
01/04/2024, 08:10 How to Use MMC/SDC

elm-chan.org/docs/mmc/mmc_e.html 1/8

How to Use MMC/SDC
Chinese Version🔗
Update: December 26, 2019

The Secure Digital Memory Card (SDC below) is the de facto standard memory card for mobile equipments. The SDC was developped as upper-
compatible to Multi Media Card (MMC below). SDC compleant equipments can also use MMCs in most case. There are also reduced size versions,
such as RS-MMC, miniSD and microSD, with the same function. The MMC/SDC has a microcontroller in it. The flash memory controls (block size
translation, wearleveling and error correction - known as FTL) are completed inside of the memory card. The data is transferred between the memory
card and the host controller as data blocks in unit of 512 bytes, so that it can be seen as a block device like a generic harddisk drive from view point of
upper level layers.

This page describes the basic knowledge and miscellaneous things that I become aware, on using MMC/SDC with small embedded system. I believe
that this information must be a useful getting started notes for the people who is going to use MMC/SDC on the electronics handiwork projects.

1. Pinout
2. SPI Mode
3. Initialization Procedure for SPI Mode
4. Data Transfer
5. Cosideration to Bus Floating and Hot Insertion
6. Cosideration on Multi-slave Configuration
7. Maximum SPI Clock Frequency
8. File System
9. Optimization of Write Performance

10. License
11. Links

Pinout

miniSD | microSD

Right photo shows the contact surface of the SDC/MMC. The MMC has seven contact pads. The SDC has nine contact pads that two additional
contacts to the MMC. The three of the contacts are assigned for power supply, so that the number of effective signals are four (MMC) and six (SDC).
Therfore the data transfer between the host and the card is done via a synchronous serial interface.

The working supply voltage range is indicated by the operation conditions register (OCR) and it should be read and comfirmed the operating voltage
range at card initialization. However, the supply voltage can also be fixed to 3.0 to 3.3 volts without any confirmation because the all MMC/SDCs

https://www.0xaa55.com/thread-25692-1-1.html
http://elm-chan.org/docs/mmc/m/mini_contact.jpeg
http://elm-chan.org/docs/mmc/m/micro_contact.jpeg

01/04/2024, 08:10 How to Use MMC/SDC

elm-chan.org/docs/mmc/mmc_e.html 2/8

work at 2.7 to 3.6 volts at least. Do not supply 5.0 volts to the card, or the card will be broken instantly. The current consumption at write operation
can reach up to 100 miliamperes, so that the host system should consider to supply 100 miliamperes to tha card at least.

SPI Mode

Minimal configuration for SPI mode

This document describes about SPI mode to control the MMC/SDCs. The SPI mode is an alternative operating mode that defined to use the
MMC/SDCs without a native host interface. The communication protocol of the SPI mode is slightly simple compared to its native operating mode.
The MMC/SDC can be attached to the most microcontrollers via a generic SPI interface or some GPIO ports. Therefore the SPI mode is suitable for
low cost embedded applications with no native host interface is available. There are four different SPI modes, 0 to 3, depends on clock phase and
polarity. The SPI mode 0 is defined for SDC. For the MMC, it is not the SPI spec, both latch and shift operations are defined with rising edge of the
SCLK, but it seems to work at mode 0 at the SPI mode. Thus the SPI mode 0 (CPHA=0, CPOL=0) is the proper setting to control MMC/SDC, but
mode 3 (CPHA=1, CPOL=1) also works as well in most case. A pull-up on the DO cannot be omited, or some cards will fail initialization process.

Command and Response

In SPI mode, the data direction on the signal lines are fixed and the data is transferred in byte oriented serial communication. The command frame
from host to card is a fixed length packet that shown below. The card is ready to receive a command frame when it drives DO high. After a command
frame is sent to the card, a response to the command (R1, R2, R3 or R7) is sent back from the card. Because the data transfer is driven by serial
clock generated by host controller, the host controller must continue to read data, send a 0xFF and get received byte, until a valid response is
detected. The DI signal must be kept high during read transfer (send a 0xFF and get the received data). The response is sent back within command
response time (NCR), 0 to 8 bytes for SDC, 1 to 8 bytes for MMC. The CS signal must be driven high to low prior to send a command frame and
held it low during the transaction (command, response and data transfer if exist). The CRC feature is optional in SPI mode. CRC field in the command
frame is not checked by the card.

