in the user code
or library. This includes any constant defined anywhere in user code or any library - the constant will

951

be processed and the constant will be defined. The only method to constrain a constant is via a
script.

The following code segment will not constrain the constant. The constant MYCONSTANT will be
created. The #IFDEF PIC will not constrain even if an AVR or LGT chip.

 #IFDEF PIC
 #DEFINE MYCONSTANT 255
 #ENDIF

The recommended method follows. The constant will only be created when a PIC.

 #SCRIPT
 IF PIC then
 MYCONSTANT = 255
 End IF
 #ENDSCRIPT

Constrain a Constant Example

An example to constrain a constant is to test if a user constant is define in the user source program. In
this example the constant SENDALOW is defined in user source program.

• If yes, then define the library specific constants.

• If no, then do not define the library specific constants.

Using the method below defines constants only when the user requires the constants assuming they
have defined SENDALOW in the user source program.

952

 #SCRIPT
 IF SENDALOW then
 NONE = 0 : ODD = 1 : EVEN = 2 : NORMAL = 0 : INVERT = 1
 WAITFORSTART = 128 : SERIALINITDELAY = 5
 END IF

 IF SENDALOW then
 NONE = 0 : ODD = 1 : EVEN = 2 : NORMAL = 0 : INVERT = 1
 WAITFORSTART = 128 : SERIALINITDELAY = 5
 END IF

 IF SENDALOW then
 NONE = 0 : ODD = 1 : EVEN = 2 : NORMAL = 0 : INVERT = 1
 WAITFORSTART = 128 : SERIALINITDELAY = 5
 END IF
 #ENDSCRIPT

SCRIPTS VARIABLES

Scripting has the concept of variable that can be used within the script. The variables are NOT
available as variables to a user program or a library beyond the scope of the script. The variables are
available to a user program as constants. The variables will be integer values, if accessed in a user
program.

SCRIPT SYNTAX

Scripting support the preprocessing of the program to create specific constants. Scripting has a basic
syntax and this is detailed in the HELP. However, this guide is intended to provide insights into the
gotchas and best practices.

Script Insights

Scripting handles the creation of specific constants that can be used within the library. Many libraries
have script to create constants to support PWM, Serial, HEFSAF etc.

You can use the limited script language to complete calculations using real numbers but you MUST
ensure the resulting constant is an integer value. Use the IN() method to ensure an integer is assigned.

You can use IF-THEN-ENDIF but if your IF condtional test uses a chip regiseter or a user define
constant then you must ensure the register or constant exists. If you do not check the registrer or
constant exists the script will fail to operate as expected.

There is limted syntax checking. You must ensure the quality of the script by extensive testing.

953

 int(register +1s)) 'Will not create an error, but, simple give an unexpected
result.

TAB USAGE AND INDENTING

Four spaces are to be used. A tab is not permitted

Example follows where the indents are all four spaces.

sub ExampleSub (In VariableName)
 select case VariableName
 case 1
 Do This
 case 2
 Do That
 end select
end sub

Not like this:

 SUB ExampleSub (In VariableName)
 Select Case VariableName
 Case 1
 Do This
 Case 2
 Do That
 End Select
End SUB

and, not like this

954

 Sub ExampleSub (In VariableName)
 Select Case VariableName
 Case 1
 Do This
 Case 2
 Do That
 End Select
 End Sub

OPTION REQUIRED

#Option Required supports ensuring the microcontroller has the mandated capabilities, such as
EEPROM, HEF, SAF, USART.

Syntax:

 #option REQUIRED PIC|AVR CONSTANT %message.dat entry%
 #option REQUIRED PIC|AVR CONSTANT "Message string"

This option ensure that the specific CONSTANT exists within a library to ensure a specific capability is
available with the microcontroller.

This will cause the compiler check the CONSTANT is a non zero value. If the CONSTANT does not exist
it will be treated as a zero value.

Example:

This example tests the CONSTANT CHIPUSART for both the PIC and AVR microcontrollers. If the
CONSTANT is zero or does not exist then the string will be displayed as an error message.

 #option REQUIRED PIC CHIPUSART "Hardware Serial operations. Remove USART commands to
resolve errors."
 #option REQUIRED AVR CHIPUSART "Hardware Serial operations. Remove USART commands to
resolve errors."

RAISING COMPILER ERROR CONDITIONS

From build 1131 the compiler now supports raising a compiler error message.

The method uses the `RaiseCompilerError ""<string>""|%string%" ` method to pass an error message
to the compilation process.

An example from USART.H/INITUSART subroutine is shown below. This example tests for the existence

955

of one of the three supported baud rate constants. If none of the constants exist and the constant (in
this example) STOPCOMPILERERRORHANDLER does not exist the RaiseCompilerError with the string will be
passed to the assembler for error processing. This permits the inspect of the user program with
appropriate messages to inform the user.

 #IFNDEF ONEOF(USART_BAUD_RATE,USART1_BAUD_RATE,USART2_BAUD_RATE) THEN
 'Look for one of the baud rates CONSTANTS
 #IFNDEF STOPCOMPILERERRORHANDLER
 'Use one of the following - the string MUST be start and end with a double quote

 ' Use the message.dat file
 ' RaiseCompilerError "%USART_NO_BAUD_RATE%"

 ' Use hard code text
 ' RaiseCompilerError "USART not setup correctly. No baud rate specified - please
correct USART setup"

 RaiseCompilerError "%USART_NO_BAUD_RATE%"

 #ENDIF
 #ENDIF

The RaiseCompilerError handler can be stopped using the constant STOPCOMPILERERRORHANDLER as
shown above.