SPI Command Set

Each command is expressed in abbreviation like GO_IDLE_STATE or CMD<n>, <n> is the number of the command index and the value can be 0 to
63. Following table describes only commands that to be usually used for generic read/write and card initialization. For details on all commands, please
refer to spec sheets from MMCA and SDA.

Command
Index Argument Response Data Abbreviation Description

CMD0 None(0) R1 No GO_IDLE_STATE Software reset.
CMD1 None(0) R1 No SEND_OP_COND Initiate initialization process.
ACMD41(*1) *2 R1 No APP_SEND_OP_COND For only SDC. Initiate initialization process.
CMD8 *3 R7 No SEND_IF_COND For only SDC V2. Check voltage range.
CMD9 None(0) R1 Yes SEND_CSD Read CSD register.
CMD10 None(0) R1 Yes SEND_CID Read CID register.
CMD12 None(0) R1b No STOP_TRANSMISSION Stop to read data.

CMD16 Block
length[31:0] R1 No SET_BLOCKLEN Change R/W block size.

CMD17 Address[31:0] R1 Yes READ_SINGLE_BLOCK Read a block.
CMD18 Address[31:0] R1 Yes READ_MULTIPLE_BLOCK Read multiple blocks.

CMD23 Number of
blocks[15:0] R1 No SET_BLOCK_COUNT For only MMC. Define number of blocks to transfer

with next multi-block read/write command.

http://elm-chan.org/docs/spi_e.html

01/04/2024, 08:10 How to Use MMC/SDC

elm-chan.org/docs/mmc/mmc_e.html 3/8

ACMD23(*1) Number of
blocks[22:0] R1 No SET_WR_BLOCK_ERASE_COUNT For only SDC. Define number of blocks to pre-erase

with next multi-block write command.
CMD24 Address[31:0] R1 Yes WRITE_BLOCK Write a block.
CMD25 Address[31:0] R1 Yes WRITE_MULTIPLE_BLOCK Write multiple blocks.
CMD55(*1) None(0) R1 No APP_CMD Leading command of ACMD<n> command.
CMD58 None(0) R3 No READ_OCR Read OCR.
*1:ACMD<n> means a command sequense of CMD55-CMD<n>.
*2: Rsv(0)[31], HCS[30], Rsv(0)[29:0]
*3: Rsv(0)[31:12], Supply Voltage(1)[11:8], Check Pattern(0xAA)[7:0]

SPI Response

There are some command response formats, R1, R2, R3 and R7, depends on the command index. A byte of response, R1, is returned for most
commands. The bit field of the R1 response is shown in right image, the value 0x00 means successful. When any error occured, corresponding status
bit in the response will be set. The R3/R7 response (R1 + trailing 32-bit data) is for only CMD58 and CMD8.

Some commands take a time longer than NCR and it responds R1b. It is an R1 response followed by busy flag (DO is driven to low as long as internal
process is in progress). The host controller should wait for end of the process until DO goes high (a 0xFF is received).

Initialization Procedure for SPI Mode

After a power-up sequence, MMC/SDC enters its native operating mode. To put it SPI mode, follwing procedure must be performed as shown in this
flow.

Power ON or card insersion

After supply voltage reached above 2.2 volts, wait for one millisecond at least. Set SPI clock rate between 100 kHz and 400 kHz. Set DI and CS
high and apply 74 or more clock pulses to SCLK. The card will enter its native operating mode and go ready to accept native command.

Software reset

Send a CMD0 with CS low to reset the card. The card samples CS signal on a CMD0 is received successfully. If the CS signal is low, the card enters
SPI mode and responds R1 with In Idle State bit set (0x01). Since the CMD0 must be sent as a native command, the CRC field must have a valid
value. When once the card enters SPI mode, the CRC feature is disabled and the command CRC and data CRC are not checked by the card, so that
command transmission routine can be written with the hardcorded CRC value that valid for only CMD0 and CMD8 used in the initialization process.
The CRC feature can also be switched on/off with CMD59.