LCD ERROR HANDLING

The setup of an LCD is inspected and an appropriate error message is displayed. The Compiler now
controls error messages when LCD is not setup up correctly. This the text displayed is held in the
messages.dat file - LCD_Not_Setup entry.

Development Guide for GCBASIC.EXE compiler
There are lots of ways to contribute to the GCBASIC project: coding, testing, improving the build
process and tools, or contributing to the documentation. This guide provides information that will not
only help you get started as a GCBASIC contributor, but that you will inform you as an experienced
contributor wanting to help.

Need Help?

956

The GCBASIC community prides itself on being an open, accessible, and friendly community for new
participants. If you have difficulties getting involved or finding answers to your questions, please
bring those questions to the forum via the discussion boards, where we can help you get started.

We know EVEN before you start contributing that getting can be a challenge. This guide is intended to
help. We are always looking for ways to improve the software: making GCBASIC more open,
accessible, and easier to participate with. If you are having any trouble following this guide, or hit a
barrier you cannot get around, please contact us via the discussion forum. We will solve hurdles for
new contributors and make GCBASIC better.

This addresses the changes and updates to the GCBASIC compiler.

BACKGROUND

The compiler was created by Dr. Hugh Considine when he was 12 years old. That was in 2005. Hugh
came up with the idea for a new compiler - of the then available compilers - they were hard to use and
not free. And, he had some spare time.

Hugh believes that GCBASIC should be free to all - forever.

The original software was called Great Cow BASIC, but, he had some resistance in getting high schools
in Australia to use and agree to the use of text based programming. Graphical GCBASIC was created to
address the need for a graphical user interface. Graphical GCBASIC acts like a set of training wheels.
The concept of Graphical GCBASIC is that the icons make it less scary, and since they all share names
with the BASIC commands it is then easy to remember what command corresponds to each icon..
Using Graphical GCBASIC users can then switch to text mode whenever they want to, go backwards
and forwards a few times if they want, and finally end up using just the text programming. It is a
journey from a graphical user interface to text based programming.

Those who already have programming experience can go straight to GCBASIC, while those who would
prefer a lighter learning curve can take the Graphical GCBASIC option. The two approaches targets
two different sets of users who ultimately want to do the same thing.

As for the name, it was the fourth name Hugh tried. First name was BASPIC, but it did not seem
memorable enough. Then, he considered some animal names - first thought was Chipmunk BASIC, but
someone already used that! Then, Bear BASIC, but decided against it on finding out the slang meaning
of bear. Final name was GCBASIC, which is named after something his sister and he came up with
(when aged 12 and 15!!). No-one else had that name, it had no meanings that could offend, and it was
something odd enough to be memorable, so Great CoW CBASIC it was.

In 2013 Evan Venn joined the team as a compiler developer, with others joining in Bernd Dau, Trevor
Roydhouse, Pete Everett, Theo Loermans, Giuseppe D’Elia, Derek Gore, Ian Smith, Bernd Dau, Theo
Loermans, Urs Hopp, Kent Schafer, and Frank Steinberg. Some those that joined in drove changes to

957

the compiler, some changed the source code, some built tools and some built libraries. They all had
one thing in common - improvements to the GCBASIC compiler.

In 2021 we are still having new developers join the project like ToniG adding a new capability for
handling Tables.

In 2023 we renamed to GCBASIC. The Cow is now deadbeef … a hex number .. :-).

THE COMPILER

The compiler executable is called GCBASIC.EXE. The compiler source is written in FreeBASIC.
FreeBASIC is a multiplatform, free/open source (GPL) BASIC programming language and a compiler for
Microsoft Windows, protected-mode MS-DOS (DOS extender), Linux and FreeBSD.

The official website is https://www.freebasic.net/

FreeBASIC provides syntax compatibility with programs originally written in Microsoft QuickBASIC
(QB). FreeBASIC is a command line only compiler, unless users manually install an external
integrated development environment (IDE) of their choice. IDEs specifically made for FreeBASIC
include FBide and FbEdit, while more graphical options include WinFBE Suite and VisualFBEditor.

The source code is Open Source. And, has a GNU GENERAL PUBLIC LICENSE.

The source code for the compiler can be found on SourceForge

Use SVN to UPDATE and COMMIT code changes. You require developer access to SourceForge but if
you have got this far then you already know this. You are therefore required to use SVN for source
code management.

When COMMITting you MUST update the change log, then, when you commit an update use the change
log with the SourceForge commit number. Then, add the new change at the end of the change log.
The COMMIT message should be the same as the description in the change log. Add the [COMMIT
NUMBER] to the description in the change log to show the COMMIT number.

You will find the changelog here. The change log is an EXCEL spreadsheet.