Initialization

In idle state, the card accepts only CMD0, CMD1, CMD8, ACMD41, CMD58 and CMD59. Any other commands will be rejected. In this time,
OCR register should be read with CMD58 to check the working voltage range of the card. In case of the system sypply voltage is out of working
voltage range, the card must be rejected. Note that all cards work at supply voltage in range of 2.7 to 3.6 volts at least, so that the host contoller does
not need to check the OCR if supply voltage is in this range. The card initiates the initialization process when a CMD1 is received. To detect end of the
initialization process, the host controller needs to send CMD1 and check the response until end of the initialization. When the card is initialized
successfuly, In Idle State bit in the R1 response is cleared (R1 resp changes 0x01 to 0x00). The initialization process can take hundreds of
milliseconds (large cards tend to longer), so that this is a consideration to determin the time out value. After the In Idle State bit cleared, the card gets
ready to accept the generic read/write commands.

Because ACMD41 instead of CMD1 is recommended for SDC, trying ACMD41 first and retry with CMD1 if rejected, is ideal to support both type
of the cards.

The SCLK frequency should be changed to fast as possible to maximize the read/write performance. The TRAN_SPEED field in the CSD register
indicates the maximum clock frequency of the card. It is 20MHz for MMC, 25MHz for SDC in most case. Note that the clock freqency will able to
be fixed to 20/25MHz in SPI mode because there is no open-drain condition that restricts the clock frequency.

http://elm-chan.org/docs/mmc/m/sdinit.png
http://elm-chan.org/docs/mmc/m/sdinit.png

01/04/2024, 08:10 How to Use MMC/SDC

elm-chan.org/docs/mmc/mmc_e.html 4/8

The initial read/write block length might be set 1024 on 2 GB cards, so that the block size should be re-initialized to 512 with CMD16 to work with
FAT file system.

High-capacity SDC and Initialization

SDSC card supports 8MB to 2GB. This is from the maximum capacity of regular file system, FAT. (FAT supports up to 4GB theoritically but MS-
DOS supports up to 2GB.)

SDHC card supports 4GB to 32GB. This is from the maximum capacity of regular file system, FAT32. (FAT32 supports up to 2TB theoritically but it
seemed to be affected by Microsoft's wishes that they recommend to use FAT32 for the volumes in 32GB or smaller.)

SDXC card supports 64GB to 2TB. This is from the addressing mode in read/write commands, 32-bit LBA. (The regular file system, exFAT, supports
over 2TB.)

SDUC card supports 4TB to 128TB. The addressing mode is extended to 38-bit LBA. However the SDUC card might not support SPI mode
because the 38-bit LBA is a new feature defined after SDC Ver.2.

Now, the initialization process for high-capacity SDCs differs from the process described above. After the card goes idle state with a CMD0, host
controller sends a CMD8 with an argument 0x000001AA and correct CRC prior to initialization process. If it is rejected with illigal command error
(0x05), the card is SDC Ver.1 or MMC Ver.3. The card will be initialized as described above. If the CMD8 is accepted, R7 response (R1(0x01) +
32-bit return value) will be returned. The lower 12-bit in the return value 0x1AA means that the card is SDC Ver.2+ and it can work at supply voltage
range of 2.7 to 3.6 volts. If it is not the case, the card should be rejected. And then initiate initialization with ACMD41 with HCS[bit30] flag in the
argument. After the initialization completed, read OCR register with CMD58 and check CCS[bit30] flag. When it is set, the card is a high-capacity
card known as SDHC/SDXC. The data read/write operations described below are commanded in block addressing (LBA) insted of byte addressing.
The size of data block at block addressing mode is fixed to 512 bytes.

Data Transfer

Data Packet and Data Response

In a transaction with data transfer, one or more data blocks will be sent/received after command response. The data block is transferred as a data
packet that consist of Token, Data Block and CRC. The format of the data packet is showin in right image and there are three data tokens. Stop Tran
token is to terminate a multiple block write transaction, it is used as single byte packet without data block and CRC.

Single Block Read

The argument specifies the address to start to read in unit of BYTE or BLOCK. The sector address in LBA specified by upper layer must be scaled
properly depends on the card's addressing mode. When a CMD17 is accepted, a read operation is initiated and the read data block will be sent to the
host. After a valid data token is detected, the host controller receives following data field and CRC. The CRC bytes must be received even if it is not
needed. If any error occured during the read operation, an error token will be returned instead of data packet.

Multiple Block Read

01/04/2024, 08:10 How to Use MMC/SDC

elm-chan.org/docs/mmc/mmc_e.html 5/8

The CMD18 is to read data blocks in sequense start at the specified address. The read operation continues as open-ended. To terminate the read
transaciton, a CMD12 needs to be sent to the card. The received byte immediataly following CMD12 is a stuff byte, it should be discarded prior to
receive the response of the CMD12. For MMC, if number of transfer blocks has been sepecified by a CMD23 prior to CMD18, the read transaction
is initiated as a pre-defined multiple block transfer and the read operation is terminated at last block transfer.

Single Block Write

The Single Block Write writes a block to the card. After a CMD24 is accepted, the host controller sends a data packet to the card. The packet format
is same as block read operations. Most cards cannot change write block size and it is fixed to 512. The CRC field can have any fixed value unless the
CRC function is enabled. The card responds a Data Response immediataly following the data packet from the host. The Data Response trails a busy
flag and host controller must suspend the next command or data transmission until the card goes ready.

In principle of the SPI mode, the CS signal must be kept asserted during a transaction. However there is an exception to this rule. When the card is
busy, the host controller can deassert CS to release SPI bus for data transfer to other SPI devices on the bus. The card will drive DO low again when
reselected during internal process is still in progress. Therefore a preceding busy check, check if card is busy prior to each command and data packet,
instead of post wait can eliminate the busy wait time. In addition, the internal write process is initiated a byte after the data response, this means eight
SCLK clocks are required to initiate internal write operation. The state of CS signal during the post clocks can be either low or high, so that it can be
done with bus release process described below.

Multiple Block Write

The Multiple Block Write command writes data blocks in sequense start at the specified address. After a CMD25 is accepted, the host controller
sends one or more data packets to the card. The packet format is same as block read operations except for Data Token. The write transaction
continues until it terminated with a Stop Tran token. The busy flag will be output after every data block and Stop Tran token. For MMC, the number of
blocks to write can be pre-defined by CMD23 prior to CMD25 and the write transaction is terminated at last data block. For SDC, a Stop Tran
token is always required to treminate the multiple block write transaction. Number of sectors to pre-erased at start of the write transaction can be
specified by an ACMD23 prior to CMD25. It may able to optimize write strategy in the card and it can also be terminated not at the pre-erased
blocks but the content of the pre-erased area not written will get undefined.

Reading CSD and CID

These are same as Single Block Read except for the data block length. The CSD and CID are sent to the host as 16 byte data block. For details of
the CMD, CID and OCR, please refer to the MMC/SDC specs.

Cosideration to Bus Floating and Hot Insertion

01/04/2024, 08:10 How to Use MMC/SDC

elm-chan.org/docs/mmc/mmc_e.html 6/8

SPI signals that can be floated should be pulled low or high properly via a resister. This is a generic design rule on CMOS device. Because DI and DO
are normally high, they should be pulled-up. According to SDC/MMC specs, from 50k to 100k ohms is recommended to the value of pull-up
registers. However the clock signal is not mentioned in the SDC/MMC specs because it is always driven by host controller. When there is a possibility
of floating, it should be pulled to the normal state, low.

The MMC/SDC can hot insertion/removal. But some considerations to the host circuit are needed to avoid an incorrect operation. For example, if the
system power supply (Vcc) is tied to the card socket directly, the Vcc will dip at the instant of the card insertion due to a charge current to the built-in
capacitor of the card. 'A' in the right image is the scope view and it shows that occureing a voltage dip of about 600 mV. This is a sufficient level to
trigger a brown out detector. 'B' in the right image shows that an inductor is inserted to block the surge current, the voltage dip is reduced to 200 mV. A
low ESR capacitor, such as OS-CON, can eliminate the voltage dip dratiscally like shown in 'C'. However the low ESR capacitor can cause an
oscillation of LDO regulator.