COMPILER ARCHITECTURE

The compiler is relatively simple in terms of the architecture. There is a main source program with a
set of header files that contain other methods or declarations. The GCBASIC header files are the
following:

958

https://www.freebasic.net/
https://sourceforge.net/p/gcbasic/code/HEAD/tree/GCBASIC/trunk/
https://onedrive.live.com/Edit.aspx?resid=2F87FFE77F3DBEC7!67634&wd=cpe&authkey=!ADmkT3exl5l4Pkc

 1. preprocessor.bi - methods, statements, defines, declarations, prototypes,
constants, enumerations, or similar types of statements
 2. utils.bi - methods that are shared across the architecture
 3. variables.bi - methods that control the creation and management of variables
 4. assembly.bi - methods specific to the generation of GCAssembler (GCASM)
 5. file.bi - the FreeBASIC files library
 6. string.bi - the FreeBASIC string library

The supporting files are:

 1. messages.dat - the English messages source file. All user messages from the
compiler are sourced from this file.
 2. reservedwords.dat - the list of system reserved words

The compiler process is simple. The process, shown below, generates the ASM source and the HEX file
from the user source program.

 1. Create the indexes
 2. Declare the methods, arrays and variables
 3. Process the user source programs using PreProcessor method. This includes
 i. Loading of all source files including including files
 ii. Translate files, if needed
 iii. Examine source for comments, tables, asm, rawasm, functions;subs;macros,
set origin of valid code
 Origin = ";?F" + Str(RF) + "L" + Str(LC) + "S" + Str(SBC) + "?"
 RF = File number
 L = Line number in source file
 S = Sub Routine number
 iv. Find compiler directives, except SCRIPT, ENDSCRIPT, IFDEF and ENDIF -
including all the #DEFINEs outside of condiontal statements
 v. If GLCD_TYPE in user source program is found, then, determine the library
and load that library with all dependent libraries. This method improves compiler
performance by only loading the required libraries
 vi. ReadChipData
 vii. CheckClockSpeed
 viii. ReadOptions
 ix. PreparePageData
 x. PrepareBuiltIn. Initialise built-in data, and prepare built-in subs.
 xi. RunScripts
 xii. BuildMemoryMap
 xiii. Process samevar and samebit
 xiv. RemIfDefs. Remove any #IFDEFs that do not apply to the program.

959

 xv. Prepare programmer, need to know chip model and need to do this before
checking config
 xvi. Replace Constants
 xvii. Replace table value. Replace constants and calculations in tables with
actual values
 4. Compile the program using the CompileProgram method
 i. Compile calls to other subroutines, insert macros
 ii. Compile DIMs again, in case any come through from macros
 iii. Compile FOR commands
 iv. Process arrays
 v. Add system variable(s) and bit(s)
 vi. Compile Tables
 vii. Compile Pot
 viii. Compile Do
 ix. Compile Dir
 x. Compile Wait
 xi. Compile On Interrupt
 xii. Compile Set(s)
 xiii. Compile Rotate
 xiv. Compile Repeat
 xv. Compile Select
 xvi. Compile Return
 xvii. Compile If(s)
 xviii Compile Exit Sub
 xix. Compile Goto(s)
 5. Allocate RAM using the AllocateRAM method
 6. Optimise the generated code using the TidyProgram method
 7. Combine and locate the subroutines and functions for the selected chip using the
MergeSubroutines method
 8. Complete the final optimisation using the FinalOptimise method
 9. Write the assembly using the WriteAssembly method
 10. Assemble and generate the hex file using GCASM, MPASM, PICAS or some other define
Assembler
 11. Optionally, pass programming operations to the programmer
 12. Write compilation report using the WriteCompilationReport method
 13. If needed, write the error and warning log using the WriteErrorLog method
 14. Exit, setting the ERRORLEVEL

Note #1: Constants are can be created in many places and the order is critical when trying to
understant the process.

Step 3.iv; Step 3.xi, 3.xiv and xvi. These are Find compiler directives; Runscripts, process IFDEFs and
replace Constants values respectively. This means constants that are not created by the Find compiler
directives step are clearly not available in the RunScripts step, and the same applies to the process
IFDEFs step. So, please consider the order of constant creation in terms of these steps. Always think
about the precendence of constant creation.

960

Note #2: When using IFDEFs Conditional statements you should #UNDEFINE all constants prior to
#DEFINE. Whilst the will be cases where the constant does not exist, or where the Preprocessor can
determine the outcome of the Conditional statements there will be cases, specifically nested IFDEFs
Conditional statements, where you will be required to use #UNDEFINE to remove all warnings.

Note #3: Good practice is NOT to create constants in a library where the user can overwrite the value
of the same constant. You must determine if the user has created the constant and then create a
default value if the user has not defined a value. An example:

 IF NODEF(AD_DELAY) THEN
 'Acquisition time. Can be reduced in some circumstances - see PIC manual for details
 AD_DELAY = 2 10US
 END IF

This will create the constant AD_DELAY only when the user program does not define a value.

FreeBASIC COMPILATION OF GCBASIC SOURCE CODE

The compiler is relatively simple in terms of the compilation.

Use the following versions of the FreeBASIC compiler to compile the GCBASIC source code.

For Windows 32 bit

 FreeBASIC Compiler - Version 1.07.1 (2019-09-27), built for win32 (32bit)
 Copyright (C) 2004-2019 The FreeBASIC development team.

For Windows 64 bit

 FreeBASIC Compiler - Version 1.07.1 (2019-09-27), built for win64 (64bit)
 Copyright (C) 2004-2019 The FreeBASIC development team.

Using other version of Windows FREEBASIC compiler are NOT tested and may fail. Use the specific
versions shown above.

The compile use the following command lines. Where "%ProgramFiles% is the root location of the
FreeBASIC installation, and $SF is the location of the source files and the destination of the compiled
executable.

For Windows 32 bit

 "%ProgramFiles%\FreeBASIC\win32\fbc.exe" $SF\gcbasic.bas -exx -arch 586 -x
$SF\gcbasic32.exe

961

For Windows 64 bit

 "%ProgramFiles%\FreeBASIC\win64\fbc.exe" $SF\gcbasic.bas -x $SF\gcbasic64.exe -ex

Linux, FreeBSD and Pi OS are also supported. Please see Online Help and search for the specific
operating system.

FreeBASIC COMPILER TOOLCHAIN

To simplify the establishment of development enviroment download a complete installation from
here. This includes the correct version of FreeBASIC and the libraries - all ready for use. Simply
unzip the ZIP to a folder and the toolchain is ready for use. For an IDE please see the information
above.

BUILDING THE GCBASIC EXECUTABLE USING THE FBEDIT IDE

To build GCBASIC from the source files. The list shows the installation of the FBEdit IDE.

Complete the following:

 1. Download and install FreeBASIC from url shown above.
 2. Download and install fbedit from
https://sourceforge.net/projects/fbedit/?source=dlp
 3. Download the GCBASIC source using SVN into a gcbasic source folder.
 4. Run fbedit (installed at step #2). Load project GCBASIC.fbp from GBASIC
source folder.
 5. Hit <f5> to compile.

CODING STYLES

Remember, Hugh was 12 when he started this project. You must forgive him for being a genius, but,
he did not implement many programming styles and conventions that are common place today.

There is a general lack of documentation. We are adding documentation as we progress. This can
make the source frustrating initially but can find the code segments as they are clearly within method
blocks.

962

http://gcbasic.sourceforge.net/help/
https://sourceforge.net/projects/gcbasic/files/Support%20Files/GCBASICWindowsToolchain/FreeBASIC.zip/download

The following rules are recommended.

 1. All CONSTANTS are capitalized
 2. Do not use TAB - use two spaces
 3. You can rename a variable to a meaningful name. Hugh used a lot of single
character variables many years ago. This should be avoided in new code.
 4. Document as you progress.
 5. Ask for help.

COMPILER SOURCE INSIGHTS
There are many very useful methods, a lot of methods, look at existing code before adding any new
method. The compiler is mature from a functionality standpoint. Just immature in terms of
documentation.

COMPILER DEBUGGING

To debug or isolate a specific issue use lots of messages using PRINT or HSERPRINT Both of these
methods are easy to setup and use.

Specific to #SCRIPT you can use WARNING messages to display results of calculations or assignments.

Specific to CONDITIONAL Compilation use conditionaldebugfile (se above) to display conditional
statement debug for the specified file. Options are any valid source file or nothing. Nested
conditions are evaluated sequentially, therefor the first, second, third etc etc. The compiler does not
at this point rationalised the hierarchy of nested conditions. It simply finds a condition and then
matches to an #ENDIF. So, the compiler walks through the nested conditions as the outer nested, then
the next nest, the next nest etc. etc. This compiler is completing the following actions:

1. If the conditional is not valid. Remove the code segment include the #IF and the #ENDIF

2. If the conditional is valid. Remove the just the #IF and the #ENDIF

So, is this context the compiler walks the code many time (as these are lists not arrrays this is blindly
fast) removing code segments.

The following program shows the impact of nested conditions.. Each nest is evaluated until all
conditions have been assessed.. See the comment section of the listing to see the output from the
debugging.

 #CHIP 18F16Q41
 #OPTION EXPLICIT

 ; ----- Add the following line to USE.ini ------------------

963

 ;
 ; conditionaldebugfile = IFDEF_TEST.gcb
 ;
 ; ---

 #IFDEF PIC
 #IFDEF ONEOF(CHIP_18F15Q41, CHIP_18F16Q41)
 #IF CHIPRAM = 2048 'TRUE
 #IF CHIPWORDS = 32768 ' TRUE
 #IFDEF VAR(NVMLOCK) 'TRUE
 #IFDEF VAR(OSCCON2) 'TRUE
 #IFDEF VAR(NVMCON0) 'TRUE set var1 to 1
 DIM _VAR1
 _VAR1 = 1
 #ENDIF
 #ENDIF
 #ENDIF
 #ENDIF
 #ENDIF

 #IF CHIPRAM = 4096 'TRUE
 #IF CHIPWORDS = 32768 ' TRUE
 #IFDEF VAR(NVMLOCK) 'TRUE
 #IFDEF VAR(OSCCON2) 'TRUE
 #IFDEF VAR(NVMCON0) 'TRUE = set var1 to 0
 DIM _VAR1
 _VAR1 = 0
 #ENDIF
 #ENDIF
 #ENDIF
 #ENDIF
 #ENDIF
 #ENDIF
 #ENDIF

 Do
 Loop

 // ===
 // *** Below is debugger output for this file ***
 // ===

 // GCBASIC (0.99.02 2022-07-21 (Windows 32 bit) : Build 1143)

 // Compiling c:\Users\admin\Downloads\IFDEF_TEST.gcb

 // 13: #IFDEF PIC
 // 15: #IFDEF ONEOF(CHIP_18F15Q41, CHIP_18F16Q41)