Cosideration on Multi-slave Configuration

In the SPI bus, each slave device is selected with separated CS signals, and plural devices can be attached to an SPI bus. Generic SPI slave device
enables/disables its DO output by CS signal asynchronously to share an SPI bus. However MMC/SDC enables/disables the DO output in
synchronising to the SCLK. This means there is a posibility of bus conflict with MMC/SDC and another SPI slave that shares an SPI bus. Right
image shows the MISO line drive/release timing of the MMC/SDC (the DO signal is pulled to 1/2 vcc to see the bus state). Therefore to make
MMC/SDC release the MISO line, the master device needs to send a byte after the CS signal is deasserted.

There is an important thing needs to be considered that the MMC/SDC is initially NOT the SPI device. Some bus activity to access another SPI
device can cause a bus conflict due to an accidental response of the MMC/SDC. Therefore the MMC/SDC should be initialized to put it into the SPI
mode prior to access any other device attached to the same SPI bus.

Maximum SPI Clock Frequency

01/04/2024, 08:10 How to Use MMC/SDC

elm-chan.org/docs/mmc/mmc_e.html 7/8

MMC/SDC can work at the clock frequency upto 20/25 MHz. Of course all native interfaces guarantee to work at the maximum clock frequency.
However generic SPI interface integrated in the microcontrollers may not work at high clock frequency due to a timing issue. Right image shows the
timing diagram of the SPI interface. In SPI mode 0/3, the data is shifted out by falling edge of the SCLK and latched by following rising edge. td is the
SCLK to DO propagation delay at the SDC, 14ns maximum. tsu is the minimum setup time of the MISO input on the SPI interface. Therefore the
maximum allowable SCLK frequency can be calculated as:

FSCLK(max) = 0.5 / (td + tsu)

Some microcontrollers I have used are limited the allowable clock frequency around 10 MHz according to the timing specs.

File System

The file system used on the MMC/SDC is FAT. The MMC/SDC specifications define the FAT type as: FAT12 for 64MB and smaller, FAT16 for
128MB to 2GB, FAT32 for 4GB to 32GB and exFAT for 64GB to 2TB. Only an FAT volume can be exist on the card with FDISK partitioning and
no patition table like floppy disk is not allowed. Of course the MMC/SDC with any file system and partitioning other than the MMC/SDC
specifications define can be used as generic storage media for PCs. However such the card with illigal format will not be accepted by DSCs,
camcorders and TVs.

Optimization of Write Performance

MMC/SDC employs NAND Flash Memory as a memory array. The NAND flash memory is cost effective and it can read/write large chunk of data
fast, but on the other hand, there is a disadvantage that rewriting a small part of data is inefficient. Generally the flash memory requires to erase existing
data prior to re-write a new data, and minimum unit of erase operation, called erase block, is larger than write block size. The typical NAND flash
memory has a block size of 512/16K bytes for write/erase operation, and recent cards lager than 128MB employs large block chip (2K/128K). This
means that re-writing entire data in the erase block is done in the card even if write only a sector (512 bytes).

Benchmark

I examined the read/write performance of some MMC/SDC with a cheap 8 bit MCU (ATmega64 @9.2MHz) on the assumption that an embedded
system with limited memory size. For reason of memory size, write() and read() ware performed in 2048 bytes at a time. The result is: Write:
77kB/sec, Read: 328kB/sec on the 128MB SDC, Write: 28kB/sec, Read: 234kB/sec on the 512MB SDC and Write: 182kB/sec, Read: 312kB/sec
on the 128MB MMC.

By some benchmarks later, I guess MMC tends to be faster than SDC in write throughput.

Therefor the write performance of the 512MB SDC was very poor that one third value of 128MB SDC. Generally the read/write performance of the
mass storage device increases proportional to its recording density, however it sometimes appears a tendency of opposite on the memory card. As for
the MMC, it seems to be several times faster than SDC, it is not bad performance. After that time, I examined some SDCs supplied from different
makers, and I found that PQI's SDC was as fast as Hitachi's MMC but Panasonic's and Toshiba's one was very poor performances.