964

 // 17: #IF CHIPRAM = 2048
 // 19: #IF CHIPWORDS = 32768
 // 21: #IFDEF VAR(NVMLOCK)
 // 23: #IFDEF VAR(OSCCON2)
 // 25: #IFDEF VAR(NVMCON0)
 // ;DIM _VAR1
 // 27: DIM _VAR1
 // ;_VAR1 = 1
 // 28: _VAR1 = 1

 // 15: #IFDEF ONEOF(CHIP_18F15Q41, CHIP_18F16Q41)
 // 17: #IF CHIPRAM = 2048
 // 19: #IF CHIPWORDS = 32768
 // 21: #IFDEF VAR(NVMLOCK)
 // 23: #IFDEF VAR(OSCCON2)
 // 25: #IFDEF VAR(NVMCON0)
 // ;DIM _VAR1
 // 27: DIM _VAR1
 // ;_VAR1 = 1
 // 28: _VAR1 = 1

 // 39: #IF CHIPRAM = 4096
 // 41: #IF CHIPWORDS = 32768
 // 43: #IFDEF VAR(NVMLOCK)
 // 45: #IFDEF VAR(OSCCON2)
 // 47: #IFDEF VAR(NVMCON0)
 // ;DIM _VAR1
 // 49: DIM _VAR1
 // ;_VAR1 = 0
 // 50: _VAR1 = 0

 // 41: #IF CHIPWORDS = 32768
 // 43: #IFDEF VAR(NVMLOCK)
 // 45: #IFDEF VAR(OSCCON2)
 // 47: #IFDEF VAR(NVMCON0)
 // ;DIM _VAR1
 // 49: DIM _VAR1
 // ;_VAR1 = 0
 // 50: _VAR1 = 0

 // 43: #IFDEF VAR(NVMLOCK)
 // 45: #IFDEF VAR(OSCCON2)
 // 47: #IFDEF VAR(NVMCON0)
 // ;DIM _VAR1
 // 49: DIM _VAR1
 // ;_VAR1 = 0
 // 50: _VAR1 = 0

965

 // 45: #IFDEF VAR(OSCCON2)
 // 47: #IFDEF VAR(NVMCON0)
 // ;DIM _VAR1
 // 49: DIM _VAR1
 // ;_VAR1 = 0
 // 50: _VAR1 = 0

 // 47: #IFDEF VAR(NVMCON0)
 // ;DIM _VAR1
 // 49: DIM _VAR1
 // ;_VAR1 = 0
 // 50: _VAR1 = 0

 // Program compiled successfully (Compile time: 1 seconds)

 // Assembling program using GCASM
 // Program assembled successfully (Assembly time: 0.125 seconds)
 // Done

The resulting ASM from the about code is as expected. The assignment of VAR1 = 0.

 ;DIM _VAR1
 ;_VAR1 = 0
 clrf _VAR1,ACCESS
 ;Do
 SysDoLoop_S1
 ;Loop
 bra SysDoLoop_S1
 SysDoLoop_E1

COMPILERDEBUG

The COMPILERDEBUG setting in the USE.INI file for GCBASIC is used to enable or disable debugging
features for the compiler. When the bits of the setting COMPILERDEBUG are set to 1, it activates
additional debug information during compilation, which can be helpful for developers to diagnose and
fix issues.

To see the permissible bits for COMPILERDEBUG first opening and closing the PREFERENCES editor (
this does imply that the PREFERENCES EDITOR is maintained to show the Header in the USE.INI), and
then edit USE.INI. The help section will display the following:

966

 'Preferences file for GCBASIC Preferences 3.14

 ... lots of help, then

 ' compilerdebug = 0 - 1 = COMPILECALCADD
 ' - 2 = VAR SET
 ' - 4 = CALCOPS
 ' - 8 = COMPILECALCMULT
 ' - 16 = AUTOPINDIR
 ' - 32 = ADRDX
 ' - 64 = GCASM
 ' - 128 = COMPILESUBCALLS
 ' - 256 = COMPILEUPDATESUBMAP

To see the debug add or edit the [gcbasic] section of USE.INI.

 [gcbasic]
 'change to a bitwise value
 compilerdebug = 0

As previously stated. This setting can be helpful for developers to diagnose and fix issues within the
compiler.

ABOUT GLCD Library Support
The GLCD capability supports over 40 GLCDs. GCBASIC loads automatically the specific library
required. The loading of the specific library(ies) by the compiler improves performance and
significantly reduces the compilation time.

The GLCD libraries, that are automatically loaded, are controlled by the use of an incude statement in
the use program #include <glcd.h> with a constant to define the specific GLCD driver to be loaded
#define GLCD_TYPE GLCD_TYPE_SSD1289.

The process the compiler uses the file include\glcd.dat. The glcd.dat has a strict format where the
row index has parameters as shown below.

967

 Format. This is strict.

 Usea comma delimiter; single quote to a comment line; amperand to group libraries. No
other format controls permitted.

 For each row.

 Index, glcd type, library[[&library]&library]

 Index = the reference number from GLCD.H. There is a unique reference number
per type of glcd.
 Type = the type. per type of glcd. must match those definition in GLCD.H
 this is use as the search/match in the constant `GLCD_TYPE` in user
source program
 this is not case sensitive
 Library = library to be loaded, or, group of dependent libraries
 delimiter must be '&'

Development Guide for GCBASIC Preferences Editor
This section deals with the GCBASIC Preferences Editor (Pref Editor). The Prefs Editor is the software
enables the user to select programmers, select the options when compiling, select the assembler and
other settings. The Prefs Editor uses an ini to read and store the compiler settings. The INI structure
is explained the first section, then, the Prefs Editor in detail.

ABOUT THE INI FILES

You can provide the compiler an INI file with a number of settings and programmers.

The following section provide details of the specifics within an example INI file. The comments are
NOT part of an INI file.

The settings are in the INI section called [gcbasic].

 [gcbasic]
 programmer = arduinouno, pickitpluscmd1, lgt8f328p-1, xpress, pickit2cmdline, nsprog
- the currently selected available programmers
 showprogresscounters = n
- show percent values as compiler runs. requires Verbose = y
 verbose = y
- show verbose compiler information

968

 preserve = n
- preservice source program in ASM
 warningsaserrors = n
- treat Warnings from scripts as errors. Errors will cause the compiler to cease on an
Error(s)
 pauseaftercompile = n
- pause after compiler. Do not do this with IDEs
 flashonly = n
- Flash the chip is source older that hex file
 assembler = GCASM
- currently selected Assembler
 hexappendgcbmessage = n
- appends a message in the HEX file
 laxsyntax = n
- use lax syntax when Y, the compiler will not check that reserved words are being used
 mutebanners = n
- mutes the post compilation messages
 evbs = n
- show extra verbose compiler information, requires Verbose = y
 nosummary = n
- mutes almost all messages psot compilation
 extendedverbosemessages = n
- show even more verbose compiler information, requires Verbose = y
 conditionaldebugfile =
- creates CDF file
 columnwidth = 180
- ASM width before wrapping
 picasdebug = n
- adds PIC-AS preprocessor message to .S file
 datfileinspection = y
- inspects DAT for memory validation
 methodstructuredebug = n
- show method structure start & end for validation
 floatcapability = 1
- 1 = singles

- 2 = doubles

- 4 = longint

- 8 = uLongINT
compilerdebug = 0
- 1 = COMPILECALCADD

- 2 = VAR SET

- 4 = CALCOPS

969

- 8 = COMPILECALCMULT

- 16 = AUTOPINDIR

- 32 = ADRDX

- 64 = GCASM

- 128 = COMPILESUBCALLS

- 256 = COMPILEUPDATESUBMAP

The section shows an example [tool] assembler section.

 [tool=pic-as]
 'An assember
 type = assembler
 'Location of the assember using a parameter substitution.
 command = %picaslocation%\pic-as.exe
 'Parameters
 params = -mcpu=%ChipModel% "%Fn_NoExt%.S" -msummary=-mem,+psect,-class,-hex,-file,
-sha1,-sha256,-xml,-xmlfull -Wl -mcallgraph=std -mno-download-hex -o"%Fn_NoExt%.hex"
-Wl,-Map="%Fn_NoExt%.map" -Wa,-a

 [tool=mpasm]
 'An assember
 type = assembler
 'Location of the assember using a parameter substitution.
 command = %mpasmlocation%\mpasmx.exe
 'Paramters
 params = /c- /o- /q+ /l+ /x- /w1 "%FileName%"

The section shows an example [patch] section.

This section shows and explicit set of patches applied to PIC-AS assembler.

 [patch=asm2picas]
 desc = PICAS correction entries. Format is STRICT as follows: Must have quotes and
the equal sign as the delimeter. PartName +COLON+"BadConfig"="GoodConfig" Where
BadConfig is from .s file and GoodConfig is from .cfgmap file
 16f88x:"intoscio = "="FOSC=INTRC_NOCLKOUT"
 16f8x:"intrc = IO"="FOSC=INTOSCIO"
 12f67x:"intrc = OSC_NOCLKOUT"="FOSC=INTRCIO"

The section shows an example [programmer] section.

970

 [tool = pk4_pic_ipecmd_program_release_from_reset]
 'Description
 desc = MPLAB-IPE PK4 CLI for PIC 5v0
 'A programmer
 type = programmer
 'Command line using a parameter substitution.
 command = %mplabxipedirectory%\ipecmd.exe
 'Parameters using a parameter substitution.
 params = -TPPK4 -P%chipmodel% -F"%filename%" -M -E -OL -W5
 'Worting direcroty using a parameter substitution.
 workingdir = %mplabxipedirectory%
 'Useif constraints - this shows none
 useif =
 'Mandated programming config constraints - this shows none
 progconfig =

ABOUT THE PREFERENCES EDITOR
This is a utility for editing GCBASIC ini files. It is derived from the Graphical GCBASIC utilities, and
requires some files from Graphical GCBASIC to compile.

The software is developed using Sharp Develop v.3.2.1 (not Visual Studio).

The latest source is in Sourceforge.

COMPILING

Ensure that the "Programmer Editor" folder is in the same folder as a "Graphical GCBASIC" folder. The
"Graphical GCBASIC" folder must contain the following files from GCGB: - Preferences.vb -
PreferencesWindow.vb - ProgrammerEditor.vb - Translator.vb - ProgrammerEditor.resources

Once these files are in place, it should be possible to compile the Programmer Editor using
SharpDevelop 3.2 (or similar).

USING PREFS EDITOR

If run without any parameters, this program will create an ini file in whatever directory it is located
in. If it is given the name of an ini file as a command line parameter, it will use that file.