Erase Block Size

To analys detail of write operation, busy time (number of polling cycles) after sent a write data is typed out to console in the low level disk write
function. Multiple numbers on a line indicates data blocks and a Stop Tran token that issued by a multiple block write transaction.

In resulut of the analysis, there is a different of internal process between 128MB SDC and 512MB SDC. The 128MB SDC rewrites erase block at
end of the mutiple block write transaction. The 512MB SDC seems have 4K bytes data buffer and it rewrites erase block every 4K bytes boundary.
Therefor it cannot compared directly but the processing time of rewriting an erase block can be read 3800 for 128MB SDC and the 512MB SDC
taeks 30000 that 8 times longer than 128MB SDC. Judging from this resulut, it seems the 128MB SDC uses a small block chip and the 512MB SDC
uses a large block or MLC chip. Ofcourse the larger block size decreases the performance on pertial block rewriting. In 512MB SDC, only an area
that 512K bytes from top of the memory is relatively fast. This can be read from write time in close(). It might any special processing is applied to this
area for fast FAT accsess.

Improving Write Performance

http://elm-chan.org/docs/dev/sm_e.html
http://elm-chan.org/docs/mmc/m/sdmm.jpeg
http://elm-chan.org/docs/mmc/m/sd128.txt
http://elm-chan.org/docs/mmc/m/sd512.txt
http://elm-chan.org/docs/mmc/m/mm128.txt
http://elm-chan.org/fsw/ff/img/rwtest1.png

01/04/2024, 08:10 How to Use MMC/SDC

elm-chan.org/docs/mmc/mmc_e.html 8/8

To avoid this bottleneck and increase the write performance, number of blocks per write transaction must be large as possible. Of course all layers
between the application and the media must support multiple sector write feature. For low level SDC/MMC write function, it should inform number of
write sectors to the card prior to the write transaction for efficient internal write process. This method called `pre-defined multiple block write'. The
pre-definition command is not the same between MMC (CMD23) and SDC (ACMD23).

The memory cards are initially patitioned and formatted to align the allocation unit to the erase block boundary. When re-patition or re-format the
memory card with a device that not compliant to MMC/SDC (this is just a PC) with no care, the optimization will be broken and the write
performance might be lost. I tried to re-format a 512MB SDC in FAT32 with a generic format function of the PC, the write performance measured in
file copy was decreased to one several. Therefore the re-formatting the card should be done with SD format utility or SDC/MMC compliant
equipments.

License

MMC specification had been provided by MMCA (Multimedia Card Association) and then it has been transferred to JEDEC. Any license is not
needed to develop and sell the MMC products. However the MMC specification is not opend to the public and you need to join JEDEC to obtain the
techinical documentations.

SD specification is a product that has been developped and provided by SDA (SD Card Association) and SD-3C, LLC. Every organization or
individual who sells any product with SD specification must be an SDA member, and also a HALA (Host and Ancillary Product License Agreement)
with SD-3C LLC is needed to sell any SD host product which states support for SD card, no matter which interface, SD mode or SPI mode, is
used. For intermediate product, such as embedded module, a license is needed for either the seller of module or final product. Only licensee can put
SD logos on the products, packages and manuals. The annual fee for SDA general members is 2,500 USD and the license fee for HALA is 3,000
USD a year.

Every product states support for SD card needs to be licensed. In other words, the product does not state support for SD card does not need to be
licensed, even if it actually supports SD card. To avoid the license issue, some stingy device makers includes major companies state "Supports MMC",
"Supports MMC and compatibles" or "Supports TF card". What a nonsense!

Links

e.MMC | JEDEC
SDA - SD Card Association
SD Physical Layer Spec. by SDA
About SPI
Generic FAT file system module with sample code to control MMC/SDC

https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
http://www.sdcard.org/
https://www.sdcard.org/downloads/pls/
http://elm-chan.org/docs/spi_e.html
http://elm-chan.org/fsw/ff/