As well as the ini file it is told to load, this program will also read any files that are included from that
file.. This makes it possible to keep the settings file in the Application Data folder if GCBASIC is
installed in the Program Files directory.. To put the settings file into the Application Data folder, create

971

a small ini file containing the following 3 lines and place it in the same directory as this program:

 include %appdata%\gcgb.ini
 [gcgb]
 useappdata = true

The include line tells the program (and GCBASIC) to read from the Application Data folder. The
useappdata=true line in the [gcgb] section will cause this program to write any output to a file in
Application Data called gcgb.ini. The hard coding of GCGB is required this program is based on
GCGB. It will result in programmer definitions being shared between GCGB and any other
environment using this editor, which may be a positive side effect.

BUILDING THE PROGRAMMER EDITOR EXECUTABLE USING SHARP DEVELOP

To build Prefs Editor from the source files. The list shows the installation of the Sharp Develop IDE.

Complete the following:

 1. Download and install Sharp Develop from
https://sourceforge.net/projects/sharpdevelop/files/SharpDevelop%203.x/3.2/[SourceForge]
 2. Download the Prefs Editor source using SVN into a source folder. This is the
folder ..\utils\Programmer Editor
 4. Run Sharp Develop (installed at step #1). Load project "Programmer
Editor.sln" from source source folder.
 5. Hit <f8> to compile.

GCBASIC with the AVRISP or MKII
Programmer
This is the GCBASIC section of the Help file that explains how to use an AVRISP MKII or USBtinyISP for
ATTINY10 chip under Windows 10

972

Setup an AVRISP MKII or USBtinyISP for ATTINY10 chip
under Windows
AVRISP MKII Windows Driver Validation/Changing

Windows 10 and 11 tested.

When using the AVRDUDE, which is used as part of the GCBASIC toolchain, you need to ensure these
programmers are operating with the correct Windows device driver. The Windows driver must be
libusbK not libusb or libusb-win32 Windows driver.

You must ensure the Windows driver is libusbK. Using the utility Zadig enables changing the Windows
device driver to libusbK.

• Download and install Zadig Driver Utility software https://zadig.akeo.ie/

• Connect the USB cable from the AVRISP MKII to your PC.

• Open Zadig and from the menu select Options / List All Devices.

• From the device list select AVRISP MKII.

• Select the target driver libusbK and click (Install / Replace Driver) button.

After the installation is completed, open Windows Device Manager and verify the driver installation.

Close Zadig

[Setup] | 1%20%20-%20AVRISP%20MKII%20Zadig%20Setup.png

NOTE
If you use ATMEL Studio you must ensure the Windows device driver is libusb or
libusb-win32.

NOTE If you use AVRDUDE then uou must ensure the Windows device driver is libusbK.

Next in the process is to upgrade the firmware of the AVRISP MKII.

Option 1:

This process shows the installation of Atmel Studio 7, however, you may have to use Atmel Studio 6
because of operation system constraint.

Download and Install Atmel Studio 7 from the GCBASIC file store here

After the installation open ATMEL STUDIO 7

• Select Tools / Device Programming

• Make sure the AVRISP MKII is selected

973

https://zadig.akeo.ie/
https://sourceforge.net/projects/gcbasic/files/Support%20Files/ATMELCompilers/

• At this point ATMEL STUDIO will notified to upgrade the firmware to version 1.8

• Click the Upgrade button

• Once the firmware is upgraded, close ATMEL STUDIO 7

[Studio] | 2%20%20-%20ATMEL%20STUDIO.png

Option 2:

To update the firmware please, follow the steps listed below.

• Connect the programmer to the USB and with a sharp object (needle or pin) press the upgrade pin -
it is in a small hole at the back of the board (this will start the bootloader and will turn off the LED,
it will also probably show a new unrecognized device in the device manager for which we will
install drivers in step 3)

• Download and install the latest version of "Atmel Flip" software (it can be downloaded from the
Atmel’s web-site, or from the GCBASIC file store here)

• Open its install folder and update the software of the unrecognized device (usually under the
"Other devices" tab) with the drivers from folder named "usb"; the device should now be
recognized as AT90USB162 under "libusb-win32" tab

• Start "Atmel FLIP" and click "Select a target device" → choose AT90USB162

• Click "Select a Communication Medium" and then USB medium

• Download the firware and unpack Olimex website or the GCBASIC files store here

• From "File → load HEX file" choose the latest HEX and click "RUN" in the "Operations Flow" section

• Disconnect the AVR-ISP-MK2 from the USB and connect it again

For more information about AVR-ISP-MK2 see this guide here

AVRISP MKII to ATTINY10 Connections:

Connect the AVRISP MKII to the ATTINY10 as show in the Diagram.

[Connections] | 3%20%20-%20AVRISP%20MKII%20Connections.png

GCStudio Programmer Setup:

Open GCStudio and set the Programmers to use as show below

For AVRISP MKII use the AVR ISP XPII [KANDA] and drag it to the top of the list and click OK.

974

https://sourceforge.net/projects/gcbasic/files/Support%20Files/ATMELCompilers/AVRISPMk2/
https://www.olimex.com/Products/AVR/Programmers/AVR-ISP-MK2/resources/AVR456-studio-AVRISP-MKII.zip
https://sourceforge.net/projects/gcbasic/files/Support%20Files/ATMELCompilers/AVRISPMk2/
http://gcbasic.sourceforge.net/library/AVR-ISP-MK2-OpenSourceHardwareBoard.pdf

[4%20%20

975

%20GCStudio%20AVRISP%20MKII%20use%20the%20AVR%20ISP%20XPII%20%5BKANDA%5D] |

976

4%20%20-

977

%20GCStudio%20AVRISP%20MKII%20use%20the%20AVR%20ISP%20XPII%20%5BKANDA%5D.png

Now you’re ready to upload your first program to an ATTINY10.

USBtinyISP Setup:

• From Zadig select USBtinyISP in the device list.

• Select the target driver libusb-win32 and click (Install / Replace Driver) button.

• After the installation, open Windows Device Manager and verify the driver installation.

• Close ZADIG

[5%20%20 %20USBtinyISP%20Zadig%20setup] | 5%20%20-%20USBtinyISP%20Zadig%20setup.png

USBtinyISP to ATTINY10 Connections:

Connect the USBtinyISP to the ATTINY10 as show in the Diagram.

[6%20%20 %20USBtinyISP%20Copnections] | 6%20%20-%20USBtinyISP%20Copnections.png

GCStudio Programmer Setup:

Open GCStudio and set the Programmers to use as show below

Select and Drag the Avrdude (USBtinyISP) programmer to the top of the list.

[7%20%20 %20GCStudio%20Avrdude%20%28USBtinyISP%29] | 7%20%20-

978

%20GCStudio%20Avrdude%20%28USBtinyISP%29.png

Now you are ready to upload your first program to an ATTINY10

For more information programming review these resources:

A guide
http://gcbasic.sourceforge.net/library/Programming_an_Attiny10_with_AVRISP_mkII_and_AVR_S
tudio_5.pdf[here]

A blog
http://gcbasic.sourceforge.net/library/Technoblogy_Programming_the_ATtiny10.pdf[here]

979

	GCBASIC documentation
	Table of Contents
	Introducing GCBASIC
	Using GCBASIC
	PIC users and Beginners: Start Here
	Changes
	Command Line Parameters
	Frequent errors
	A Glossary
	Frequently Asked Questions
	Troubleshooting
	GCBASIC Compiler Insights
	Compiler Insights
	Compiler Control

	Libraries Overview
	Acknowledgements
	Tricks and Tips
	UNO as ISP programmer

	Microcontroller Fundamentals
	Inputs/Outputs
	Configuration
	USB Drivers Installer

	Variables
	Data Types
	Variable Types
	Advanced VariableTypes
	Variable Memory Allocation, Addressing & Control

	Reference Data
	Efficient Implementation of Lookup Reference Tables in GCBASIC

	Syntax
	Arrays
	Comments
	Line Continuation
	Conditions
	Constants
	Functions
	Labels
	Lookup Tables
	Miscellaneous
	ReadTable
	Scripts
	Subroutines
	Converters

	Command References
	Analog/Digital conversion
	Bitwise
	Memory
	Flow control
	Fixed Voltage Reference
	Interrupts
	Keypad
	Graphical LCD
	Touch Screen
	Liquid Crystal Display
	Pulse width modulation
	Random Numbers
	7-Segment Displays
	One Wire Devices
	Serial Communications
	PS/2
	SPI
	I2C Software
	I2C/TWI Hardware Module
	Sound
	Timers
	Variables Operations
	String Manipulation
	Miscellaneous Commands
	Maths
	Peripheral Pin Select

	Compiler Directives
	#asmraw
	#chip
	#config
	#DEFINE
	#UNDEFINE
	#if
	#ifnot
	#ifdef
	#ifndef
	#include
	#insert
	#script
	#startup
	#mem
	Enum
	Other directives

	Compiler Options
	#Option Explicit
	#Option NoConfig
	#Option Bootloader
	#Option NoContextSave
	#Option NoLatch
	#Option Required
	#Option Volatile
	#Option ReserveHighProg

	Using Assembler
	Assembler Overview

	Macros
	Macros Overview
	Example Macros

	Example Programs
	Flashing LEDs and an Interrupt
	Flashing LED with timing parameters
	Generate Accurate Pulses
	Graphical LCD Demonstration
	InfraRed Remote
	Midpoint Circle Algorithm
	I2C Master Hardware
	I2C Slave Hardware
	RGB LED Control
	Serial/RS232 Buffer Ring
	Trigonometry Circle

	Graphical GCBASIC
	Code Documentation
	Windows .NET Support

	GCBASIC for Linux
	Overview - Linux Operating System
	Make ASM, Make HEX and Programming Operations using the provided Linux scripts

	GCBASIC for ARM & Pi
	Overview - Raspberry Pi

	GCBASIC for Apple macOS
	Overview - Apple macOS GCBASIC

	GCBASIC for FreeBSD
	Overview - FreeBSD GCBASIC

	GCBASIC Maintenance and Development
	GCBASIC Maintenance
	Development Guide
	Development Guide for GCBASIC.EXE compiler
	COMPILER SOURCE INSIGHTS
	ABOUT GLCD Library Support
	Development Guide for GCBASIC Preferences Editor

	ABOUT THE PREFERENCES EDITOR
	GCBASIC with the AVRISP or MKII Programmer
	Setup an AVRISP MKII or USBtinyISP for ATTINY10 chip under Windows

